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INCLUSION PROPERTIES FOR CERTAIN CLASS OF ANALYTIC
FUNCTIONS INVOLVING MULTIPLIER TRANSFORMATION OPERATOR

J. K. PRAJAPAT

Abstract. A multiplier transformation is used to define certain new subclasses of analytic func-
tions in the open unit disk U. For each of these new function classes, several inclusion rela-
tionships are established. Some interesting corollaries and consequences of the main inclusion
relationships are also considered.

1. Introduction

Let <7 denote the class of functions f(z) normalized by

fR) =2+ Y ad", (1.1)
n=2
which are analytic in the open unit disk U = {z € C; |z| < 1}. Padamanabhan and
Parvatham [8] introduced a class Pi(or) of functions 7(z) which are analytic in U,
satisfying the properties, 7(0) = 1 and

/2” R(t(z)) —
0

l—«a
where z = re¢’® 0 < a0 < 1 and k > 2. We note that the class P;(0) = P, was studied in
[9] and P>() = P(«) is the class of functions with positive real part grater then o . In
particular P(0) is the class of functions with positive real part. We can write (1.2) as

1 27 14 (1—20)ze "
=g [ 2 o),

'de <k, (1.2)

where (1(6) is a function with bounded variation on [0,27], such that
2 2
du(6) = 21 and / dp(0)] < k.
0 0
Also for 7(z) € Pi(at), we can write from (1.2), that
ko1 ko1
_ (k1 (k1 , 1.
(= (5+3)n0-(5-3)n@. e (13)
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where 71,7 € P(a). For 0< a0 < 1 and 0 < 8 < 1 we define following subclasses of
the class &/

R(a) = {f:fe o and ZTf/ e P(), ZGU}7 (1.4)
Vila) = {f:f €« and (ij:)/ eP(a), z€ U}7 (1.5)
T(B, o) = {f:f € o, g€ Rolct) and % € R(p). z U}, (1.6)

and
Ti(B, o) = {fiféﬂ, g€ Va(a) and (Zg,) € P(B), zeU}. (1.7)

The classes Ry(a) = .7*(or) and Va(ar) = (@), are respectively, the classes of star-
like functions and convex functions, each of order o (0 < o < 1) (see, for more details
[12]). Also note that, the class T»(B, ) = C*(, o) was considered by Noor [5] and
the class 7,(0,0) = C* is the class of quasi-convex univalent functions which was first
studied in [6]. It can be easily seen from the above definitions that

feVi(a) <= zf €Ri(a) and feTi(B,a) <= zf € (B, ).

Komatu [3] introduced and investigated a family of integral operator ,023 c i —
</, which is defined as follows.

A i A—1
A — 617 a—2 z
211) = 0/ 2 (10g2)" fds
oo a A
:Z+2 <m> an?" (ZEU,CI>O,A>O) (1.8)
n=2 -

We note that

(i) For a=1 and A =k (k is an integer), the multiplier transformation operator
2% f(z) =1 f(z) was studied by Flett [1] and Salagean [11];

(ii) For a=2 and A =k (k is an integer), the operator 2% f(z) = L* f(z) was studied
by Uralegaddi and Somanatha [13];

(iii) For a =2 the operator 2% f(z) = I f(z) was studied by Jung et al. [2].

Following the recent investigation by Noor [7] and Prajapat [10], we define

DEFINITION 1.1. Let f € «/. Then f € R*(k, o) if and only if 2*f € R(x),
for ze U.

DEFINITION 1.2. Let f € o/. Then f € V}(k, &) if and only if 24 f € Vi(),
for ze U.
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DEFINITION 1.3. Let f € 7. Then f € T*(k, B, ) if and only if 22 f € Tj(B, o),
for ze U.

DEFINITION 1.4. Let f € o/. Then f ETZL (k,B,c) ifand only if 2* f € T((B, ),
forz e U.

In order to derive our main results, we shall need following lemma.

