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BIORTHOGONAL p–WAVELET PACKETS

RELATED TO THE WALSH POLYNOMIALS

F. A. SHAH

Abstract. This paper deals with the construction of biorthogonal p -wavelet packets on R
+ re-

lated to the Walsh polynomials and their properties are investigated by means of Walsh-Fourier
transform. Three biorthogonal formulas regarding these p -wavelet packets are derived. More-
over, it is shown how to obtain several new Riesz bases of the space L2(R+) by constructing a
series of subspaces of these p -wavelet packets.

1. Introduction

In the early nineties a general scheme for the construction of wavelets was defined.
This scheme is based on the notion of multiresolution analysis (MRA) introduced by
Mallat [15]. Immediately specialists started to implement new wavelet systems and
in recent years, the concept MRA of R

n has been extended to many different setups,
for example, Dahlke introduced multiresolution analysis and wavelets on locally com-
pact Abelian groups [5], Lang [13,14] constructed compactly supported orthogonal
wavelets on the locally compact Cantor dyadic group C by following the procedure
of Daubechies [6] via scaling filters and these wavelets turn out to be certain lacunary
Walsh series on the real line. Later on, Farkov [7] extended the results of Lang [13,14]
on the wavelet analysis on the Cantor dyadic group C to the locally compact Abelian
group G which is defined for an integer p � 2 and coincides with C when p = 2. The
construction of dyadic compactly supported wavelets for L2(R+) have been given by
Protasov and Farkov in [16] where the latter author has given the general construction of
all compactly supported orthogonal p -wavelets in L2(R+) arising from scaling filters
with pn many terms in [8]. These studies were continued by Farkov and his colleagues
in [9,10], where they have given some new algorithms for constructing the correspond-
ing biorthogonal p -wavelets via biorthogonal scaling functions on the positive half-line
R

+ .
It is well-known that the classical orthonormal wavelet bases have poor frequency

localization. For example, if the wavelet ψ is band limited, then the measure of the
supp of (ψ j,k)∧ is 2 j -times that of supp ψ̂ . To overcome this disadvantage, Coifman
et al. [4] constructed univariate orthogonal wavelet packets. The fundamental idea of
wavelet packet analysis is to construct a library of orthonormal bases for L2(R) , which
can be searched in real time for the best expansion with respect to a given application.
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The standard construction is to start from a multiresolution analysis (MRA) and gen-
erate the library using the associated quadrature mirror filters (QMFs). The internal
structure of the MRA and the speed of the decomposition schemes make this an effi-
cient adaptive method for simultaneous time and frequency analysis of signals. Later
on, Chui and Li [2] generalized the concept of orthogonal wavelet packets to the case
of non-orthogonal wavelet packets so that they can be applied to the spline wavelets
and so on. The introduction of biorthogonal wavelet packets attributes to Cohen and
Daubechies [3]. Shen [20] generalized the notion of univariate orthogonal wavelet
packets to the case of multivariate wavelet packets. Other notable generalizations are
the orthogonal version of vector-valued wavelet packets [1] and higher dimensional
wavelet packets with arbitrary dilation matrix [12].

In his recent paper, Shah [18] has constructed p -wavelet packets on the positive
half-line R

+ using the classical splitting trick of wavelets whereas Shah and Debnath
in [19] have constructed the corresponding p -wavelet frame packets on R

+ using the
Walsh-Fourier transform. It is well known that the orthogonal wavelet packets have
many desired properties such as compact support, good frequency localization and van-
ishing moments. However, there is no continuous symmetry which is a much desired
property in imaging the compression and signal processing (see [6]). To achieve sym-
metry, several generalizations of scalar orthogonal wavelet packets have been inves-
tigated in literature. The biorthogonal wavelet packets achieve symmetry where the
orthogonality is replaced by the biorthogonality (see[1,3]). As one of a series of works
on positive half-line R

+ , the objective of this paper is to investigate certain proper-
ties of biorthogonal p -wavelet packets on the positive half-line R

+ by means of the
Walsh-Fourier transform and construct several new Riesz bases of space L2(R+) .

