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ON SOME GENERALIZATION OF ABSOLUTE

CESÀRO SUMMABILITY FACTORS

W. T. SULAIMAN

Abstract. In this paper, we improve the result of Saxsena [3] concerning generalization of abso-
lute Cesàro summablity factors of infinite series.

1. Introduction

Let ∑an be a given infinite series with the sequence of partial sums (sn) , and let
(ϕn) be a sequence of positive real numbers. By (tn) we denote the n-th (C,1) means
of the sequence (nan) . The series ∑an is said to be summable |C,1|k , if (see [1])

∞

∑
n=1

1
n
|tn|k < ∞ (1)

and it is summable ϕ −|C,1|k , k � 1, if (see [4])

∞

∑
n=1

ϕk−1
n

nk |tn|k < ∞. (2)

Clearly, ϕ −|C,1|k summability reduces |C,1|k for ϕ = n.
A positive sequence γ = (γn) is said to be a quasi- f -power increasing sequence,

if (see [6]) there exists a constant K = K(γ, f ) � 1 such that

K fnγn � fmγm (3)

holds for all n � m � 1. Every non-decreasing sequence is quasi- f -power increasing
but the converse is not true.

The following result is due to Mazhar [2]

THEOREM 1.1. If
λm = O(1), m → ∞, (4)
m

∑
n=1

n logn
∣∣Δ2λn

∣∣= O(1), (5)

m

∑
v=1

1
v
|tv|k = O(logm), as m → ∞, (6)

then the series ∑anλn is summable |C,1|k , k � 1.

Mathematics subject classification (2010): 40F05, 40D15.
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Özarslan [5] in his role generalized the above theorem by giving the following

THEOREM 1.2. Let (ϕn) be a sequence of positive real numbers and conditions
(4) and (5) of Theorem 1.1 are satisfied. If

m

∑
v=1

ϕk−1
v

vk |tv|k = O(logm), as m → ∞, (7)

m

∑
n=v

ϕk−1
n

nk+1 = O

(
ϕk−1

v

vk

)
, (8)

then the series ∑anλn is summable ϕ −|C,1|k , k � 1.

By weakening the conditions, Saxsena [3], presented the following

THEOREM 1.3. Let (ϕn) be a sequence of positive real numbers and condition (4)
of Theorem 1.1 and condition (8) of Theorem 1.2 are satisfied. Let (Xn) be a positive
non-decreasing sequence and (λn) a sequence such that

|λn|Xn = O(1), as n → ∞ (9)

m

∑
n=1

n
∣∣Δ2λn

∣∣Xn = O(1), m → ∞, (10)

m

∑
v=1

ϕk−1
v

vk |tv|k = O(Xmμm), as m → ∞, (11)

where (μm) is a positive non-decreasing such that

nXnμnΔ
(

1
μn

)
= O(1), m → ∞, (12)

then the series ∑anλn/μn is summable ϕ −|C,1|k , k � 1.

2. Lemmas

LEMMA 2.1. Let (Xn) be a positive non-decreasing sequence, and let (λn) be a
sequence of number satisfying (4), (9) and (10), then these conditions does not imply

neither
∞
∑

n=1

|λn|
n

< ∞, nor
∞
∑

n=1
|λn| < ∞.

Proof. As
∞
∑

n=1
|λn| >

∞
∑

n=1

|λn|
n

, it is sufficient to prove the first part. The following

counter example give the proof.

Let λn = (logn)−1 , Xn = (logn)α , 0 < α < 1. Clearly Δ2 (λn)= O

(
1

(n logn)2

)
,

and the three conditions of the lemma are satisfied, but
∞
∑

n=1

|λn|
n

= ∞. �



ON SOME GENERALIZATION OF ABSOLUTE CESÀRO SUMMABILITY FACTORS 25

We name the conditions

n1+β (logn)γ XnμnΔ
(

1
μn

)
= O(1), n → ∞, (13)

λn → 0, as n → ∞, (14)
∞

∑
n=1

nβ+1 (logn)γ Xn
∣∣Δ2λn

∣∣< ∞ (15)

m

∑
n=2

ϕk−1
n |tn|k

nk
(
nβ (logn)γ Xn

)k−1 = O
(
mβ (logm)γ Xmμm

)
, m → ∞. (16)

LEMMA 2.2. Let (Xn) be a quasi- f -power increasing sequence, f = ( fn), fn =
nβ (logn)γ , 0 < β � 1, γ � 0. Then conditions (14) and (15) imply

mβ+1 (logm)γ Xm |Δλm| = O(1), m → ∞, (17)
∞

∑
n=1

nβ (logn)γ Xn |Δλn| = O(1), (18)

and
nβ (logn)γ Xn |λn| = O(1), n → ∞. (19)

Proof. As Δλn → 0, we have

nβ+1 (logn)γ Xn |Δλn| = nβ+1 (logn)γ Xn

∞

∑
v=n

Δ |Δλv|

= O(1)
∞

∑
v=n

vβ+1 (logv)γ Xv
∣∣Δ2λv

∣∣
= O(1).

