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ON THE ASYMPTOTIC EXPANSION OF A BINOMIAL
SUM INVOLVING POWERS OF THE SUMMATION INDEX

R. B. PARIS AND P. J. LARCOMBE

Abstract. Work elsewhere [1, 3] has revealed the leading asymptotic behaviour of the binomial

sum Sp(n) defined by
- . (n+]
s =3 ("1
=N

in the limit n — oo in the case of positive integer p. In this paper, we establish the asymptotic ex-
pansion of S,(n) first for positive integer p and secondly, by means of an integral representation
for the sum, for arbitrary values of the index p.

1. Introduction

Consideration of the binomial sum
&L, (n+
%w=2ﬂ<j§ (L1.1)
Jj=1

has been motivated by the recent study of a multi-link inverted pendulum enumeration
problem [2]. The main properties of S,(n) are examined for positive integer p in [3],
where its explicit evaluation for 1 < p <5 is given. It is shown among other things that
the large-n behaviour is described by

Sp(n) ~ 2n” <2n"> (n— o). (1.2)

Two alternative proofs of this result are to be given in a further paper [1]: the first
uses an elaborate and lengthy application of the Euler-Maclaurin summation formula,
and the second uses a straightforward decomposition of the sum in terms of Stirling
numbers of the second kind. These proofs each differ significantly from that in [3].

In this paper we offer two derivations of the asymptotic expansion of S,(n) as
n — oo. The first approach is valid for positive integer values of p and follows from the
above-mentioned decomposition of S,(n) in terms of the Stirling numbers. The second
approach is valid for arbitrary, finite values of p and uses an integral representation for
Sp(n) combined with the method of steepest descents.
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2. The expansion for positive integer p

Let s(p, j) be the Stirling number of the second kind and [x]; denote (with [x]o =
1) the usual falling factorial function [x]; =x(x—1)---(x— j+1). In the second proof
in [1] it is established that

Sy = () €207 = Flo ), e

where, with oj(p) = (2j+ 1)s(p, j) and g(n;j) = [n];j/(n+j+1),
Flnp) = 3 oy(p)gln ). 22)
Jj=0

Note that for large n we have g(n;j) = O(n/™1).

In order to generate a series expansion for S,(n) it is necessary to extract terms
within F(n,p) of O(n?~") for r =1,2,3,.... Before doing this, we note the following
values of the Stirling number

s(p,p) =1,
s(p,p—1)=p(p—-1)/2,
s(p,p—2)=p(p—1)(p—2)(3p—5)/24

and that

2 3
elrip) == 1= —per ) {1 - LI I

=A(n,p)B(n,p), (2.3)
say, where A(n,p) = [n— 1],_; is a polynomial of degree p — 1 and

=

B(n,p)= Y (=) (p+1)n""

r=0

is a power series (each in n).
It is immediate' that [n”~!]{g(n;p)} =1, and so

(P {F (n,p)} = 04y (p)[n” " [{g(n:p)} = ap(p) =2p+ 1. (2.4)

To next order we have [n”~2]{g(n;p— 1)} =1 trivially, and construct [n"~?]{g(n;p)}
as

"2 {g(n;p)}=[n"""1{A(n,p)} - [0~ ' |{B(n, p)} + [n"?|{A(n, p)} - [n°|{B(n, p)}
=—(p+1)—pp-1)/2
=—(p*+p+2)/2, (2.5)

'We employ the standard notation [x"]{f(x)} to denote the coefficient of x” in the expansion of f(x).
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whence, with a,_1(p) = 2p—1)s(p,p—1),

(0P {F (n,p)} =1 (p) " *|{g(n;p — 1)} + 0yp(p) (0P ~{g(n: p) }
=p(p—1)2p—1)/2—(2p+1)(p*+p+2)/2
=—@Bp*+2p+1). (2.6)

To obtain the O(n”~3) term, we first observe that [n”~]{g(n;p —2)} = 1 (again triv-
ially). Then, directly from (2.5),

W Hgmp— 1} =~[p— 1>+ (p—1)+2]/2=—-(p*—p+2)/2, @7

and this in turn gives

" g(n:p)} = (0"~ A, p)} - [0 B(n, p)} + 0" ?{A(n, p)} - [n ' 1{B(n,p)}
+ " {A(n,p)} - [n°){B(n,p)}
=(p+1)*+p(p—1)(p+1)/2+p(p-1)(p—-2)(3p—1)/24
= (3p*+2p> +33p> +34p +24)/24. (2.8)