In order to make the paper self-contained, we state some basic preliminaries, no-
tation and definitions including the Walsh-Fourier transform, Walsh functions and p -
MRA in Section 2. In Section 3, we examine some properties of the biorthogonal
p -wavelet packets. In Section 4, we study the decomposition of space L2(R+) .

2. Preliminaries and p -wavelets related to the Walsh polynomials

Let p be a fixed natural number greater than 1. As usual, let R
+

= [0,+∞), Z
+

=
{0,1,2, ...} and N = Z

+ −{0} . Set Ω0 = {0,1,2, ..., p−1} and Ω = Ω0 −{0} . De-
note by [x] the integer part of x . For x ∈ R

+
and any positive integer j , we set

x j = [p jx](mod p),x− j = [p1− jx](mod p). (2.1)

We consider on R
+

the addition defined as follows: if z = x⊕ y , then

z = ∑
j<0

ζ j p
− j−1 + ∑

j>0

ζ j p
− j

with ζ j = x j + y j(modp)( j ∈ Z \ {0}), where ζ j ∈ Ω0 and x j, y j are calculated by
(2.1). Moreover, we note that z = x� y if z⊕ y = x, where � denotes subtraction
modulo p in R

+
.
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For x ∈ [0,1) , let r0(x) be given by

r0(x) =

⎧⎨
⎩

1, if x ∈ [0,1/p)

ε�
p, if x ∈ [�p−1,(�+1)p−1), � ∈ Ω,

where εp = exp(2π i/p) . The extension of the function r0 to R
+

is denoted by the
equality r0(x + 1) = r0(x) , x ∈ R

+
. Then, the generalized Walsh functions {wm(x) :

m ∈ Z
+} are defined by

w0(x) ≡ 1, wm(x) =
k

∏
j=0

(
r0(p jx)

)μ j

where m = ∑k
j=0 μ j p j , μ j ∈ Ω0 , μk �= 0.

For x,w ∈ R
+
, let

χ(x,w) = exp

(
2π i
p

∞

∑
j=1

(x jw− j + x− jw j)

)
, (2.2)

where x j,wj are given by (2.1). Note that χ(x,m/pn−1)= χ(x/pn−1,m)= wm(x/pn−1)
for all x ∈ [0, pn−1) , m ∈ Z

+
.

The Walsh-Fourier transform of a function f ∈ L1(R+)∩L2(R+) is defined by

f̂ (ξ ) =
∫

R
+

f (x)χ(x,ξ )dx, (2.3)

where χ(x,ξ ) is given by (2.2). The Walsh-Fourier operator F : L1(R+)∩L2(R+) →
L2(R+),F f = f̂ , extends uniquely to the whole space L2(R+) . The properties of the
Walsh-Fourier transform are quite similar to those of the classic Fourier transform (see
[11, 17]). In particular, if f ∈ L2(R+) , then f̂ ∈ L2(R

+
) and

‖ f̂ ‖L2(R+ ) = ‖ f‖
L2 (R+).

If x,y,ξ ∈ R
+

and x⊕ y is p -adic irrational, then

χ(x⊕ y,ξ ) = χ(x,ξ )χ(y,ξ ). (2.4)

It is shown by Golubov et al. [11] that both the systems {χ(α, .)}∞
α=0 and {χ(.,α)}∞

α=0
are orthonormal bases in L2 [0,1].

DEFINITION 2.1. We say that a pair of functions f (x), f̃ (x)∈L2(R+) are biorthog-
onal, if their translates satisfy

〈 f (.), f̃ (.� k)〉 = δ0,k,k ∈ Z
+, (2.5)

where δ0,k is Kronecker symbol, i.e., δ0,k = 1 when k = 0 and δ0,k = 0, otherwise.
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DEFINITION 2.2. Let H be a Hilbert space. A sequence { fk}∞
k=1 of H is said to

be a Riesz basis for H if there exist constants A and B,0 < A � B < ∞ such that any
f ∈ H can be represented as a series f = ∑∞

k=1 ck fk converging in H with

A‖ f‖2 �
∞

∑
k=1

|ck|2 � B‖ f‖2. (2.6)

In the following subsection, we introduce the notion of p -multiresolution analysis ( p -
MRA) on R

+ and some of its properties.

