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APPROXIMATION BY MEANS OF HEXAGONAL

FOURIER SERIES IN HÖLDER NORMS

ALI GUVEN

Abstract. In [7], it was proved that the Cesàro (C,1) means and the Abel-Poisson means of
Fourier series of an H -periodic continuous function f converge to it uniformly on the closure
of the regular hexagon Ω. In [3], the order of convergence of these was estimated in the uniform
norm, where the function belongs to the Hölder class Hα

(
Ω

)
, 0 < α � 1. In this work, the

order of approximation of (C,1) and Abel-Poisson means of functions in Hα
(
Ω

)
, 0 < α � 1

is investigated in the Hölder norm ‖·‖β , 0 � β < α .

1. Introduction

The theory of approximation by trigonometric polynomials is a very rich theory.
There are several results on approximation of 2π−periodic functions by trigonometric
polynomials, in particular, the order of approximation was studied by many authors.
These results can be found in the monographs [1] and [8]. The most important trigono-
metric polynomials used in approximation theory are the partial sums and means of
Fourier series of 2π−periodic functions on the real line (Cesàro means, Abel-Poisson
means, de la Vallèe-Poussin means, etc.). It is known that much of the advance in the
theory of trigonometric approximation is due to the periodicity of the functions.

Approximation of functions of several variables, in the tensor product case, is usu-
ally studied by assuming that the functions are 2π−periodic in each of their variables.
But in the case of non tensor product domain another definition of periodicity is needed.
For such domains there are other definitions of periodicity, and the most notable one
is the periodicity defined by the lattices. A lattice is the discrete subgroup AZd of
the d−dimensional Euclidean space Rd , where A is a nonsingular matrix (the gener-
ator matrix of the lattice), and the periodic function satisfies f (x+Ak) = f (x) for all
k ∈Zd . With such periodicity, one works with exponentials of the form e2π i〈α ,x〉, where
α and x are in proper sets of Rd , not necessarily the usual trigonometric polynomials.

A theorem of Fuglede ([2]) states that a set tiles Rd by lattice translation if and
only if it has an orthonormal basis of exponentials e2π i〈α ,x〉 with α in the dual lattice.
Such a set is called a spectral set. This Theorem suggests that one can study Fourier
series and approximation problems on a spectral set. For the simplest spectral sets,
cubes in Rd , the Fourier series with respect to the lattice coincides with the classical
Fourier series of functions of d variables. Besides the usual rectangular domain in R2,
the simplest spectral set is the regular hexagon.
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Discrete Fourier analysis on lattices was developed in [4]. In the paper [4], the
case of hexagon lattice was studied in details; in particular, Lagrange interpolation and
cubature formulas by trigonometric functions on a regular hexagon and on an equilat-
eral triangle were studied. In [7], the author studied Cesàro and Abel summability of
Fourier series over the regular hexagon, and deduced compact formulas for the Fejèr
and Poisson kernels of hexagonal Fourier series. Furthermore, in the same paper, the
direct and inverse approximation theorems were established in terms of a modulus of
smoothness.

In [3], the order of convergence of Cesàro and Abel-Poisson means of functions
belong to the Hölder class Hα

(
Ω

)
, 0 < α � 1 was studied in the uniform norm.

The aim of this work is to study the order of convergence of (C,1) and Abel-
Poisson means of functions belong to Hα

(
Ω

)
, 0 < α � 1 in the Hölder norm ‖·‖β ,

where 0 � β < α.

2. Hexagonal Fourier series

In this section, we shall give the definition and basic properties of hexagonal
Fourier series, and functions periodic with respect to the hexagon lattice. The detailed
information can be found in [4] and [7].

The generator matrix and the spectral set of the hexagonal lattice HZ2 are given
by

H =
[√

3 0
−1 2

]
and

ΩH =

{
(x1,x2) ∈ R

2 : −1 � x2,

√
3

2
x1± 1

2
x2 < 1

}
.