This proves (16). To prove (17), we observe that
∞

∑
n=1

nβ (logn)γ Xn |Δλn| =
∞

∑
n=1

nβ (logn)γ Xn

∞

∑
v=n

Δ |Δλv|

�
∞

∑
v=1

|Δ |Δλv||
v

∑
n=1

nβ (logn)γ Xn

= O(1)
∞

∑
v=1

vβ+1 (logv)γ Xv
∣∣Δ2λv

∣∣
= O(1).

Finally,

nβ (logn)γ Xn |λn| = nβ (logn)γ Xn

∞

∑
v=n

Δ |λv|

�
∞

∑
v=n

vβ (logv)γ Xv |Δλv|

= O(1), by (17). �
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LEMMA 2.3. Condition (15) is weaker than (11).

Proof. If (11) holds, then as
(
nβ (logn)γ Xn

)
is non-decreasing, we have

m

∑
n=2

ϕk−1
n |tn|k

nk
(
nβ (logn)γ Xn

)k−1 = O

(
1(

2β (log2)γ X2
)k−1

)
m

∑
n=1

ϕk−1
n |tn|k

nk = O(Xmμm) ,

while if (15) is satisfied then,

m

∑
n=2

ϕk−1
n |tn|k

nk =
m

∑
n=2

ϕk−1
n |tn|k

nk
(
nβ (logn)γ Xn

)k−1

(
nβ (logn)γ Xn

)k−1

= O
(
mβ (logm)γ Xm

)k−1 m

∑
n=2

ϕk−1
n |tn|k

nk
(
nβ (logn)γ Xn

)k−1

= O
(
mβ (logm)γ Xm

)k−1
O
(
mβ (logm)γ Xmμm

)
= O

((
mβ (logm)γ Xm

)k
μm

)
�= O(Xmμm) .

Therefore (11) implies (15) but not conversely. �

3. Main result

THEOREM 3.1. Let (ϕn) be a sequence of positive real numbers. Let (Xn) be a
quasi- f -power increasing sequence, f = ( fn), fn = nβ (logn)γ , 0 < β � 1, γ � 0,
and let (λn),(μn) be sequences of numbers such that (μn) is positive non-decreasing
and all satisfying (8), (15), (14), (13), (16) and the following

∞

∑
n=1

|λn|
n

< ∞, (20)

μnΔ2
(

1
μn

)
= O

( |Δλn|
n |λn+1|

)
, (21)

then the series ∑anλn/μn is summable ϕ −|C,1|k , k � 1.

REMARK 3.2. 1. It may be mentioned that there exists two mistakes in proof

of Theorem 1.3. The author consider the two series
∞
∑

n=1

|λn|
n

and
∞
∑

n=1
|λn| are

convergent via conditions (4), (9) and (10). But this is not true (see Lemma 2.1).

2. In this paper we are giving the corrected proof via adding the conditions (20) and
(21).
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3. We also reducing conditions (4) and (9) to one condition which is (14), (see
Lemma 2.2).

4. We also replaced condition (11) by a weaker one which is (16), (see Lemma 2.3).

Proof of Theorem 3.1. Let Tn be the n-th (C,1) mean of the sequence (nanλn/μn).
Then we have

Tn =
1

n+1

n

∑
v=1

vavλv

μv

=
1

n+1

(
n−1

∑
v=1

(
v

∑
r=1

rar

)
Δ
(

λv

μv

)
+
(

λn

μn

) n

∑
v=1

vav

)

=
1

n+1

(
n−1

∑
v=1

(v+1)tv

(
Δ
(

1
μv

)
λv +

Δλv

μv+1

))
+

tnλn

μn

=
1

n+1

n−1

∑
v=1

(v+1)tvΔ
(

1
μv

)
λv +

1
n+1

n−1

∑
v=1

(v+1)tv
Δλv

μv+1
+

tnλn

μn

= Tn1 +Tn2 +Tn3.

In order to prove the theorem, by Minkowski’s inequality, it is sufficient to prove that

∞

∑
n=1

ϕk−1
n

nk

∣∣Tn j
∣∣k < ∞, j = 1,2,3.