DEFINITION 2.3. A p -multiresolution analysis of L2(R+) is a nested sequence
of closed subspaces

{
Vj
}

j∈Z
such that

(i) Vj ⊂Vj+1for all j ∈ Z;
(ii)

⋃
j∈ZVj is dense in L2(R+) and

⋂
j∈ZVj = {0};

(iii) f ∈Vjif and only if f (p.) ∈Vj+1 for all j ∈ Z ;
(iv) there exists a function ϕ in V0 , called the scaling function, such that

{ϕ(.� k) : k ∈ Z
+} forms a Riesz basis for subspace V0.

Since ϕ(x)∈V0 ⊂V1 , by Definition 2.3 and (2.6), there exists a sequence {ak}k∈Z+

∈ l2(Z+) such that
ϕ(x) = ∑

k∈Z+
ak ϕ(px� k). (2.7)

The Walsh-Fourier transform of (2.7) is given by

ϕ̂ (ξ ) = m0(p−1ξ ) ϕ̂(p−1ξ ), (2.8)

where m0(ξ ) = ∑k∈Z+ ak χ(k,ξ ) , is a Walsh polynomial called the symbol of ϕ(x) .
Let Wj, j ∈ Z be the direct complementary subspaces of Vj in Vj+1 . Assume

that there exist a set of p− 1 functions
{

ψ1,ψ2, ...,ψp−1
}

in L2(R+) such that their
translates and dilations form a Riesz basis of Wj , i.e.,

Wj = span
{

ψ�(p j.� k) : k ∈ Z
+, � ∈ Ω

}
, j ∈ Z. (2.9)

Since ψ�(x) ∈W0 ⊂ V1, � ∈ Ω , there exists a sequence
{
a�

k

}
k∈Z+ in l2(Z+) such

that
ψ� (x) = ∑

k∈Z+
a�

k ϕ(px� k), � ∈ Ω. (2.10)

Taking the Walsh- Fourier transform for both sides of (2.10) gives

ψ̂� (ξ ) = m�(p−1ξ ) ϕ̂(p−1ξ ), (2.11)

where
m�(ξ ) = ∑

k∈Z+
a�

k χ(k,ξ ), � ∈ Ω.

If ϕ(x), ϕ̃(x) ∈ L2(R+) are a pair of biorthogonal scaling functions, then it follows by
Definition 2.1 that

〈ϕ(.), ϕ̃(.� k)〉 = δ0,k, k ∈ Z
+. (2.12)
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Moreover, we say that ψ�(x), ψ̃�(x) ∈ L2(R+), � ∈ Ω, are pair of biorthogonl
wavelets associated with a pair of biorthogonal scaling functions ϕ(x) and ϕ̃(x) , if
the family {ψ�(.� k) : k ∈ Z

+, � ∈ Ω} is a Riesz basis of subspace W0 , and

〈ϕ(.), ψ̃�(.� k)〉 = 0, � ∈ Ω, k ∈ Z
+, (2.13)

〈ϕ̃(.),ψ�(.� k)〉 = 0, � ∈ Ω, k ∈ Z
+, (2.14)

〈ψ�(.), ψ̃�′(.� k)〉 = δ�,�′δ0,k, �,�′ ∈ Ω, k ∈ Z
+. (2.15)

Set
W �

j = span
{

ψ�(p j.� k) : k ∈ Z
+} , � ∈ Ω, j ∈ Z. (2.16)

By definition of Wj and formulae (2.12)–(2.15), we obtain the following proposi-
tion.

PROPOSITION 2.4. If ψ�(x), ψ̃�(x) ∈ L2(R+), � ∈ Ω are a pair of biorthogonal
p-wavelets associated with a pair of biorthogonal scaling functions ϕ(x), ϕ̃(x) , then

L2(R+) =
⊕
j∈Z

Wj =
⊕
j∈Z

⊕
�∈Ω

W �
j (2.17)

where ⊕ denotes the direct sum.

