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BIORTHOGONAL p-WAVELET PACKETS
RELATED TO THE WALSH POLYNOMIALS

F. A. SHAH

Abstract. This paper deals with the construction of biorthogonal p-wavelet packets on R™ re-
lated to the Walsh polynomials and their properties are investigated by means of Walsh-Fourier
transform. Three biorthogonal formulas regarding these p-wavelet packets are derived. More-
over, it is shown how to obtain several new Riesz bases of the space L?>(R™) by constructing a
series of subspaces of these p-wavelet packets.

1. Introduction

In the early nineties a general scheme for the construction of wavelets was defined.
This scheme is based on the notion of multiresolution analysis (MRA) introduced by
Mallat [15]. Immediately specialists started to implement new wavelet systems and
in recent years, the concept MRA of R" has been extended to many different setups,
for example, Dahlke introduced multiresolution analysis and wavelets on locally com-
pact Abelian groups [5], Lang [13,14] constructed compactly supported orthogonal
wavelets on the locally compact Cantor dyadic group ¥ by following the procedure
of Daubechies [6] via scaling filters and these wavelets turn out to be certain lacunary
Walsh series on the real line. Later on, Farkov [7] extended the results of Lang [13,14]
on the wavelet analysis on the Cantor dyadic group € to the locally compact Abelian
group G which is defined for an integer p > 2 and coincides with 4 when p =2. The
construction of dyadic compactly supported wavelets for L?(R*) have been given by
Protasov and Farkov in [16] where the latter author has given the general construction of
all compactly supported orthogonal p-wavelets in L?(R*) arising from scaling filters
with p" many terms in [8]. These studies were continued by Farkov and his colleagues
in [9,10], where they have given some new algorithms for constructing the correspond-
ing biorthogonal p-wavelets via biorthogonal scaling functions on the positive half-line
R*.

It is well-known that the classical orthonormal wavelet bases have poor frequency
localization. For example, if the wavelet v is band limited, then the measure of the
supp of (y;x)" is 2/ -times that of supp . To overcome this disadvantage, Coifman
etal. [4] constructed univariate orthogonal wavelet packets. The fundamental idea of
wavelet packet analysis is to construct a library of orthonormal bases for L?(R), which
can be searched in real time for the best expansion with respect to a given application.

Mathematics subject classification (2010): 42C40, 42C15, 42C10.
Keywords and phrases: p-Multiresolution analysis, p-wavelet packets, Riesz basis, Walsh polynomi-
als, Walsh-Fourier transform.

© depay, Zagreb 135
Paper JCA-01-14


http://dx.doi.org/10.7153/jca-01-14

136 F. A. SHAH

The standard construction is to start from a multiresolution analysis (MRA) and gen-
erate the library using the associated quadrature mirror filters (QMFs). The internal
structure of the MRA and the speed of the decomposition schemes make this an effi-
cient adaptive method for simultaneous time and frequency analysis of signals. Later
on, Chui and Li [2] generalized the concept of orthogonal wavelet packets to the case
of non-orthogonal wavelet packets so that they can be applied to the spline wavelets
and so on. The introduction of biorthogonal wavelet packets attributes to Cohen and
Daubechies [3]. Shen [20] generalized the notion of univariate orthogonal wavelet
packets to the case of multivariate wavelet packets. Other notable generalizations are
the orthogonal version of vector-valued wavelet packets [1] and higher dimensional
wavelet packets with arbitrary dilation matrix [12].

In his recent paper, Shah [18] has constructed p-wavelet packets on the positive
half-line R™ using the classical splitting trick of wavelets whereas Shah and Debnath
in [19] have constructed the corresponding p-wavelet frame packets on R' using the
Walsh-Fourier transform. It is well known that the orthogonal wavelet packets have
many desired properties such as compact support, good frequency localization and van-
ishing moments. However, there is no continuous symmetry which is a much desired
property in imaging the compression and signal processing (see [6]). To achieve sym-
metry, several generalizations of scalar orthogonal wavelet packets have been inves-
tigated in literature. The biorthogonal wavelet packets achieve symmetry where the
orthogonality is replaced by the biorthogonality (see[1,3]). As one of a series of works
on positive half-line R™, the objective of this paper is to investigate certain proper-
ties of biorthogonal p-wavelet packets on the positive half-line R™ by means of the
Walsh-Fourier transform and construct several new Riesz bases of space L?(R*).

