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ON THE UPPER BOUND OF THE NUMBER OF REAL

ZEROS OF A RANDOM ALGEBRAIC POLYNOMIAL

BIJAYINI NAYAK

Abstract. Let Nn be the number of level crossings of a random algebraic curve f (x,w) =
n

∑
r=0

arξr(w)xr where the co-efficients ξr(w) ’s are identically distributed independent random

variables following semi-stable distribution with characteristic function exp (−(C+ cos log |t|)|t|α )
for 0 < α � 2 and C > 1 . It is proved that Nn � μ(logn)2 in the weak version outside a set of

measure less than μ∗
n3α−1−ε + μ∗∗

n1−ε where 0 < ε < 1 , and Nn � μ(logn)3 in the strong version

according to the sense of Evans, outside a set of measure less than μ
′

n
α logn0−2−ε
0

+ μ
′′

n
logn0−1−ε
0

where

0 < α � 2 and 0 < ε < 1 for all n � n0 .

1. Introduction

This paper is concerned with the upper estimate for the level crossings of a random
algebraic curve

f (x,w) =
n

∑
r=0

arξr(w)xr (1)

where the coefficients ξr(w)’s are identically distributed independent random variables
following semi-stable distribution with characteristic function

exp(−(C+ coslog |t|)|t|α)

for 0 < α � 2 and C > 1. A characteristic function φ(t) corresponding to distribution
function F(x) is said to be semi-stable if for some constants b > 1 and d > 1, φ(t) =
φb(d−1t) for every t . Shimizu [9], [10], [11] and [12] have studied a lot on the domain
of partial attraction of semi-stable distribution. On the basis of his findings, we have
proceeded to the proof of our theorems.

Logan and Shepp, [4] showed that a number of above curves on an average would
cross the X -axis asymptotically 2π logn time when n is large. Sambandhan, [8] also
studied the level of crossings of a random hyperbolic curve in different situations.
Nayak and Mohanty, [6] studied the lower bound of level crossings of a random al-
gebraic curve, and established a strong result in the sense of Evans, [1]. Nayak and
Das, [5] studied about the bounds of level crossings when independent random variable
belonging to the domain of attraction of symmetric normal law have zero mean and
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P(ξr �= 0) > 0, and proved that μ logn
log logn � Nn � μ(logn)2 except for a measure tends to

zero as n −→ ∞ .
In this paper, we have studied both weak version and strong version of upper

bounds of Nn when the co-efficients ξr(w) following semi-stable distribution and ob-
tained Nn � μ(logn)2 in the weak version outside a set of measure less than μ∗

n3α−1−ε +
μ∗∗
n1−ε where 0 < ε < 1, and Nn � μ(logn)3 in the strong version outside a set of mea-

sure less than μ ′

n
α logn0−2−ε
0

+ μ ′′

n
logn0−1−ε
0

where 0 < α � 2 and 0 < ε < 1 for all n � n0 .

Throughout this paper we consider μ ’s as positive constants assuming different values
in different occurrence.

2. Main Results

THEOREM 2.1. Let Nn be the number of real zeros of random algebraic polyno-

mial f (x,w) =
n

∑
r=0

arξr(w)xr , where ξr ’s are identically distributed independent ran-

dom variables following semi-stable distribution with common characteristic function
φ(t) given by

φ(t) =
{

exp(−(C+ coslog |t|)|t|α), t �= 0
1, t = 0.

Let ∑ar be a series {ar ∈ R− {0}, 0 � r � n} which converges absolutely, and
kn = max|ar|, tn = min|ar| with kα

n = O(logn) , and tn is a non-zero finite. Then for
all α , 0 < α � 2 and ε , 0 < ε < 1 , the probability of the event

∀ n : Nn � μ(logn)2

is at least

1− (
μ∗

n3α−1−ε +
μ∗∗

n1−ε ).

THEOREM 2.2. Let Nn be the number of real zeros of random algebraic polyno-

mial f (x,w) =
n

∑
r=0

arξr(w)xr where ξr ’s are identically distributed independent ran-

dom variables following semi-stable distribution with common characteristic function
φ(t) given by

φ(t) =
{

exp(−(C+ coslog |t|)|t|α), t �= 0
1, t = 0.