Similar to the refinement equation (2.7) and wavelet equation (2.10), in the biorthog-
onal setting, we have the following equations

ϕ̃(x) = ∑
k∈Z+

ãkϕ̃(px� k). (2.18)

ψ̃� (x) = ∑
k∈Z+

ã�
k ϕ̃(px� k), � ∈ Ω (2.19)

whose Walsh- Fourier transforms are respectively given by

ˆ̃ϕ (ξ ) = m̃0(p−1ξ ) ˆ̃ϕ(p−1ξ ), (2.20)

ˆ̃ψ�(ξ ) = m̃�(p−1ξ ) ˆ̃ϕ(p−1ξ ), (2.21)

where m̃�(ξ ) = ∑
k∈Z+

ã�
k χ(k,ξ ) , � ∈ Ω.

For the biorthogonal scaling functions ϕ(x), ϕ̃(x) , we have the following proper-
ties:

LEMMA 2.5. ([8]) Let ϕ(x), ϕ̃(x) be a pair of scaling functions. Then ϕ(x), ϕ̃(x)
are biorthogonal if and only if

∑
k∈Z+

ϕ̂(ξ ⊕ k) ˆ̃ϕ(ξ ⊕ k) = 1 for a.e. ξ ∈ R
+.
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3. The properties of biorthogonal p -wavelet packets

We begin this section with the definition of basic biorthogonal p -wavelet packets
associated with the biorthogonal scaling functions ϕ and ϕ̃ . Then, we examine their
properties and advantages by means of the Walsh-Fourier transform.

For n = 0,1,2, ... , the basic biorthogonal p-wavelet packets ωn and ω̃n asso-
ciated with a pair of biorthogonal scaling functions ϕ(x) and ϕ̃(x) , respectively, are
defined recursively by

ωn(x) = ωpr+s(x) = ∑
k∈Z+

pas
k ωr(px� k), s ∈ Ω0 (3.1)

ω̃n(x) = ω̃pr+s(x) = ∑
k∈Z+

p ãs
k ω̃r(px� k), s ∈ Ω0. (3.2)

where r ∈ Z
+ is the unique element such that n = pr+ s , s ∈ Ω0 holds. Note that for

r = 0 and s ∈ Ω , we have

ω0(x) = ϕ(x), ω̃0(x) = ϕ̃(x), ωs(x) = ψ�(x) and ω̃s(x) = ψ̃�(x).

The Walsh-Fourier transform of (3.1) and (3.2) are given by

ω̂pr+s(ξ ) = ms(p−1ξ )ω̂r(p−1ξ ), s ∈ Ω0, (3.3)

and
ˆ̃ωpr+s(ξ ) = m̃s(p−1ξ ) ˆ̃ωr(p−1ξ ), s ∈ Ω0. (3.4)

respectively.
We are now in a position to discuss the biorthogonality properties for these wavelet

packets by virtue of the Walsh-Fourier transform.

LEMMA 3.1. Assume that ωs(x), ω̃s(x) ∈ L2(R+),s ∈ Ω are a pair of biorthog-
onal p-wavelets associated with a pair of biorthogonal scaling functions ω0(x) and
ω̃0(x) . Then, we have

∑
�∈Ω0

mr
(
p−1(ξ ⊕ �)

)
m̃s
(
p−1(ξ ⊕ �)

)
= δr,s, r,s ∈ Ω0. (3.5)

Proof. Using (2.12)–(2.16), (3.3), (3.4) and Lemma 2.5, we have

δr,s = ∑
k∈Z+

ωr(ξ ⊕ k)ω̃s(ξ ⊕ k)

= ∑
k∈Z+

mr
(
p−1(ξ ⊕ k)

)
ω̂0
(
p−1(ξ ⊕ k)

)
ˆ̃ω0
(
p−1(ξ ⊕ k)

)
m̃s
(
p−1(ξ ⊕ k)

)

= ∑
�∈Ω0

mr
(
p−1(ξ ⊕ �)