It is more convenient to use the homogeneous coordinates (t1,t2,t3) that satisfies t1 +
t2 + t3 = 0. If we define

t1 := −x2

2
+

√
3x1

2
, t2 := x2, t3 := −x2

2
−

√
3x1

2
, (1)

the hexagon ΩH becomes

Ω =
{
(t1,t2,t3) ∈ R

3 : −1 � t1,t2,−t3 < 1, t1 + t2 + t3 = 0
}

,

which is the intersection of the plane t1 + t2 + t3 = 0 with the cube [−1,1]3 .
We use bold letters t for homogeneous coordinates and we denote by R3

H the plane
t1 + t2 + t3 = 0, that is

R
3
H =

{
t = (t1,t2,t3) ∈ R

3 : t1 + t2 + t3 = 0
}

.

Also we use the notation Z3
H for the set of points in R3

H with integer components, that
is Z3

H = Z3 ∩R3
H .
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It follows from (1) that the Jacobian determinant of the change of variables x =
(x1,x2) → t = (t1, t2, t3) is dx1dx2 = 2

√
3

3 dt1dt2.
The inner product on the hexagonal domain is defined by

〈 f ,g〉H =
1

|ΩH |
∫
ΩH

f (x1,x2)g(x1,x2)dx1dx2 =
1
|Ω|

∫
Ω

f (t)g(t)dt, (2)

where |Ω| denotes the area of Ω.
If we set

φj (t) := e
2πi
3 〈j,t〉, j ∈ Z

3
H , t ∈ R

3
H ,

where 〈j, t〉 is the Euclidean inner product of j and t, we have the following result.

THEOREM A. ([2]) The set
{

φj : j ∈ Z3
H

}
is an orthonormal basis of L2 (Ω) with

respect to the inner product (2).

A function f is called periodicwith respect to the hexagonal lattice or H−periodic
if

f (x+Hk) = f (x) , k ∈ Z
2.

If we define t ≡ s (mod 3) as

t1− s1 ≡ t2− s2 ≡ t3− s3 (mod3) ,

it follows that, in homogeneous coordinates, f is H -periodic if and only if f (t) =
f (t+ s) whenever s ≡ 0 (mod3) . If the function f is H -periodic then∫

Ω

f (t+ s)dt =
∫
Ω

f (t)dt, s ∈ R
3
H .

It is clear that the functions φj (t) are H -periodic.
For every natural number n , we define two subsets of Z3

H by

Hn :=
{
j = ( j1, j2, j3) ∈ Z

3
H : −n � j1, j2, j3 � n

}
and

Jn := Hn\Hn−1.

Hn consists of all integer points inside the hexagon nΩ and Jn is the intersection of
Hn with the boundary of nΩ. The elements of the set

Hn := span
{

φj : j ∈ Hn
}

, n ∈ N

are called the hexagonal trigonometric polynomials. It is clear that the dimension of
Hn is #Hn = 3n2 +3n+1.

The hexagonal Fourier series of an H -periodic function f ∈ L1 (Ω) is

f (t) ∼ ∑
j∈Z3

H

f̂jφj (t) , (3)
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where

f̂j =
1
|Ω|

∫
Ω

f (t)e−
2πi
3 〈j,t〉dt, j ∈ Z

3
H .

In the study of the summability of hexagonal Fourier series it is more convenient
to write the series (3) as blocks are groupped according to Jn :

f (t) ∼
∞

∑
k=0

∑
j∈Jk

f̂jφj (t) . (4)

The n th partial sums of the series (3) are defined by

Sn ( f ) (t) := ∑
j∈Hn

f̂jφj (t) =
n

∑
k=0

∑
j∈Jk

f̂jφj (t) .