LEMMA 1.1. [4] Let u=uj +iup and v =v| +ivy and suppose that ¢(u,v) be a
continuous complex valued function in a domain D C C* such that

(i) (1,0) €D and ¢(1,0) >0,
1
(ii) R(¢(iug,v1)) <0, whenever (iup,vy) €D and v; < —5(1 +u3).
If h(z) = 14 X5 5 bnd™, is a function analytic in U such that (h(z),zh'(z)) € D and
R(¢(h(z),2h (2))) >0 for z€ U, then R(h(z)) >0 for z€ U.

In this paper we shall establish certain inclusion relationships for the above men-
tioned function classes. Some corollaries and consequences of our main inclusion rela-
tionships are also mentioned.

2. Main results

Unless otherwise mentioned, we assumed throughout this section that A > 0 and
a > 0. Our first main inclusion relationship is given by Theorem 2.1 below.

THEOREM 2.1. R*(k,0) C R**!(k,ox), where

2
o= .
2a—1++V4a>—4a+9

2.1

Proof. Let f € R*(k,0). Then, upon setting
(260@) (k1 ko1
W—P(Z)— <Z+§) p1(z) — (Z—§>P2(Z), zeU, (2.2)

we see that the function p(z) is analytic in U, with p(0) = 1 in z € U. It can be seen
from (1.8) that operator QZ;, satisfies the differential formula

(20T f(2) = a2 f(2) — (a— 1) 24 f(2). (2.3)
Using (2.3) in (2.2), we get
A ! /
(24 f(2)) —o(2) ' (z)

2} f(z) p(z)+a—1
e b, zel.
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We have
¢(z) _ 2/ (2)
p(z)*7 =P p(z)+a—1
o it (ko (=D 9(2)
_ 1yl Z . A
3o (o) )
where ¢(z) = i %sz,
=1

this implies that

Pi(Z)—F#(Z)_I €P, zeU i=1,2. (2.4)

Now, we want to show that p;(z) € P(a), where o is given by (2.1), this will show
that p(z) € B(a) for z € U. Let

pi(z2)=(1—-a)h(z)+o z€U;i=1,2. (2.5)
Then in view of (2.4) and (2.5), we obtain

(1 — o)zhi(z)
(1-o)zhi(z) +a+a—1

‘ﬁ((l—a)hi(ZH—OH- ) >0 zeU;i=1,2. (2.6)

We now form a function ¢ (u,v) by choosing u = h;(z) and v = zh.(z) in (2.6). Thus

(I—a)v

q)(u,v):(l—a)u—i-OH—(l_a)u+a+a_l.

2.7

We can easily see that the first two conditions of Lemma 1.1, are easily satisfied as
¢(u,v) is continuous in D = (C— (—41)) x C, (1,0) € D and R(¢(1,0)) > 0.
Now for vi < —%(1+u3), we obtain

: _ (1-o)v
R(¢(iuz,v1)) = OH'R((l —)iug+o+a— 1)
(1—o)(a+a—1)v
(a+a—12+(1—-a)u3
1(1-—a)(a+a—1)(1+u}) A+Bu3

<a-— =
2 (a+a—1)2+(1— o) 3 2C

where A= (ot+a—1)2a(oc+a—1)—(1—o)],B=(1—a)20(l —o) — (ot+a—1)],
C=(a+a—1)?+(1—0a)*u3 > 0. Note that R(¢(iuz,v1)) <0 if and only if, A <0
and B<0. From A <0, weobtain « as givenby (2.1)and B<0 givesus 0<ax < 1.
This completes the proof of Theorem 2.1. [

On setting A = 1 and a = 1, Theorem 2.1 would yield the following result.
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COROLLARY 2.1. Let f(z) € & . If f(z) satisfies the inequality.