With a,_»(p) = (2p — 3)s(p,p —2), it then follows that

[P {F (n,p)} = 0tp2(p) 0" {8 (n:p — 2)} + a1 (p) [P ){g(n:p — 1)}
+0,,(p) (7" 1{g(n: p)}
=plp—1(p—-2)(2p—3)3p—5)/24
—p(p—1)2p—1)(p*—p+2)/4
+(2p+1)(3p*+2p° +33p* +34p +24) /24
= (26p> + 15p> +25p +6) /6. (2.9)

Additional terms can be obtained by continuation of this procedure but this be-
comes increasingly laborious. From (2.4), (2.6) and (2.9) we write

F(n,p)=(2p+ 1)nP' = (3p>+2p+ 1)nP 2
+(26p> +15p> +25p +6)n” 3 /6 4+ O(n" M) +---+ 0(1) + O(n 1),

so that (2.1) reads

2n 2p+1) (Bp*+2p+1)
Sp(n):2n1’<n> {1— o + T

26p3 +15p%+25p+6
e U] SCtY




116 R. B. PARIS AND P. J. LARCOMBE
Finally, we substitute into (2.10) the known result
2n 22n o N 1 N 5 ( )
~ _—— _— —_—— . n — oo
n rn 8n  128n%  1024n3
which, after a little algebra, then yields our desired expansion in the form

22 +1pp - (8p+35)  (192p>+144p +73)
\/TTn 8n 128n2

Sp(n) ~

3 2
_ (6656p°+4416p +6808P+1725>+...} (2.11)

3072n3
as n— oo.

We remark that this formulation has the decomposition (2.1) as its basis and so is
necessarily restricted to positive integer values of the index p. The method has relied on
the extraction of individual terms within the polynomial F(n, p) and combination with
the asymptotic expansion for (2'). Although some aspects of the procedure readily
lend themselves to automation by computer algebra, it is required — in accordance with
the number of terms in the expansion of S,(n) sought — to have ever more complicated

closed-form expressions for the Stirling numbers s(p, p —r) with r > 3.

3. The expansion for general values of p

The aim in this section is to derive the asymptotic expansion of S, (n) for arbitrary
(finite) index p. The analysis is presented for real p (positive or negative), but is easily
extended to complex values of p. We employ the integral representation

R LT AL A di
T(j+1)n! 2

C(n+j+1) 1/(1+) i
0 (t_l)n-H ’

where the integration path is a loop in the positive sense surrounding the point # = 1.
This result is easily established by consideration of the residue of the integrand at the
pole t = 1. Then, from (1.1), we find

S 1 (1+) M n ) jd
=— —_— t’at

nP /(1+) t2n n—1 k( k)P
=—— ——— Y *(1-=) ar. 3.1)
2riJo  (t—1)mtl & n

If we introduce the phase function y(#) and the amplitude function F(¢) by

n—1 k p
_ _ _ e N
y(r) =2logr—log(t—1),  F(1)= Yt (1 n) , (3.2)

then we can write

g B n? (14) e"W(t)F J 13
o) =3 [ S . (33)
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The exponential factor in the integrand in (3.3) has a simple saddle point at t =2
(where y/() = 0). The steepest descent path through the saddle point is given by
Im y(z) =0, or (with t = x+iy)

2arctan <X> — arctan (L) .
X x—1

This is readily shown to be the path (x— 1)?+y? = 1 and so is a circle of unit radius
centred at + = 1. Let the integration path be as shown in Fig. 1. This path consists
of part of the imaginary axis AA’ between =i, the horizontal segments AB and A’B’
connecting +i to 1=+, respectively, together with the semi-circle C passing through
the saddle and the points 1 &7 (part of the steepest descent path).

A B
i
/C
T
o 1 2
-0
A’ B

Figure 1: The integration path in the 7 -plane. The saddle point is at 7 = 2.

Let us denote the contributions to the first integral in (3.1) from the different por-
tions of the path by I44s, Iag, Ly and Ic. On the path AA’, weput t =iu, —1 <u <1
to find

n n

i t
Ly = - E Pt
ax| '/_i<t—l I t—l

=1

1~ 1 1 & 1
gzlfinz{jp/o ujdugzlfjnxjpfl gzlfjnna’
j=1 j=1

where § =p (p>1), 6 =1 (p < 1). Similarly, on the path AB we put t =i+ u,
0<u<1tofind

1+i t nn . dt

- iPr] —

/,- (t—l) ;J (—1
j=

x| =

</1 V1+u? i (1+u?)i/? du
h VIH0—u)? ) S+ 0 —u)?
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/(1+u)’/2du<22"2]/ (14 u)/?du
0 0

1,
§22 p 1221+2 <2n+2 Z]p 1 <2n+2 5
j=l J=1

A similar estimate applies for the path A’B’. As the saddle point contributionis O(e"¥(2))
= 0(2%") as n — oo, it is seen that the contributions from the rectilinear parts of the
integration path are subdominant in this limit, and hence that the dominant contribution
to S,(n) arises from the path C through the saddle point.