){
∑

k∈Z+
ω̂0
(
p−1(ξ ⊕ k)⊕ �

)
ˆ̃ω0
(
p−1(ξ ⊕ k)⊕ �

)}

×m̃s
(
p−1(ξ ⊕ �)

)
= ∑

�∈Ω0

mr
(
p−1(ξ ⊕ �)

)
m̃s
(
p−1(ξ ⊕ �)

)
. �
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THEOREM 3.2. If {ωn(x) : n ∈ Z
+} and {ω̃n(x) : n ∈ Z

+} are p-wavelet pack-
ets with respect to a pair of biorthogonal scaling functions ω0(x) and ω̃0(x) , respec-
tively. Then, for n ∈ Z

+ , we have

〈ωn(.), ω̃n(.� k)〉 = δ0,k, k ∈ Z
+. (3.6)

Proof. We prove this result by using induction on n . It follows from (2.12) and
(2.15) that the claim is true for n = 0 and n = 1,2, ..., p− 1. Assume that (3.6) holds
when n < q , where q ∈ N . Then, we prove the result (3.6) for n = q . Let n = pr + s ,
where r ∈ Z

+,s ∈ Ω0 and r < n . Therefore, by the inductive assumption, we have

〈ωr(.), ω̃r(.� k)〉 = δ0,k ⇐⇒ ∑
k∈Z+

ω̂r(ξ ⊕ k) ˆ̃ωr(ξ ⊕ k) = 1, ξ ∈ R
+.

Using Lemmas 2.5, 3.1 and, equations (3.3) and (3.4), we obtain

〈ωn(.), ω̃n(.� k)〉 = 〈ω̂n(.), ˆ̃ωn(.� k)〉
=
∫

R+
ω̂pr+s(ξ ) ˆ̃ωpr+s(ξ )χ(k,ξ )dξ

=
∫

R+
ms(p−1ξ )ω̂r(p−1ξ )m̃s(p−1ξ ) ˆ̃ωr(p−1ξ )χ(k,ξ )dξ

= ∑
k∈Z+

∫
p([0,1]+k)

ms(p−1ξ )ω̂r(p−1ξ )m̃s(p−1ξ ) ˆ̃ωr(p−1ξ )χ(k,ξ )dξ

=
∫

p[0,1]
ms(p−1ξ )

{
∑

k∈Z+
ω̂r
(
p−1(ξ ⊕ k)

)
ˆ̃ωr
(
p−1(ξ ⊕ k)

)}

×m̃s(p−1ξ )χ(k,ξ )dξ

=
∫

p[0,1]
ms(p−1ξ )m̃s(p−1ξ )χ(k,ξ )dξ

=
∫

[0,1]
∑

�∈Ω0

ms
(
p−1(ξ ⊕ �)

)
m̃s
(
p−1(ξ ⊕ �)

)
χ(k,ξ )dξ

=
∫

[0,1]
χ(k,ξ )dξ = δ0,k. �

THEOREM 3.3. Suppose {ωn(x) : n ∈ Z
+} and {ω̃n(x) : n ∈ Z

+} are p-wavelet
packets with respect to a pair of biorthogonal scaling functions ω0(x) and ω̃0(x) , re-
spectively. Then, for r ∈ Z

+ , we have

〈ωpr+s1(.), ω̃pr+s2(.� k)〉 = δ0,kδs1,s2 , s1,s2 ∈ Ω0, k ∈ Z
+. (3.7)

Proof. By Lemma 2.5, we have

〈ωpr+s1 , ω̃pr+s2(.� k)〉 = 〈ω̂pr+s1 ,
ˆ̃ωpr+s2(.� k)〉

=
∫

R+
ω̂pr+s1(ξ ) ˆ̃ωpr+s2(ξ )χ(k,ξ )dξ

=
∫

R+
ms1(p

−1ξ )ω̂r(p−1ξ )m̃s2(p−1ξ ) ˆ̃ωr(p−1ξ )χ(k,ξ )dξ
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= p ∑
k∈Z+

∫
([0,1]+k)

ms1(ξ )ω̂r(ξ )m̃s2(ξ ) ˆ̃ωr(ξ )χ(k, pξ )dξ

= p
∫

[0,1]
ms1(ξ )