In order to make the paper self-contained, we state some basic preliminaries, no-
tation and definitions including the Walsh-Fourier transform, Walsh functions and p-
MRA in Section 2. In Section 3, we examine some properties of the biorthogonal
p-wavelet packets. In Section 4, we study the decomposition of space L?(R™T).

2. Preliminaries and p-wavelets related to the Walsh polynomials

Let p be a fixed natural number greater than 1. As usual, let R™ = [0, 4-c0), Z~ =

{0,1,2,...} and N=7Z% —{0}. Set Qp={0,1,2,...,p— 1} and Q =Qy—{0}. De-
note by [x] the integer part of x. For x € R’ and any positive integer j, we set

xj = [p/a](mod p),x—; = [p'Ix] (mod p). (2.1)

We consider on R the addition defined as follows: if z=x@®y, then

TR AT

Jj<0 Jj>0

with {; = x; +yj(modp)(j € Z\ {0}), where {; € Qy and x;,y; are calculated by
(2.1). Moreover, we note that z =x&y if z6&y = x, where © denotes subtraction
modulo p in R.
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For x € [0,1), let ro(x) be given by

1, if x€[0,1/p)

ro(x) =
, if xe[lp~',(t+1)p1), Leq,

where €, = exp(27i/p). The extension of the function ry to R" is denoted by the

equality ro(x+ 1) = ro(x), x € R . Then, the generalized Walsh functions {wm(x) :
m € 2"} are defined by

k
wox) =1, win(x) = [T (ro(p'x))"
Jj=0
where m = ZI;':(),ujpj s Uj €Qo, i #0.
For x,w € ]R+, let
270 &
x(x,w) =exp 7 E(xjw_j—f—x_jwj) , (2.2)
Jj=1

where x;,w; are given by (2.1). Note that y (x,m/p" ') = x(x/p"~1,m) = wp(x/p" 1)
forall xe [0,p" ), meZ .
The Walsh-Fourier transform of a function f € L'(RT)NL*(R™) is defined by

f(&)= o S (&) dx, (2:3)

where x(x,&) is  given by (2.2). The Walsh-Fourier operator .7 (LNRY)NL2(RT) —
L*(RY),.Z f = f, extends uniquely to the whole space L>(R™). The properties of the
Walsh-Fourier transform are quite similar to those of the classic Fourier transform (see
[11, 17]). In particular, if f € L*(R*), then f € L2(R") and

”fA”LZ(R*) = Hf”Lz(Rﬂ

If x,y,& € R and x@y is p-adic irrational, then

X(x8y,8) =x(x8)x(6)- (2.4)

It is shown by Golubov et al. [11] that both the systems {x(a,.)},,_o and {x(.,a)}5_0
are orthonormal bases in L*[0,1].

DEFINITION 2.1. We say that a pair of functions f(x), f(x) € L*(R™) are biorthog-
onal, if their translates satisfy

(f().f(.6k)=dpkeZT, (2.5)

where & is Kronecker symbol, i.e., 8 = 1 when k=0 and &4 = 0, otherwise.
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DEFINITION 2.2. Let H be a Hilbert space. A sequence {f;},_, of H is said to
be a Riesz basis for H if there exist constants A and B,0 < A < B < oo such that any
f € H can be represented as a series f =Y ;” | c¢xfx converging in H with

AFIP< Y fe® < BIfI (2.6)
k=1
In the following subsection, we introduce the notion of p-multiresolution analysis (p-
MRA) on R" and some of its properties.