It is easy to show that

Sn ( f ) (t) =
1
|Ω|

∫
Ω

f (t− s)Dn (s)ds,

where Dn is the Dirichlet kernel, defined by

Dn (t) := ∑
j∈Hn

φj (t) =
n

∑
k=0

∑
j∈Jk

φj (t) .

It is known that ([6], [4]) the Dirichlet kernel has the compact formula

Dn (t) = Θn (t)−Θn−1 (t) ,

where

Θn (t) =
sin (n+1)(t1−t2)π

3 sin (n+1)(t2−t3)π
3 sin (n+1)(t3−t1)π

3

sin (t1−t2)π
3 sin (t2−t3)π

3 sin (t3−t1)π
3

, t = (t1,t2, t3) ∈ R
3
H .

We denote by CH
(
Ω

)
the Banach space of H−periodic complex valued continu-

ous functions, whose norm is the uniform norm:

‖ f‖∞ = sup
{| f (t)| : t ∈ Ω

}
.

A function f ∈CH
(
Ω

)
is said to belongs to the Hölder space Hα

(
Ω

)
, 0 < α � 1 if

sup
t�=s

| f (t)− f (s)|
‖t− s‖α < ∞,

where ‖t‖ = max{|t1| , |t2| , |t3|} . Hα
(
Ω

)
, 0 < α � 1 is a Banach space with respect

to the norm

‖ f‖α := ‖ f‖∞ + sup
t,s∈R3

H

| f (t)− f (s)|
‖t− s‖α .
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3. Approximation by Cesàro means

The Cesàro (C,δ ) ,δ � 0 means of the Fourier series (4) are defined by

S(δ )
n ( f ) (t) :=

1
|Ω|

∫
Ω

f (t− s)K(δ )
n (s)ds,

where

K(δ )
n (t) :=

1

Aδ
n

n

∑
k=0

Aδ
n−k ∑

j∈Jk

φj (t) , Aδ
n =

(
n+ δ

n

)
.

It is evident that K(0)
n (t) = Dn (t) , hence S(0)

n ( f ) (t) = Sn ( f ) (t) , where

K(1)
n (t) =

1
n+1

n

∑
k=0

Dk (t) =
1

n+1
Θn (t) .

By orthogonality of φj ’s it follows that

1
|Ω|

∫
Ω

K(1)
n (t)dt = 1.

THEOREM B. ([3]) If f ∈ Hα
(
Ω

)
then

∥∥∥ f −S(1)
n ( f )

∥∥∥
∞

=

{
O(n−α) , 0 < α < 1

O
(
n−1 (logn)2

)
,α = 1.

(5)

The main theorem of this section is the following. Note that, in the proof of Theo-
rem 1 and also in the proof of Theorem 2 in the next section, c will denote the positive
constants which are not important for the questions involve in the paper, and in general
different at each occurrence.

THEOREM 1. Let f ∈ Hα
(
Ω

)
(0 < α � 1) and 0 � β < α . Then

∥∥∥ f −S(1)
n ( f )

∥∥∥
β

=

{
O

(
nβ−α)

, 0 < α < 1

O
(
nβ−1 (logn)2

)
,α = 1.

Proof. f ∈ Hα
(
Ω

)
implies

| f (t)− f (t−u)− f (s)+ f (s−u)| � M‖t− s‖α (6)

and
| f (t)− f (t−u)− f (s)+ f (s−u)| � M ‖u‖α , (7)

where M is a positive constant.
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If we set Rn (t) := f (t)−S(1)
n ( f ) (t) , then we get

Rn (t)−Rn (s) =
1
|Ω|

∫
Ω

( f (t)− f (t−u)− f (s)+ f (s−u))K(1)
n (u)du.

Thus

|Rn (t)−Rn (s)| � 1
|Ω|

∫
Ω

| f (t)− f (t−u)− f (s)+ f (s−u)|
∣∣∣K(1)

n (u)
∣∣∣du

=
1

(n+1)|Ω|
∫
Ω

| f (t)− f (t−u)− f (s)+ f (s−u)| |Θn (u)|du.