We now consider the contribution

o= enme d 34
C_%/ct—l (t)dt, (3.4)

where on the path C we have uniformly |¢| > 1. In order to deal with F(r) we shall
require the following lemma.

LEMMA 1. Let ©=td/dt and o =1t/(t —1). Then, for |t| > 1 and non-negative
integer r, we have

Ek’ —) @ c+0(nt™) (3.5)
as n — oo,

Proof. We first observe, by differentiation of the geometric series, that > Ktk =
(—)"®"c when |t| > 1. Then, since || > 1,

nilk’fk = (i — i) Kt *k=(-)yeoc—t" i(n + )t
k=0

k=0 k=n j=0
where
RS e (1) ke & - k(7Y r—kgk
Z"Z(n—i—])’t /—t"2<k>n’ g]t/—tng( ) kn’ 0“c
j=0 k=0 j=0 k=0
=t "(n—0)c
It then follows that
Zk’ =(=)0c—t"n-0)oc=(-)0"c+0(nt™)

as n — oo, thereby establishing the lemma. O

Let N be a positive integer. Application of the binomial theorem to write F(¢) in
(3.2) in the form
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shows that, provided |¢| > 1,

_Nil(__)j P\ )k . S @_’b . -
F(t)= 26 - (j) Ekft +0(n N)GNG_ 2 (j) — +0(t™)+0(n N)@NG

j
n k=0 j=0

by (3.5). Insertion of the above representation into (3.4) then yields

N—1 » J,
Ie=n"{ L 4R
‘ " r=0 <r> nr+ N

1 V()
- O cdt
’ 2m'/ct—1 °

where

and

1 eV N N N
R = — —n - = -
N 27ti/ct—1{0(t )+ 06 0(n ) }di = Iy O(n V)

upon absorbing the exponentially subdominant contribution resulting from O(r™") into
the O(n~N) term.

The asymptotic expansion of the integrals J, is discussed in the Appendix. From
(A.5), we have for positive integers M,

omel oy [ (_)jA.(,,’)

Jp=— -
VT =0 n’

+ O(n_M")

for large n, where the coefficients A;r) for r4 j <5 are given in Table 2. If we set the

index M, =N—r (0 <r<N-—1), we obtain

n — r —r(_\J (r)
2 Nfﬂ@ Ngi( V4, rom Ny L om

vrn | S5 \r) | & o
22n+1np N—1 (_)k k (p) ) N
= ~— Al +0m™) (3.6)

upon setting k = r+ j and summing the double sum diagonally.
Then, from (3.4) and (3.6), the dominant contribution to S, (n) takes the form

22n+1np fd (—)ka

n

Spln) ~ 2L ) G3.7)
k=0

valid for arbitrary, finite values of p, where the coefficients c; are defined by
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(r

Use of the values of the coefficients A : ) in Table 2 shows that the ¢, for k < 5 have

the values
1 1
co=1, c1:—(8p+5); = 128(19217 +144p +73),
1
€3= 3575 (6656p° +4416p> + 6808p + 1725),
c4=35= 68(102400p +30720p> + 214400p° + 52320p + 18459),
= (17727488p° — 6082560p" + 70517760p° — 2
5= 3932160 88p° — 6082560p + 70517760p° — 5950080p
+21964072p +2222325).

It is seen that the coefficients up to and including c3 agree with those obtained in
Section 2 valid for positive integer p. We note the presence of negative terms in the
coefficient cs.

We present the results of numerical calculations. In Table | we show the absolute
value of the relative error in the computation of the sum S,(n) by means of the asymp-
totic expansion (3.7) for different values of n, p and truncation index j. In each case
the value of n has been chosen so that the optimal truncation point of the asymptotic
series in (3.7) corresponds to j > 5. Consequently, the relative error progressively de-
creases with each increment in the truncation index, thereby confirming the validity of
the asymptotic series (3.7).

n=>50 n =100

j p=-% p=3 p=13 p=73

0| 2.348x 1073 | 4205x 1072 | 1.123x 1072 | 1.371 x 1072
1] 1.574x107% | 2.233x 1073 | 1.502x 10~* | 2.249x 10~*
21 3.928x107° | 1.145x 107* | 2.293x107°¢ | 3.932x 10~°
31 2.550%x 1077 | 5.819x 107° | 3.294 x 108 | 6.799 x 10~8
41 1.786x 1078 | 2.936 x 1077 | 5.256 x 10710 | 1.201 x 10~°
51 1.544 %1077 | 1.477x 1078 | 6.841 x 10712 | 2.061 x 10~

Table 1: The relative error in the computation of S,(n) by (3.7) for different truncation index ;.