DEFINITION 2.3. A p-multiresolution analysis of L?>(R™) is a nested sequence
of closed subspaces {V;} ., such that

(i) V; C Vi forallj € Z;

(ii) UjezVj is dense in L*(RT) and N;czV; = {0};

(iii) f € Vjif and only iff(p.) € Vjy forall j € Z;

(iv) there exists a function ¢ in Vj, called the scaling function, such that
{9(.6k): ke Z"} forms a Riesz basis for subspace Vp.

Since ¢(x) € Vo C Vi, by Definition 2.3 and (2.6), there exists a sequence {ay } 7+
€ [?(Z") such that

o(x)= Y ax(pxok). (2.7)
keZ+

The Walsh-Fourier transform of (2.7) is given by

P &) =mo(p™'E)p(p~'E), (2:8)

where mo(&) = Siep+ ar x (k, &), is a Walsh polynomial called the symbol of ¢(x).

Let W;,j € Z be the direct complementary subspaces of V; in V;; ;. Assume
that there exist a set of p— 1 functions {1, y»,...,y,—} in LZ(RJF) such that their
translates and dilations form a Riesz basis of W}, i.e.,

W;=span{y(p’.0k):keZ" (e Q}, jeL. (2.9)

Since yy(x) € Wy C Vi,£ € Q, there exists a sequence {aj},_,. in [*(Z") such
that

vi(x) =Y a o(pxok), LeQ. (2.10)
keZ*

Taking the Walsh- Fourier transform for both sides of (2.10) gives

V(&) =m(p~'E)P(p~'E), (2.11)

where

mﬁ(é): 2 ai%(’ﬂ ), LeQ.

keZ+t

If @(x), @(x) € L?(RT) are a pair of biorthogonal scaling functions, then it follows by
Definition 2.1 that

(0().(.00) = s, ke L. (2.12)
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Moreover, we say that yy(x), ¥ (x) € L>(RT),£ € Q, are pair of biorthogonl
wavelets associated with a pair of biorthogonal scaling functions ¢(x) and @(x), if
the family {yy(.©k) :k € Z",¢ € Q} is a Riesz basis of subspace Wy, and

(9().W(.©k)=0, (€Q kel", (2.13)
() (. 0k) =0, LeQ ke, (2.14)
<l[/g(),l[~/€/(@k)> = 6@75/5071{, f,fl €Q ke VAR (215)
Set , '
Wi =span{y(p/.0k):keZ"}, (e€Q, je. (2.16)

By definition of W; and formulae (2.12)—(2.15), we obtain the following proposi-
tion.

PROPOSITION 2.4. If yy(x), W (x) € L>(RT),£ € Q are a pair of biorthogonal
p-wavelets associated with a pair of biorthogonal scaling functions ¢(x),p(x), then

=Ppw;=pPpw, (2.17)
JEL JEZLeQ
where @ denotes the direct sum.

Similar to the refinement equation (2.7) and wavelet equation (2.10), in the biorthog-
onal setting, we have the following equations

()= D, @p(pxok). (2.18)
keZ+
We(x)= Y ap(pxok), (€Q (2.19)
keZ*

whose Walsh- Fourier transforms are respectively given by

¢ (&) =rmo(p~ ') o(p~'), (2.20)
Wi(&) =rm(p~'8) p(p'8), (2.21)
where my(§) = ), asx(k,&), Leq.

keZt
For the biorthogonal scaling functions ¢(x), @(x), we have the following proper-

ties:
LEMMA 2.5. ([8]) Let ¢(x),P(x) be a pair of scaling functions. Then ¢(x), P (x)
are biorthogonal if and only if

Y, ¢(& k) é(é@k)—l forae. & cR".
keZ*
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3. The properties of biorthogonal p-wavelet packets

We begin this section with the definition of basic biorthogonal p-wavelet packets
associated with the biorthogonal scaling functions ¢ and @. Then, we examine their
properties and advantages by means of the Walsh-Fourier transform.