It is known that ([7], [3]) ∫
Ω

|Θn (u)|du � cn (8)

and ∫
Ω

‖u‖α |Θn (u)|du � c

{
n−α+1, 0 < α < 1
(logn)2 ,α = 1.

(9)

Let
In :=

∫
Ω

| f (t)− f (t−u)− f (s)+ f (s−u)| |Θn (u)|du.

By (6),

(In)
β
α =

⎛⎝∫
Ω

| f (t)− f (t−u)− f (s)+ f (s−u)| |Θn (u)|du

⎞⎠
β
α

�

⎛⎝∫
Ω

M ‖t− s‖α |Θn (u)|du

⎞⎠
β
α

= Mβ/α ‖t− s‖β

⎛⎝∫
Ω

|Θn (u)|du

⎞⎠
β
α

,

and by (7),

(In)
1− β

α =

⎛⎝∫
Ω

| f (t)− f (t−u)− f (s)+ f (s−u)| |Θn (u)|du

⎞⎠1− β
α

�

⎛⎝∫
Ω

M ‖u‖α |Θn (u)|du

⎞⎠1− β
α

= M1− β
α

⎛⎝∫
Ω

‖u‖α |Θn (u)|du

⎞⎠1− β
α

.

Let 0 < α < 1. By considering (8) we obtain

(In)
β
α � c‖t− s‖β n

β
α ,
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and taking into account (9) yields

(In)
1− β

α � c
(
n−α+1)1− β

α = cn1− β
α nβ−α .

Hence we get

In = (In)
β
α (In)

1− β
α � c‖t− s‖β nβ−α+1,

which implies

|Rn (t)−Rn (s)| � c‖t− s‖β nβ−α .

Taking into account (5) and the last inequality we get∥∥∥ f −S(1)
n ( f )

∥∥∥
β

=
∥∥∥ f −S(1)

n ( f )
∥∥∥

∞
+ sup

t,s∈R3
H

|Rn (t)−Rn (s)|
‖t− s‖β

� cn−α + cnβ−α � cnβ−α .

Now let α = 1. The inequality (8) yields

(In)
β � c‖t− s‖β

⎛⎝∫
Ω

|Θn (u)|du

⎞⎠β

� c‖t− s‖β nβ ,

where (9) gives

(In)
1−β � c

⎛⎝∫
Ω

‖u‖|Θn (u)|du

⎞⎠1−β

� c(logn)2(1−β ) .

Thus
In = (In)β (In)1−β � c‖t− s‖β nβ (logn)2(1−β ) ,

and hence
|Rn (t)−Rn (s)| � c‖t− s‖β nβ−1 (logn)2(1−β ) .

By combining the last inequality with (5) we obtain∥∥∥ f −S(1)
n ( f )

∥∥∥
β

=
∥∥∥ f −S(1)

n ( f )
∥∥∥

∞
+ sup

t,s∈R3
H

|Rn (t)−Rn (s)|
‖t− s‖β

� c
(logn)2

n
+ cnβ−1 (logn)2(1−β )

� cnβ−1 (logn)2 .

The analogue of Theorem 1 for (C,1) means of Classical Fourier series was obtained
in [5].
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4. Approximation by Abel-Poisson means

The Abel-Poisson means of an H -periodic function f ∈ L1 (Ω) are defined by

Ur ( f ) (t) :=
1
|Ω|

∫
Ω

f (t− s)Pr (s)ds,

where

Pr (t) :=
∞

∑
k=0

∑
j∈Jk

rkφj (t) , 0 � r < 1

is the Poisson kernel. It is clear that if the function f has the Fourier series (4) then

Ur ( f ) (t) =
∞

∑
k=0

∑
j∈Jk

rk f̂jφj (t) .

The Poisson kernel is nonnegative and satisfies

1
|Ω|

∫
Ω

Pr (t)dt = 1.