4. Concluding remarks

We have presented two methods to generate an asymptotic expansion for the sum
Sp(n) in (1.1) for large n, completing an examination of properties of the sum discussed
elsewhere. The first method is valid for positive integer p and relies on a decomposition
of S,(n) in terms of the Stirling numbers of the second kind. The second method
is valid for arbitrary p and is based on an integral representation combined with an
application of the method of steepest descents.
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When p = 0, we have the well-known result [4, p. 619]
Som)+1=3 ("ﬂ) _ <2n+1) _ 2Tt 3)
=AY " Va T(n+2)

By means of the expansion of the ratio of two gamma functions [5, p. 119 ], [6, p. 50]
this produces the large-n expansion

22+l 5 73 575 18459 148155
So(n) ~ —=<1——+ 5 — + i +-
Vn 8n  128n2  1024n3 ' 32768n* 262144n5

This is seen to be in agreement with (3.7) when the coefficients ¢; are evaluated at
p=0.

Appendix A: The expansion of the integrals J,

We consider the asymptotic expansion of the integrals

= —1 o @r” d =0,1,2 Al
_ t _ . .
" 27[i/C t—1 (r e ) ( )

for n — oo, where y/(z) is defined in (3.2), C is the semi-circular path described in
Section 3 that passes through the saddle point t =2, ©® =rd/dt and 6 =1t/(t —1).
Routine calculations show that

(=)"14,(t)
Qc=-~1"1""
o (t_l)r+l7
where
Q) =qi(t) =1, (1) =141, g3(t) =1>+41+1,
qa(t) =2+ 112+ 111+ 1, gs(t) = 1* +260° + 6612 +261+1,... .

We now make the change of variable # — 7 in (A.1) given by

o B (=2 (-2 T-2)*
T =y(t)—2log2 = ) ) + 0 +..,

so that the point # = 2 corresponds to T = 0. Straightforward differentiation gives

dt _ 2u(t—1)

dt t—2

and inversion of the above series yields

3 29it° 1% 11it’
—2=2it—21*—Zit* +1* - A2
t iT—2T — it T =g 3 A (A.2)
Then, since the endpoints of C at t = 1 4 i correspond to 7 = 75 = £(log 2)1/2, we

find

22n T e—n‘L’2 dt 22n+1 T )
J = — O'c—drt= / o T)dr, A3
: Zm'/,f0 r—1 dt ) 0:(7) A.3)
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where 5
—)itt g, (¢
0= Va0
20 =2)(r—1)"
We present only the calculation of the expansion of Jy, the details for J, with
r=1,2,... being similar. With the help of Mathematica and (A.2), we obtain the
expansion of Qq(7) in powers of T given by’

(A4)

iw? e Nk, 2k
QO(T)Znga(—) arT™,
where
5 73 115 879 1411
do=l a=g, @=ge a3=3gr 4o BT a8

The limits of integration in (A.3) may be extended to Foo (thereby describing the full
steepest descent path in the 7-plane) with the introduction of an exponentially small
error of O(27"). Neglecting exponentially small terms, we then obtain

ot 2 & (< faT (ke 4)

Jo ~
0 an & (L)

T

upon straightforward evaluation of the integrals in terms of the gamma function.
By means of similar calculations the expansions of Q,(t) for 1 < r <5 are found
to be

e N I YT AR T(7 7T L

127 2665 44681
ey 1202 2004 2200 6

(1) YRl > 3 LT
945 , | 93205 ,
S E e
O3(1)=13 — =07+ — =1 :
8359
@miﬁ—jr#+m,

05(1) =541+ 0(7%).
An analogous procedure then yields the desired expansion of J, in the form

22n+1(

'MX

FO il (A.5)

j:

Er) for r+ j <5 are listed in Table 2. From (A.2)

and (A.4), it is seen that A =0,(0)=¢,(2).

as n — oo, where the coefﬁc1ents A

2We use the symbol = to indicate that only even powers of 7 are included. The terms involving odd
powers of 7 do not enter into our calculations and so are not shown.
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Aj| 0 1 2 3 4 5
0 | s 73 575 18459 148155
8 128 1024 32768 262144
1 12 745 12495 818139
8 128 1024 32768
2 3 127 795 223405
8 128 1024
945 93205
3 13 = =x
8359
4 | 75 B2
5 | 541

Table 2: The coefficients Ay) for r+j<5.
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