For n =0,1,2,..., the basic biorthogonal p-wavelet packets @, and @, asso-
ciated with a pair of biorthogonal scaling functions ¢(x) and (@(x), respectively, are
defined recursively by

On(xX) = Wpris(x) = Y paya(pxok), se€ Qo (3.1)
keZ*

@y (x) = Dpri5(x) = 2 pa,®-(pxSk), s€Qo. (3.2)
keZ*

where r € Z" is the unique element such that n = pr+s, s € Qg holds. Note that for
r=0and s € Q, we have

wp(x) = @(x), Mo(x) = P(x), @s(x) = yr(x) and  &(x) = P (x).
The Walsh-Fourier transform of (3.1) and (3.2) are given by

d\)prﬂ'(&) = ms(Pflé)C?)r(pflé), s € Qp, (3.3)
and

Cf)prﬂ(&) = ’hs(Pilg)Cf)r(Pilg), s € Q. (3.4)
respectively.

We are now in a position to discuss the biorthogonality properties for these wavelet
packets by virtue of the Walsh-Fourier transform.

LEMMA 3.1. Assume that o(x),®(x) € L*(R*),s € Q are a pair of biorthog-
onal p-wavelets associated with a pair of biorthogonal scaling functions wo(x) and
@ (x). Then, we have

/Z m(p N E@ )y (p~H(ED L)) =8y, rsEQ. (3.5)
=N

Proof. Using (2.12)-(2.16), (3.3), (3.4) and Lemma 2.5, we have
(Sr,s - 2 wr(& @k)d)s(é @k)

keZ+

= Y m(p ' (E@k)an(p  (Eek)dn(p~ (E@k)ms(p~ (E k)

keZ+

=2 mr(Pl(é@@){ > @o(pl(é@k)@é)c%(pl(&@k)@e)}

LeQq

xm
=Y m(p Ean)m(p(Ear). O

LeQq
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THEOREM 3.2. If {@,(x) :n € Z*} and {@,(x) :n € Z"} are p-wavelet pack-
ets with respect to a pair of biorthogonal scaling functions wy(x) and @y(x), respec-
tively. Then, for n € Z, we have

(@a(.), @ (- Ok)) =S, keZT. (3.6)

Proof. We prove this result by using induction on n. It follows from (2.12) and
(2.15) that the claim is true for n =0 and n = 1,2,...,p — 1. Assume that (3.6) holds
when n < g, where g € N. Then, we prove the result (3.6) for n = ¢q. Let n = pr+s,
where r € Z1,s € Qg and r < n. Therefore, by the inductive assumption, we have

(0:(.), @ (.0Kk) =8 = Y, &(EBb)D(EBKk) =1, EER.
keZ+

Using Lemmas 2.5, 3.1 and, equations (3.3) and (3.4), we obtain
(@ (), @u(- k) = (@u(.), Du(- S k)
= [ @) @k £

—/ my(p p &) s (pTE) & (p1E) g (K, E)dE

-1 -1
kezﬁ/p([()u%)m( E)i(p™'E)in(p1E) by (1 E)x (k. E)d

=gt { 3 6.0 (60 55 )|

keZt
ity (p ‘15) (ké)dé
= [ oy R T (k8
= Y m(pE@0))m(p (ED))x(kE)dE
[0.1][690

—/ 2k E)E =&y O

THEOREM 3.3. Suppose {w,(x) :n € Z"} and {@,(x) :n € Z"} are p-wavelet
packets with respect to a pair of biorthogonal scaling functions wy(x) and @(x), re-
spectively. Then, for r € Z, we have

<a)pr+51 (), (I)pr+52(. ok)) = 507;{551752, s1,52 € Qo, k € AR (3.7)
Proof. By Lemma 2.5, we have
<wPr+S1 ) (Dprﬂ‘z ( o k)> = <d)17r+-\‘1 ) (f)PrJrSz(' © k)>