Let ∑ar be a series {ar ∈ R− {0}, 0 � r � n} which converges absolutely, and
kn = max|ar|, tn = min|ar| with kα

n = O(logn) , and tn is a non-zero finite. Then for
all α , 0 < α � 2 and ε , 0 < ε < 1 , there exists n0 ∈ N , n00 ∈ N , μ ′

> 0 and μ ′′
> 0

such that for all n0 � n00 , the probability of the event

∀ n � n0 : Nn � μ(logn)3
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is at least

1− (
μ ′

nα logn0−2−ε
0

+
μ ′′

nlogn0−1−ε
0

).

We need the following Lemmas for the proof of the above two Theorems.

LEMMA 2.3. Let ξr be a random variable following semi-stable distribution with
characteristic function given by

φ(t) =
{

exp(−(C+ coslog |t|)|t|α), t �= 0
1, t = 0

0 < α � 2 , then P({|aξr| � ε}) � με
a where μ is a positive constant.

Proof. Let φ(t) be the characteristic function of ξr . By inversion formula, Gnen-
denko and Kolmogorov, [2], P-48

P({|aξr| � ε}) =
1
2π

lim
λ−→∞

∫ λ

−λ

e
itε
a − e

−itε
a

it
φ(t)dt

=
1
π

ε
a

lim
λ−→∞

∫ λ

−λ

sin
(

tε
a

)(
tε
a

) φ(t)dt

<
ε

πa

∫ ∞

−∞
φ(t)dt (Since

sin
(

tε
a

)(
tε
a

) � 1)

<
με
a

where μ =
2Γ
(

1
α
)

απ(C−1)1/α .

LEMMA 2.4. Let ξr be a random variable following semi-stable distribution with
characteristic function given by

φ(t) =
{

exp(−(C+ coslog |t|)|t|α), t �= 0
1, t = 0

0 < α � 2 , then P({|aξr| > τ}) � μ1
(

a
τ
)α

where μ1 is a positive constant.

Proof. Let φ(t) be the characteristic function of ξr . Then by Loeve, [3], P-196

P({|ξr| > τ}) � 7τ
∫ 1/τ

0
[1−φ(t)]dt.

So,

P({|aξr| > τ}) = P
(
{|ξr| > τ

a
}
)

.

Since the distribution is symmetric and (C+ coslog |t|)|t|α < (C+1)|t|α , so

1−φ(t) < (C+1)|t|α for t ∈ (0,a/τ).

Hence,

P({|aξr| > τ}) � μ1

(a
τ

)α
.
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LEMMA 2.5. (Samal and Mishra, [7])
The number of real zeros of a regular function f (z) in a circle with center z0 and radius

r is at most log

(
max|z|�1+2/n | f (z)|

| f (z0)|

)
/ log2 .

2.1. Proof of Theorem 2.1

Let p be a fixed number greater than 1/ log2 and γ = [p logn] , we take circles
with center xm = 1− 1

2m , radii rm = 1−xm
2 , for m = 1,2, · · · ,γ, p logn and r0 = 1/n in

the special case when x0 = 1. The circles C0,C1, · · · ,Cγ ,Cp logn will cover the closed
segment [1/2,1] .

Let Γm be the circle concentric with Cm , and its radius is equal to 2rm . So, all the
Γm ’s are interior to |z| = 1+2/n . By Lemma 2.4, we have

P
({|arξr| > (n+1)3})� μ1

|ar|α
(n+1)3α . (2)

Considering the values r = 0,1,2, · · · ,n and kα
n = max|ar|α we have

P
({|arξr| � (n+1)3, 0 � r < n})> 1− μ1

kα
n

(n+1)3α−1 . (3)

We also have
max|z|�1+2/n | f (z)| < kn(n+1)4e2. (4)

Since the characteristic function of f (xm) is

exp(−
n

∑
r=0

(C+ coslog |arx
r
mt|)|t|α |ar|α |xm|αr),

so by using Lemma 2.3, we have

P

(
{| f (xm)| < 1

n
}
)