2r
/ m( fo((fg ) 46 < kr, z€U,
0 Jo ==dt
then
/Zl (1og5)f(t)dz € Ru(1/2), zeU.
ot t

In its further special case when k = 2, Corollary 2.1 reduces to the

COROLLARY 2.2. Let f(z) € &. If f(z) satisfies the inequality

iR( Zf((f)) ) >0, zeU,
0 dt

1
then the function / - <10g ;) f(t)dt is starlike function of order 1/2.
0
Next, if we set A =1 and a =2, in Theorem 2.1, we get

COROLLARY 2.3. Let f(z) € . If f(z) satisfies the inequality

/02” m(ﬂq)'de < km, z€U,
4 gz Z 2
E/O (10g;>f(t)dt€Rk <Wﬁ>, zeU.

Jo f(t)dt
THEOREM 2.2. V*(k,0) C VAT (k, &), where o is given by (2.1).

then

39

Proof. To prove the inclusion relationship, we observe (in view of Theorem 2.1)

that

f(2) €VHk,0) <= zf'(z) € R (k,0) = 2f'(z) e R* (K, 0t) <= [(2) € VM (k, ),

which establishes Theorem 2.2. [

By putting A = 1 and a =2 in Theorem 2.2, we arrive at

COROLLARY 2.4. Let f(z) € . If f(z) satisfies the inequality

g/oz (1og§) F(6)dt € Vi (ﬁ) zeu.

then
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THEOREM 2.3. T} (k,,0) C T} (k,v,ct), where o is given by (2.1) and y < B
is defined in the proof.

Proof. Let f(z) € T*(k,B,0). Then there exists g(z) € R*(2,0) such that

(24f@)

Dg(2) ePR(B), zeU,0<B<1.

Let

(2Mr@)
W—(l Y)p(z) +y

2

oyt (R EDTN _
I e [ R AR L)

1

where p(z) is analytic in U, with p(0) = 1. Using the identity (2.3) in (2.8), and after
some computation, we obtain

HSO) gy 4 L0210 2 e

. 2.
2}g(2) a 2}¢(2) @9

Since g(z) € R*(2,0), then by Theorem 2.1, we know that g(z) € R**!(2, o), where
o is given by (2.1). Hence there exist an analytic function g(z) with ¢(0) = 1, such
that

2(205(2)

D) (I-a)g(z)+oa, zel. (2.10)

Then, by using identity (2.3) once again for the function g(z), we have

24¢(2)

am=(l—a)q(@+a+a—l. 2.11)

From (2.9) and (2.11), we obtain

2(24f(2)
2}e(2)

N (1-7)zp'(z)
_ﬁ - (1—Y)p(Z)+('J/—ﬁ)+ (1—a)q(z)+a+a—1

€p. (2.12)

We now form a function ¢ (u,v) by taking u = p(z), v=zp'(z) in (2.12) as

(I—ypv
(1-a)g(z)+o+a—1

¢(uv) = (1 =ypu+(y=B)+ (2.13)
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It can be easily seen that the function ¢(u,v) defined by (2.13) satisfies the conditions
of Lemma 2. We verify the condition (ii) as follows:

. B (I—yw
R(¢(iuz,v1)) =y—B+R <(1 —a)(q1+ig)+o+a— l)

(1-yld-a)g+at+a—1y
(1—a)g1+a+a—1P2+(1—a)q3
1 (1-y)[1—-0)+at+a—1](1+u3)
2[(1—a)gi+o+a— 172+ (1—a)2gd

=v-B+

<y—-B-

)

for 0 < B < 1. Therefore applying Lemma 1.1, p; € P, i = 1,2, and consequently
p € P andthus f € T (k,B,a). O

By setting A =1 and @ = 1 in Theorem 2.3, we immediately get the following
result.

COROLLARY 2.5. Let f(z) € &, < 1 and g € 7*. If f(z) satisfies the follow-
ing inequality.

2r @—ﬁ
/) %[22\ |g0 <kr, zeu,
0 1-8

then

<1
|1 (10g%) rinar e T, ze v,
0t 1

where o is given by (2.1) and y < 3.

THEOREM 2.4. Ti (k,B,0) C T,}:H(lg Y, ), where y and o are as given in The-
orem 2.3.

Proof. Proof is analogous to that of Theorem 2.3. We, therefore, choose to omit
it. O
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