Also,

Pr (t) � 2(1− r)2

qr

(
2π(t1−t2)

3

)
qr

(
2π(t2−t3)

3

) +
2(1− r)2

qr

(
2π(t2−t3)

3

)
qr

(
2π(t3−t1)

3

)
+

2(1− r)2

qr

(
2π(t3−t1)

3

)
qr

(
2π(t1−t2)

3

) =: Qr (t) ,

where qr (t) = 1+ r2−2rcost (see [7]).

THEOREM C. ([3]) If f ∈ Hα
(
Ω

)
then

‖ f −Ur ( f )‖∞ =

{
O

(
(1− r)α)

, 0 < α < 1

O
(
(1− r)(log(1− r))2

)
, α = 1

(10)

for r → 1− .

Our new result is the following.

THEOREM 2. Let f ∈ Hα
(
Ω

)
(0 < α � 1) and 0 � β < α. Then

‖ f −Ur ( f )‖β =

⎧⎨⎩O
(
(1− r)α−β

)
, 0 < α < 1

O
(
(1− r)1−β (log(1− r))2

)
, α = 1
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for r → 1− .

Proof. Rr (t) := f (t)−Ur ( f ) (t) . Since

Rr (t)−Rr (s) =
1
|Ω|

∫
Ω

( f (t)− f (t−u)− f (s)+ f (s−u))Pr (u)du,

we have

|Rr (t)−Rr (s)| � 1
|Ω|

∫
Ω

| f (t)− f (t−u)− f (s)+ f (s−u)|Pr (u)du =: Jr.

It is known that ([3])∫
Ω

‖u‖α Qr (u)du � c

{
(1− r)α , 0 < α < 1

(1− r)(log(1− r))2 ,α = 1.
(11)

(Jr)
β
α =

⎛⎝ 1
|Ω|

∫
Ω

| f (t)− f (t−u)− f (s)+ f (s−u)|Pr (u)du

⎞⎠
β
α

� M
β
α ‖t− s‖β

⎛⎝ 1
|Ω|

∫
Ω

Pr (u)du

⎞⎠
β
α

= M
β
α ‖t− s‖β .

(Jr)
1− β

α =

⎛⎝ 1
|Ω|

∫
Ω

| f (t)− f (t−u)− f (s)+ f (s−u)|Pr (u)du

⎞⎠1− β
α

�
(

M
|Ω|

)1− β
α

⎛⎝∫
Ω

‖u‖α Pr (u)du

⎞⎠1− β
α

�
(

M
|Ω|

)1− β
α

⎛⎝∫
Ω

‖u‖α Qr (u)du

⎞⎠1− β
α

.

Let 0 < α < 1. By (11) we get

(Jr)
1− β

α � c

(
M
|Ω|

)1− β
α (

(1− r)α)1− β
α = c(1− r)α−β .

Hence

Jr = (Jr)
β
α (Jr)

1− β
α � c‖t− s‖β (1− r)α−β .
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Taking into account (10) and this inequality we obtain

‖ f −Ur ( f )‖β = ‖ f −Ur ( f )‖∞ + sup
t,s∈R3

H

|Rr (t)−Rr (s)|
‖t− s‖β

� c(1− r)α + c(1− r)α−β � c(1− r)α−β .

In the case α = 1, (11) yields

Jr = (Jr)β (Jr)1−β � c‖t− s‖β
(
(1− r)(log(1− r))2

)1−β
.

Thus, using (10), we obtain

‖ f −Ur ( f )‖β = ‖ f −Ur ( f )‖∞ + sup
t,s∈R3

H

|Rr (t)−Rr (s)|
‖t− s‖β

� c
(
(1− r)(log(1− r))2

)
+ c

(
(1− r)(log(1− r))2

)1−β

� c(1− r)1−β (log(1− r))2 ,

which finishes the proof.
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