� μ
ntn

(
n

∑
r=0

xαr
m

)−1/α

(5)

for m = 1,2, · · · ,γ, p logn . As tn is non-zero finite, we get similarly

P

(
{| f (x0)| < 1

n
}
)

<
μ

n1+1/αtn
<

μ2

n1+1/α . (6)

Hence by using (3), (4), (5) and (6), we have from Lemma 2.5 that outside a set of
measure at most

μ2

n1+1/α +
μ1kα

n

(n+1)3α−1 +
μ3

n

p logn

∑
m=1

(
n

∑
r=0

xαr
m

)−1/α

(7)
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the number of zeros of f (x) in C0 with r0 = 1/n , x0 = 1, and Cm , m = 1,2, · · · ,γ, p logn

with xm = 1− 1
2m , R = 2rm is at most

log

(
kne2(n+1)4

n−1

)
log2 < μ logn . So, considering all the

circles C0,C1, · · · ,Cγ ,Cp logn the total number of zeros inside all these is at most

p logn

∑
m=1

Nm(r) �
p logn

∑
m=1

μ logn � μ(logn)2, (8)

and also in C0 , it is μ logn � μ(logn)2 . Let

p logn

∑
m=1

(
n

∑
r=0

xαr
m

)−1/α

= S1 +S2

where

S1 =
logn/ log2

∑
m=1

(
n

∑
r=0

xαr
m

)−1/α

+
p logn

∑
(logn/ log2)+1

(
n

∑
r=0

xαr
m

)−1/α

. (9)

Proceeding as Samal and Mishra, [7], we get

S1 � μ
′′
logn (10)

and

S2 <
μ4 logn

n1/α . (11)

Using (9), (10) and (11), we get from (7) that the measure of the exceptional is at most

μ1kα
n

(n+1)3α−1 +
μ2

n1+1/α +
μ ′′

logn
n

+
μ5 logn

n1+ 1
α

<
μ6

n1+ 1
α −ε

+
μ7

n1−ε +
μ1

n3α−1−ε . (12)

(We have used the fact that kα
n = O(logn) and logn < nε for large n , logn

nε < 1
n1−ε .)

Now adopting the procedure of Samal and Mishra, [7], we consider the segment (0,1/2) .
Let us take a circle with center zero and radius 1/2.

The circle |z| � 1
2 is interior to the circle |z| � 1. Now applying Lemma 2.5 with

z0 = 0, r = 1/2 and R = 1, we get from (3) that outside a set of measure at most

μ1kα
n

(n+1)3α−1 . (13)

We have
max|z|�1 | f (z)| < kn(n+1)4. (14)

Again by using Lemma 2.3, we obtain

P

(
{| f (0)| < 1

n
}
)

<
μ8

n
. (15)
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Using (12), (13) and (14), we get from Lemma 2.5 that the number of zeros inside the
circle |z| � 1

2 does not exceed

μ logn < μ(logn)2 (16)

outside a set of measure at most

μ1kα
n

(n+1)3α−1 +
μ8

n
. (17)

Similarly, the number of zeros of f (x) inside the circle |z−ρ | � 1−ρ , 0 < ρ < 1/2
and radius 1/2 is at most

μ(logn)2 (18)

except the set of measure
μ1kα

n

(n+1)3α−1 +
μ9

n
. (19)

So, from (8), (12), (16), (17), (18) and (19), we have the the number of zeros of f (x)
inside the interval (0,1) is at most μ(logn)2 except the set of measure at most

μ1

n3α−1−ε +
μ6

n1+ 1
α −ε

+
μ7

n1−ε +
μ8

n
+

μ9

n
<

μ∗

n3α−1−ε +
μ∗∗

n1−ε . (20)

Therefore the measure of exceptional set is at least

1− (
μ∗

n3α−1−ε +
μ∗∗

n1−ε ).

Hence the proof.