{
∑

k∈Z+
ω̂r(ξ ⊕ k) ˆ̃ωr(ξ ⊕ k)

}
m̃s2(ξ )χ(k, pξ )dξ

=
∫

p[0,1]
ms1(p

−1ξ )m̃s2(p−1ξ )χ(k,ξ )dξ

=
∫

[0,1]
∑

�∈Ω0

ms1

(
p−1(ξ ⊕ �)

)
m̃s2

(
p−1(ξ ⊕ �)

)
χ(k,ξ )dξ

=
∫

[0,1]
δs1,s2 χ(k,ξ )dξ = δ0,kδs1,s2 . �

THEOREM 3.4. If {ωn(x) : n ∈ Z
+} and {ω̃n(x) : n ∈ Z

+} are p-wavelet pack-
ets with respect to a pair of biorthogonal scaling functions ω0(x) and ω̃0(x) , respec-
tively. Then, for �,n ∈ Z

+ , we have

〈ω�(.), ω̃n(.� k)〉 = δ�,nδ0,k, k ∈ Z
+. (3.8)

Proof. For � = n , the result (3.8) follows by Theorem 3.2. When � �= n , and
�,n ∈ Ω0 , the result (3.8) can be established from Theorem 3.3. Assuming that � is not
equal to n , and at least one of (�,n) does not belong to Ω0 , then we can rewrite � , n
as � = pr1 + s1 , n = pu1 + v1 , where r1,u1 ∈ Z

+ , s1,v1 ∈ Ω0 .
Case 1. If r1 = u1 , then s1 �= v1 . Therefore, (3.8) follows by virtue of (3.3)–(3.5)

and Lemma 2.5, i.e.,

〈ω�(.), ω̃n(.� k)〉 = 〈ωpr1+s1 , ω̃pu1+v1(.� k)〉
= 〈ω̂pr1+s1 ,

ˆ̃ωpu1+v1(.� k)〉
=
∫

R+
ω̂pr1+s1(ξ ) ˆ̃ωpu1+v1(ξ )χ(k,ξ )dξ

=
∫

R+
ms1(p

−1ξ )ω̂r1(p
−1ξ ) ˆ̃ωu1(p−1ξ )m̃v1(p−1ξ )χ(k,ξ )dξ

= ∑
k∈Z+

∫
p([0,1]+k)

ms1(p
−1ξ )ω̂r1(p

−1ξ ) ˆ̃ωu1(p−1ξ )m̃v1(p−1ξ )χ(k,ξ )dξ

=
∫

p([0,1])
ms1(p

−1ξ )

{
∑

k∈Z+
ω̂r1

(
p−1(ξ ⊕ k)

)
ˆ̃ωu1

(
p−1(ξ ⊕ k)

)}

×m̃v1(p−1ξ )χ(k,ξ )dξ

=
∫

[0,1]
∑

�∈Ω0

ms1

(
p−1(ξ ⊕ �)

)
m̃v1

(
p−1(ξ ⊕ �)

)
χ(k,ξ )dξ

=
∫

[0,1]
δs1,v1 χ(k,ξ )dξ

= δ0,k = 0.
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Case 2. If r1 �= u1 , order r1 = pr2 + s2 , u1 = pu2 + v2 , where r2,u2 ∈ Z
+ and

s2,v2 ∈ Ω0 . If r2 = u2 , then s2 �= v2 . Similar to Case 1, (3.8) can be established. When
r2 �= u2 , we order r2 = pr3 + s3 , u2 = pu3 + v3 , where r3,u3 ∈ Z

+ and s3,v3 ∈ Ω0 .
Thus, after taking finite steps (denoted by κ ), we obtain rκ ,uκ ∈ Ω0 and sκ ,vκ ∈ Ω0 .
If rκ = uκ , then sκ �= vκ . Similar to the Case 1, (3.8) follows. If rκ �= uκ , then it gets
from (2.12)–(2.15) that

〈ωrκ (.), ω̃uκ (.� k)〉 = 0,k ∈ Z
+ ⇐⇒ ∑

k∈Z+
ω̂rκ (ξ ⊕ k) ˆ̃ωuκ (ξ ⊕ k) = 0, ξ ∈ R

+.