— [ i () By @1 k)
= [0 D0 ) D bl Exk.)a
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S0 3 [ (0 B E kB

keZ+

~ "o 1]mxl(€){ 2 @r(é@k)m}’hxz( )x (k,p&)d&

keZ+

= [ ma o) T (k£
p[0.1]
= o 2 ma (P (E@O) iy (pH(E @ 0)x (k. §)d8

0,1] req,

_ /[0 B (k. E)E = sdy . O

THEOREM 3.4. If {w,(x) :n € Z*} and {@,(x) :n € Z"} are p-wavelet pack-
ets with respect to a pair of biorthogonal scaling functions @y(x) and @y(x), respec-
tively. Then, for {,n € Z, we have

<(Dg(.),(bn(.@k)> = 6€,n50,k7 keZ". (3.8)

Proof. For ¢ = n, the result (3.8) follows by Theorem 3.2. When ¢ # n, and
£,n € Qq, the result (3.8) can be established from Theorem 3.3. Assuming that ¢ is not
equal to n, and at least one of (¢,n) does not belong to €, then we can rewrite ¢, n
as { = pry +s1, n= puy +vy, where ri,u; € Z", s1,v1 €.

Case 1. If ri = uy, then sy # vy . Therefore, (3.8) follows by virtue of (3.3)—(3.5)
and Lemma 2.5, i.e.,

(p(.), (. ©k)) = (Opr 15, Dpuy+v, (- ©k))
= <d)17r1+-\'17(f)1m1+v1('@k)>

= [ O () B ) (6 )
= [ ma (071 &) (018 B (p B ()2 (K, E)E
-2 /p<[o.1]+k>m‘”(pilg)d’”(pilé)mmvl( 1E)x (k,&)dg

keZ+

:/[0 . msl(plé){ Y, oy (pl(é@k))m}

keZ*
i (p 1B k. £)dE
= [ 3 (p €@ 0) (7 E DOk )

0.1] peq,

= | anxEae
[0,1]

= 80x=0.
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Case 2. If r{ # uy, order ri = pry + s>, uy = pus + vy, where ry,u» € Z* and
s2,vy € Qq. If ry =uy, then sy # v,. Similar to Case 1, (3.8) can be established. When
1 # uy, we order 1) = pr3 + 53, up = puz + vz, where r3,u3 € Z* and s3,v3 € Q.
Thus, after taking finite steps (denoted by k), we obtain r,ux € Qq and sy, v € Q.
If re = uy, then s # vi. Similar to the Case 1, (3.8) follows. If r¢ # u,, then it gets
from (2.12)—(2.15) that

(0r (), Bu (. 0k) =0,k € Zt = Y, D (EBK) Dy (EBK) =0, EeRT.
keZ*

Furthermore, we have

<wr(')» (bu(~ @k» = <(br(')7 (f)u( @k)>

= <d)PV1+S17(f)Pu1+v1(~@k)>

= /R+ @PV1+S1(€)(§W1+V1 (E)x(k,&)ag

= / my, (p~ E)ms, (p2E) Oy, (p2E) Ouy (p~2E) i1y, (p~1E)
X iy, (p28) 1 (k, & )d&

:/]RJr {/ﬁm-\'ﬁ(p_[&)}d\)rx( Ké wu;c {ﬁ 7[6 }X(k,é)d&
(=1

keZ+/ ([0,1]+k) {I_Il } {d)rK (pimé) C?)”K (piKé)}
x {ﬂm}xw,&)dé
/=1

=/pk[m]{ﬁm.\,<pf&>}{ S ol (&@k))m}

keZ+

(=1
_/ {ﬁmpfa)}.o.{ﬁm v —ff:)} (k.£)d
pr01] | =1 /=1

4. The decomposition of L>(R™)

In this section, we will decompose the subspaces V;,V; and W;,W; by construct-
ing a series of subspaces of p-wavelet packets. Furthermore, we present a direct de-
composition for space L?>(R*).
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For any n € Z*, define

Un = {f(X) f) = Y, bkon(xS k), {birezs € 12(Z+)}, (4.1)

keZ+

U= {f(x) f(0) = 2 bibn(xS k), {bitycp € 12(Z+>}. -

keZ*

Clearly Uy =Vy and Uy = W, for eachs € Q. Assume that {mg(p~'(§ ©k))}
is a unitary matrix.