2.2. Proof of Theorem 2.2

As proceeding in proof of Theorem 2.1, we have by using Lemma 2.3

P
(
{|arξr| � (n+1)logn, 0 � r � n}

)
> 1− μ1kα

n

(n+1)α logn−1 . (21)

So, we have

max | f (z)| = max|z|�1+2/n

n

∑
r=0

|ar||ξr||z|r

< kn(1+2/n)n(n+1)logn+1.

Since (1+2/n)n −→ e2 as n −→ ∞ , so

max | f (z)| < kne
2(n+1)logn+1 (22)

outside a set of measure μ1k
α
n

(n+1)α logn−1 . Also, we have by using Lemma 2.3

P

(
{| f (xm)| < 1

(n+1)logn }
)

� μ2

(n+1)logn

(
∑xαr

m

)−1/α
(23)
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for m = 1,2, · · · ,γ, p logn , and similarly

P

(
{| f (x0)| < 1

(n+1)logn }
)

� μ ′

(n+1)logn+1/α . (24)

So, we have from Lemma 2.5, by using (21), (22), (23) and (24) that the number of
zeros of f (x) in Cm , m = 1,2, · · · ,γ, p logn , and in C0 with r0 = 1/n , x0 = 1 is at
most μ(logn)2 . Hence, the total number of zeros in the circles C0,C1, · · · ,Cγ ,Cp logn is
at most

p logn

∑
m=1

μ(logn)2 � μ(logn)3 (25)

outside a set of measure

μ1kα
n

(n+1)α logn−1 +
μ ′

(n+1)logn+1/α +
μ

(n+1)logn

p logn

∑
m=1

(
n

∑
r=0

xαr
m

)−1/α

. (26)

Proceeding as in Theorem 2.1, we have from (26) measure of exceptional set is

μ1

nα logn−1−ε +
μ ′

nlogn+1/α +
μ4

nlogn−ε (Since logn < nε for 0 < ε < 1)

which is
<

μ1

nα logn−1−ε +
μ4

nlogn−ε (27)

where α logn− 1− ε > 1 for 0 < ε < 1 and 0 < α � 2. Now, let us consider the
segment (0,1/2) , and so the circle with z0 = 0, r = 1/2 and R = 1. We get from (21)

that outside a set of measure at most μ1k
α
n

(n+1)α logn−1 , we have

max|z|�1 | f (z)| < kn(n+1)logn+1. (28)

Again, by using Lemma 2.3, we obtain

P

(
{| f (0)| < 1

(n+1)logn }
)

<
μ5

(n+1)logn . (29)

So, outside a set of measure at most μ1k
α
n

(n+1)α logn−1 + μ5
(n+1)logn , the number of zeros in

|z| < 1/2 is
< μ(logn)2 < μ(logn)3. (30)

Accordingly, we have number of zeros of f (x) inside the circle |z−ρ | � 1−ρ does
not exceed μ(logn)3 outside a set of measure at most

μ1kα
n

(n+1)α logn−1 +
μ6

(n+1)logn . (31)
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So, from (25), (27), (30) and (31) the total number of zeros of f (x) inside the interval
(0,1) is at most μ(logn)3 except the set of measure at most

μ1

(n+1)α logn−1−ε +
μ2

(n+1)logn−ε +
μ5

(n+1)logn +
μ6

(n+1)logn

<
μ1

(n+1)α logn−1−ε +
μ2

(n+1)logn−ε . (32)

Therefore, for each n � n0 , we have Nn < μ(logn)3 , and the measure of exceptional
set is at most

∞

∑
n=n0

(
μ1

(n+1)α logn−1−ε +
μ2

(n+1)logn−ε

)

<
∞

∑
n=n0

(
μ1

(n+1)α logn0−1−ε +
μ2

(n+1)logn0−ε

)

<
μ ′

nα logn0−2−ε
0

+
μ ′′

nlogn0−1−ε
0

(By integral test)

where 0 < α � 2 and 0 < ε < 1 for all n � n0 . Hence the measure of exceptional set
is at least

1− (
μ ′

nα logn0−2−ε
0

+
μ ′′

nlogn0−1−ε
0

).

Thus, the proof of Theorem 2.2 is complete.
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