Furthermore, we have

〈ωr(.), ω̃u(.� k)〉 = 〈ω̂r(.), ˆ̃ωu(.� k)〉
= 〈ω̂pr1+s1 ,

ˆ̃ωpu1+v1(.� k)〉
=
∫

R+
ω̂pr1+s1(ξ ) ˆ̃ωpu1+v1(ξ )χ(k,ξ )dξ

=
∫

R+
ms1(p

−1ξ )ms2(p
−2ξ )ω̂r2(p

−2ξ ) ˆ̃ωu2(p−2ξ )m̃v1(p−1ξ )

× m̃v2(p−2ξ )χ(k,ξ )dξ
...

=
∫

R+

{
κ

∏
�=1

ms�(p
−�ξ )

}
ω̂rκ (p−κ ξ ) ˆ̃ωuκ (p−κ ξ )

{
κ

∏
�=1

m̃v�
(p−�ξ )

}
χ(k,ξ )dξ

= ∑
k∈Z+

∫
pκ ([0,1]+k)

{
κ

∏
�=1

ms�(p
−�ξ )

}{
ω̂rκ

(
p−κξ

)
ˆ̃ωuκ

(
p−κ ξ

)}

×
{

κ

∏
�=1

m̃v�
(p−�ξ )

}
χ(k,ξ )dξ

=
∫

pκ [0,1]

{
κ

∏
�=1

ms�(p
−�ξ )

}{
∑

k∈Z+
ω̂rκ

(
p−κ(ξ ⊕ k)

)
ˆ̃ωuκ

(
p−κ(ξ ⊕ k)

)}
{

κ

∏
�=1

m̃v�
(p−�ξ )

}
χ(k,ξ )dξ

=
∫

pκ [0,1]

{
κ

∏
�=1

ms�(p
−�ξ )

}
.0.

{
κ

∏
�=1

m̃v�
(p−�ξ )

}
χ(k,ξ )dξ

= 0. �

4. The decomposition of L2(R+)

In this section, we will decompose the subspaces Vj,Ṽj and Wj,W̃j by construct-
ing a series of subspaces of p -wavelet packets. Furthermore, we present a direct de-
composition for space L2(R+) .
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For any n ∈ Z
+ , define

Un =

{
f (x) : f (x) = ∑

k∈Z+
bkωn(x� k),{bk}k∈Z+ ∈ l2(Z+)

}
, (4.1)

Ũn =

{
f̃ (x) : f̃ (x) = ∑

k∈Z+
b̃kω̃n(x� k),

{
b̃k
}

k∈Z+ ∈ l2(Z+)

}
. (4.2)

Clearly U0 =V0 and Us =Ws
0 , for eachs∈Ω. Assume that

{
ms(p−1(ξ ⊕ k))

}
s,k∈Ω0

is a unitary matrix.

LEMMA 4.1. For n ∈ Z
+ , the space DUn can be decomposed into direct sum of

Upn+s,s ∈ Ω0 , i.e.,
DUn =

⊕
s∈Ω0

Upn+s,s ∈ Ω0. (4.3)

where D is the dilation operator such that D f (x) = f (px) , for any f ∈ L2(R+) .

Proof. First, we claim that

DUn =

{
f (x) : f (x) = ∑

s∈Ω0

∑
k∈Z+

bs
kωpn+s(x� k),{bs

k}k∈Z+ ∈ l2(Z+)

}
. (4.4)

As for any s ∈ Ω0 , by (3.1) and (4.1), ωpn+s(x� k) ∈ DUn . Assume that f (x) ∈
DUn, then there exists a sequence {ck}k∈Z+ ∈ l2(Z+) such that

f (x) = ∑
k∈Z+

ckωn(px� k). (4.5)

Further, if there exists a sequence
{
bs

k

}
k∈Z+ ∈ l2(Z+) , s∈ Ω0, as for f (x) ∈DUn ,

such that
f (x) = ∑

s∈Ω0

∑
k∈Z+

bs
kωpn+s(x� k). (4.6)