5,k€Q

LEMMA 4.1. For n € Z*, the space DU, can be decomposed into direct sum of
Upnys,s €€, ie.,
DU, = @ Upnys:s € Q. (4.3)
s€Q)
where D is the dilation operator such that Df (x) = f(px), for any f € L*(RY).

Proof. First, we claim that

DU, = {f(X) )= Y Biopnis(xE k) {bilezs € 12(Z+)}~ (4.4)

s€EQy keZt

As for any s € Qq, by (3.1) and (4.1), @pnys(xSk) € DU,. Assume that f(x) €
DU, then there exists a sequence {ci};cz+ € [2(Z") such that

= > con(pxSk). (4.5)
keZ*

Further, if there exists a sequence {b} }kez+ cl?(Z*Y), s € Qy, as for f(x) € DU,,
such that

flx)= Z 2 b @ppys(xSKk). (4.6)

s€Qo keZt

Taking Walsh-Fourier transform on the both sides of (4.5) and (4.6), respectively
and by using (3.3), we obtain

F(E)=h(p~'&)dn = > &(E)m(p~'E)dn(p™'E), (4.7)

sEQ)

where h(&) = Syez+ kX (8.k), 85(8) = Ther+ by (8,k), §E ERT 5 € Q.
The above result (4.7) follows if the following equality holds:

8) =Y &(&)m(p~'E). (4.8)

s€Qq

For any {c,} € (*(Z"), we will prove that there exists a sequence {b}} € [*(Z")
such that (4.8) is satisfied. Moreover, (4.8) is equivalent to the following equation:

h(p~ ' (E@k) = Y &(&)m(p ' (E@K)), ke Q. (4.9)

s€Qq
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The solvability of (4.9) for every sequence {c;} € I?>(Z") follows from the fact that
the matrix (m(p~'(E @k))), cq, 18 @ unitary matrix (see [8]). Hence, equality (4.4)
follows. Furthermore, applying Theorem 3.3, it follows that

{wpnﬂ(x@k) neZt, seQq, ke Z+}

forms a Riesz basis of DU,,. U

Similar to (4.3), we can establish the following result:
00:‘7()7 05:17[/5, SEQ7

and
DU, = @ Upnis, s € Q0. (4.10)
s€Qq

For ¢ € N, define A, = 2,/}::0 p7Q0, Ay = Ay — Ay . In what follows, we will give
the direct decomposition of space L?(R*).

THEOREM 4.2. The family of functions {@,(x&k) :n € A,k € Z"} constitutes
Riesz basis of D'Wy. In particular, {@,(x©k) :n € ZF k € Z*} constitutes Riesz ba-
sis of L*(R™).

Proof.. By equation (4.3), we have DUy = EBsego Uy, ie., DUy = Uy Pcq Us.
Since Uy =V and Wy = Pcq Wy = Bseq Us, then DUy = Vo © Wy . It can be induc-
tively inferred from (4.3) that

D'Uy=D""'Uy @ Un,t eN. (4.11)

neny

Since Vi1 = V; @ W;,j € Z, therefore, D'Uy = D'"'Uy @ D'~'Wp, £ € N. It follows
from (4.3) and Proposition 2.4 that D'W, = @Dnea, Un and

L*RY) =V (@D”W0> = U P (@ (@ Un>> =P U. (412
=0 (=0 \neAy neZ+t

In the light of Theorem 3.2, the family {®,(x&k): k€ Z*} is a Riesz basis of
DW,. Moreover, according to (4.12), the family {@,(x&k):n€ Z" k€ Z"} forms a
Riesz basis of L>(R*). [

COROLLARY 4.3. For every { € N, the family of functions {@,(x ©k) : n € Ay,
k € 7} forms a Riesz basis of D'Wj.

COROLLARY 4.4. For every { € N, the family of functions
{a)n(pjx@k) nEN,jJELKkE Z+}
forms a Riesz basis of L*>(R™).
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