Applying Hölder’s inequality, we have

m

∑
n=2

ϕk−1
n

nk |Tn1|k =
m

∑
n=2

ϕk−1
n

nk

∣∣∣∣∣ 1
n+1

n−1

∑
v=1

(v+1)tvΔ
(

1
μv

)
λv

∣∣∣∣∣
k

= O(1)
m

∑
n=2

ϕk−1
n

n2k

n−1

∑
v=1

vk |tv|k Δ
(

1
μv

)
|λv|k

(
n−1

∑
v=1

Δ
(

1
μv

))k−1

= O(1)
m

∑
n=2

ϕk−1
n

n2k

n−1

∑
v=1

vk |tv|k Δ
(

1
μv

)
|λv|k

= O(1)
m

∑
v=1

v |tv|k Δ
(

1
μv

)
|λv|k

m

∑
n=v

ϕk−1
n

nk+1

= O(1)
m

∑
v=1

v |tv|k
vk
(
vβ (logv)γ Xv

)k−1 Δ
(

1
μv

)
|λv|ϕk−1

v

(
|λv|vβ (logv)γ Xv

)k−1

= O(1)
m

∑
v=1

v |tv|k
vk
(
vβ (logv)γ Xv

)k−1 Δ
(

1
μv

)
|λv|ϕk−1

v

= O(1)
m

∑
v=1

ϕk−1
v |tv|k

vk
(
vβ (logv)γ Xv

)k−1 v |λv|Δ
(

1
μv

)
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= O(1)
m−1

∑
v=1

(
v

∑
r=1

ϕk−1
r |tr|k

rk
(
rβ (logr)γ Xr

)k−1

)
Δ
(

v |λv|Δ
(

1
μv

))

+O(1)

(
m

∑
v=1

ϕk−1
v |tv|k

vk
(
vβ (logv)γ Xv

)k−1

)
m |λm|Δ

(
1

μm

)

= O(1)
m−1

∑
v=1

vβ (logv)γ Xvμv

(
|λv|Δ

(
1
μv

)
+(v+1)|Δλv|Δ

(
1
μv

)

+(v+1) |λv+1|Δ2
(

1
μv

))
+O(1)mβ+1 (logm)γ Xmμm |λm|Δ

(
1

μm

)

= O(1)
m−1

∑
v=1

|λv|
v

+O(1)
m−1

∑
v=1

vβ (logv)γ Xv |Δλv|

+O(1)
m−1

∑
v=1

vβ (logv)γ Xv |Δλv|+O(|λm|)

= O(1).

m

∑
n=2

ϕk−1
n

nk
|Tn2|k =

m

∑
n=2

ϕk−1
n

nk

∣∣∣∣∣ 1
n+1

n−1

∑
v=1

(v+1)tv
Δλv

μv+1

∣∣∣∣∣
k

= O(1)
m

∑
n=2

ϕk−1
n

n2k

n−1

∑
v=1

vk |tv|k(
vβ (logv)γ Xv

)k−1

Δλv

μk
v+1

(
n−1

∑
v=1

vβ (logv)γ XvΔλv

)k−1

= O(1)
m

∑
v=1

vk |tv|k(
vβ (logv)γ Xv

)k−1

|Δλv|
μk

v+1

m

∑
n=v

ϕk−1
n

n2k

= O(1)
m

∑
v=1

v
|tv|k(

vβ (logv)γ Xv
)k−1

Δλv

μk
v+1

m

∑
n=v

ϕk−1
n

nk+1

= O(1)
m

∑
v=1

|tv|k ϕk−1
v

vk
(
vβ (logv)γ Xv

)k−1

v |Δλv|
μv

= O(1)
m−1

∑
v=1

(
v

∑
r=1

|tr|k ϕk−1
r

rk
(
rβ (logr)γ Xr

)k−1

)
Δ
(

v |Δλv|
μv

)

+

(
m

∑
v=1

|tv|k ϕk−1
v

vk
(
vβ (logv)γ Xv

)k−1

)
m |Δλm|

μm

= O(1)
m−1

∑
v=1

vβ (logv)γ Xvμv

(
Δ
( 1

μv

)(
v |Δλv|+ 1

μv+1

(|Δλv|+(v+1)
∣∣Δ2λv

∣∣)))
+O(1)mXm |Δλm|

= O(1)
m−1

∑
v=1

vβ (logv)γ Xv |Δλv|+O(1)
m−1

∑
v=1

vβ (logv)γ Xv |Δλv|
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+O(1)
m−1

∑
v=1

vβ+1 (logv)γ Xv
∣∣Δ2λv

∣∣+O(1)

= O(1).
m

∑
n=1

ϕk−1
n

nk |Tn3|k = O(1)
m

∑
n=1

ϕk−1
n

nk

∣∣∣∣ tnλn

μn

∣∣∣∣
k

= O(1)
m

∑
n=1

ϕk−1
n |tn|k

nk
(
nβ (logn)γ Xn

)k−1

|λn|
μk

n

(
nβ (logn)γ Xn |λn|

)k−1

= O(1)
m

∑
n=1

ϕk−1
n |tn|k

nk
(
nβ (logn)γ Xn

)k−1

|λn|
μn

= O(1)
m−1

∑
n=1

(
n

∑
v=1

|tv|k ϕk−1
v

vk
(
vβ (logv)γ Xv

)k−1

)
Δ
( |λn|

μn

)

+

(
m

∑
n=1

ϕk−1
n |tn|k

nk
(
nβ (logn)γ Xn

)k−1

)
|λm|
μm

= O(1)
m−1

∑
n=1

nβ (logn)γ Xnμn

(
Δ
(

1
μn

)
|λn|+ |Δλn|

μn+1

)
+O(1)Xm |λm|

= O(1)
m−1

∑
n=1

|λn|
n

+O(1)
m−1

∑
n=1

nβ (logn)γ Xn |Δλn|+O(1)

= O(1) �
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