Taking Walsh-Fourier transform on the both sides of (4.5) and (4.6), respectively
and by using (3.3), we obtain

f̂ (ξ ) = h(p−1ξ )ω̂n(p−1ξ ) = ∑
s∈Ω0

gs(ξ )ms(p−1ξ )ω̂n(p−1ξ ), (4.7)

where h(ξ ) = ∑k∈Z+ ckχ(ξ ,k) , gs(ξ ) = ∑k∈Z+ bs
kχ(ξ ,k) , ξ ∈ R

+,s ∈ Ω0.
The above result (4.7) follows if the following equality holds:

h(p−1ξ ) = ∑
s∈Ω0

gs(ξ )ms(p−1ξ ). (4.8)

For any {ck} ∈ l2(Z+) , we will prove that there exists a sequence
{
bs

k

} ∈ l2(Z+)
such that (4.8) is satisfied. Moreover, (4.8) is equivalent to the following equation:

h
(
p−1(ξ ⊕ k)

)
= ∑

s∈Ω0

gs(ξ )ms
(
p−1(ξ ⊕ k)

)
, k ∈ Ω0. (4.9)
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The solvability of (4.9) for every sequence {ck} ∈ l2(Z+) follows from the fact that
the matrix

(
ms
(
p−1(ξ ⊕ k)

))
s,k∈Ω0

is a unitary matrix (see [8]). Hence, equality (4.4)
follows. Furthermore, applying Theorem 3.3, it follows that{

ωpn+s(x� k) : n ∈ Z
+, s ∈ Ω0, k ∈ Z

+}
forms a Riesz basis of DUn . �

Similar to (4.3), we can establish the following result:

Ũ0 = Ṽ0, Ũs = W̃ s
0 , s ∈ Ω,

and
DŨn =

⊕
s∈Ω0

Ũpn+s, s ∈ Ω0. (4.10)

For � ∈ N , define Λ̃� = ∑�
j=0 p jΩ0,Λ� = Λ̃�− Λ̃�−1 . In what follows, we will give

the direct decomposition of space L2(R+) .

THEOREM 4.2. The family of functions {ωn(x� k) : n ∈ Λ�,k ∈ Z
+} constitutes

Riesz basis of D�W0 . In particular, {ωn(x� k) : n ∈ Z
+,k ∈ Z

+} constitutes Riesz ba-
sis of L2(R+) .

Proof.. By equation (4.3), we have DU0 =
⊕

s∈Ω0
Us, i.e., DU0 = U0

⊕
s∈ΩUs.

Since U0 = V0 and W0 =
⊕

s∈ΩWs
0 =

⊕
s∈ΩUs , then DU0 = V0 ⊕W0 . It can be induc-

tively inferred from (4.3) that

D�U0 = D�−1U0

⊕
n∈Λ�

Un, � ∈ N. (4.11)

Since Vj+1 = Vj ⊕Wj, j ∈ Z , therefore, D�U0 = D�−1U0
⊕

D�−1W0, � ∈ N. It follows
from (4.3) and Proposition 2.4 that D�W0 =

⊕
n∈Λ�

Un and

L2(R+) = V0

⊕(⊕
��0

D�W0

)
= U0

⊕(⊕
��0

(⊕
n∈Λ�

Un

))
=
⊕

n∈Z+

Un. (4.12)

In the light of Theorem 3.2, the family {ωn(x� k) : k ∈ Z
+} is a Riesz basis of

DW0 . Moreover, according to (4.12), the family {ωn(x� k) : n ∈ Z
+,k ∈ Z

+} forms a
Riesz basis of L2(R+) . �

COROLLARY 4.3. For every � ∈ N , the family of functions {ω̃n(x� k) : n ∈ Λ�,
k ∈ Z

+} forms a Riesz basis of D�W̃0 .

COROLLARY 4.4. For every � ∈ N , the family of functions{
ωn(p jx� k) : n ∈ Λ�, j ∈ Z,k ∈ Z

+}
forms a Riesz basis of L2(R+) .
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