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ON THE UPPER BOUND OF THE NUMBER OF REAL
ZEROS OF A RANDOM ALGEBRAIC POLYNOMIAL

BIJAYINI NAYAK

Abstract. Let N, be the number of level crossings of a random algebraic curve f(x,w) =
n

2 a,& (w)x" where the co-efficients &.(w)’s are identically distributed independent random
r=0

variables following semi-stable distribution with characteristic function exp (—(C + coslog|z|)[7|*)
for 0 < <2 and C> 1. Itis proved that N, < u(log n)2 in the weak version outside a set of

ok

.
measure less than ngnf‘T,g + n“l— where 0 < € < 1, and N, < u(logn)? in the strong version
!

—&
"

according to the sense of Evans, outside a set of measure less than

u u
aTogng2—¢ T Togng T Where
ny ny

O<a<2and O<e< 1 forall n>ng.

1. Introduction

This paper is concerned with the upper estimate for the level crossings of a random
algebraic curve

few) = 3 ard (wp M
r=0

where the coefficients &,(w)’s are identically distributed independent random variables
following semi-stable distribution with characteristic function

exp (—(C+coslog|z|)]¢]|*)

for 0 < oo <2 and C > 1. A characteristic function ¢(z) corresponding to distribution
function F(x) is said to be semi-stable if for some constants » > 1 and d > 1, ¢(¢) =
®"(d~'t) for every . Shimizu [9], [10], [11] and [12] have studied a lot on the domain
of partial attraction of semi-stable distribution. On the basis of his findings, we have
proceeded to the proof of our theorems.

Logan and Shepp, [4] showed that a number of above curves on an average would
cross the X -axis asymptotically 2zlogn time when 7 is large. Sambandhan, [8] also
studied the level of crossings of a random hyperbolic curve in different situations.
Nayak and Mohanty, [6] studied the lower bound of level crossings of a random al-
gebraic curve, and established a strong result in the sense of Evans, [1]. Nayak and
Das, [5] studied about the bounds of level crossings when independent random variable
belonging to the domain of attraction of symmetric normal law have zero mean and

Mathematics subject classification (2010): 60AXX.
Keywords and phrases: Random variables, Random algebraic equations; Semi-stable distribution;
Real roots.

© depay, Zagreb 147
Paper JCA-01-15


http://dx.doi.org/10.7153/jca-01-15

148 BIJAYINI NAYAK

P (& #0) > 0, and proved that 1g£?()ggnn <N, < u(logn)? except for a measure tends to
Zero as n — oo,

In this paper, we have studied both weak version and strong version of upper
bounds of N, when the co-efficients &.(w) following semi-stable distribution and ob-
tained N, < ,u(logn)2 in the weak version outside a set of measure less than nm‘f% +

n’{—,g where 0 < € < 1, and N, < u(logn)? in the strong version outside a set of mea-
!
sure less than —ho—— + log,’;(’) — where 0 < ¢ <2 and 0 < € < 1 forall n > ng.
"o o
Throughout this paper we consider U ’s as positive constants assuming different values

in different occurrence.

2. Main Results

THEOREM 2 1. Let N, be the number of real zeros of random algebraic polyno-
mial f(x,w) Z a, & (W)X", where &, ’s are identically distributed independent ran-

dom variables followmg semi-stable distribution with common characteristic function
o(1) given by

[ exp(—(C+cosloglt])|t|*), t#0
(P(t)_{l, t=0.

Let Y.a, be a series {a, € R—{0}, 0 < r < n} which converges absolutely, and
k, = max|a,|, t, = min|a,| with k% = O(logn), and t, is a non-zero finite. Then for
all ¢, 0 < x <2 and g, 0 < & < 1, the probability of the event

Vn:N, < u(logn)?

is at least

,U* ‘u**
1—( 3o—1-¢ )-
n
THEOREM 2 2. Let N, be the number of real zeros of random algebraic polyno-
mial f(x,w) 2 a,&(w)x" where &, ’s are identically distributed independent ran-
dom variables followmg semi-stable distribution with common characteristic function

¢(t) given by

1, t=0

o) = {exp(—(C+coslogt)|t|°‘), t;é 0

Let Y.a, be a series {a, € R—{0}, 0 < r < n} which converges absolutely, and
ky, = max|a,|, t, = min|a,| with k¢ = O(logn), and t, is a non- zeroﬁnite Thenfor
all o, 0 < a<2and g, 0 < € < 1, there exists nyp € N, ngg € N, ,u >Oand,u >0
such that for all no > noyo, the probability of the event

Vn>ng:N, < ,u(logn)3
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is at least
! "

1 H H )
alogng—2—¢ logng—1—¢/*
) L)

We need the following Lemmas for the proof of the above two Theorems.

LEMMA 2.3. Let &, be a random variable following semi-stable distribution with
characteristic function given by

[ exp(—(C+coslog|t])|t]*), t#0
(P(t)_{l’ =0

0 < o <2, then P({|a&| < €}) < EE where [ is a positive constant.

Proof. Let ¢(t) be the characteristic function of &,. By inversion formula, Gnen-
denko and Kolmogorov, [2], P-48

P((lag] <e)) = o tm [ i

le A sin (£)

=i [, e
e [ ) sin(%)

< 4 _wq)(t)dt (Since =) <1)
pe __(g)

< P where ”_an(C—l)l/O"

LEMMA 2.4. Let &, be a random variable following semi-stable distribution with
characteristic function given by

_J exp(—(C+cosloglt|)|t]*), t#0
¢(’>_{17 1=0

0< <2, then P({|a&| > 1}) <y (%)a where Uy is a positive constant.

Proof. Let ¢(t) be the characteristic function of &,. Then by Loeve, [3], P-196

Plgl > <7e [ -6
So,
P({lag|>tH =P ({1&1> 2}).
Since the distribution is symmetric and (C+ coslog|t|)[|* < (C+1)[¢]|*, so
1—¢(r) < (C+1))t|]* for 1€ (0,a/1).

Hence,

P({lag>th<m (2)".

T
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LEMMA 2.5. (Samal and Mishra, [7])
The number of real zeros of a regular function f(z) in a circle with center zo and radius

max\z|<1+2/n f(z )) /log

r is at most log ( Fzo)]

2.1. Proof of Theorem 2.1

Let p be a fixed number greater than 1/log2 and y = [plogn|, we take circles
with center x,, = 1 — 2"7 , radii ry, = 1—2x,,, ,form=1,2,---,y,plogn and ro = 1 /n in
the special case when xo = 1. The circles Cy,Cy,---,Cy,Cpiogn Will cover the closed
segment [1/2,1].

Let T',, be the circle concentric with C,,, and its radius is equal to 2r,. So, all the
I, ’s are interior to |zl = 1+2/n. By Lemma 2.4, we have

ja,|*
P({la;&| > (n+1)*}) < #1m' @)
Considering the values r =0,1,2,---,n and k% = max|a,|* we have
< 13, 0< 1 i
P({ladr] < (n+ 1), 0<r<n}) > 1=ty 3
We also have
max;|<142/n [ f(2)| < kn(n+1)%e. “4)

Since the characteristic function of f(x,,) is
n
exp(— Z (C+coslog|arxy,t|)t|*ar|*xm|*"),
r=0
so by using Lemma 2.3, we have
/o

P <{|f(xm>| < %}> < (%xﬁi’) 5)

form=1,2,---,y,plogn. As t, is non-zero finite, we get similarly

1 u H2
P <{f(x0) < Z}) < A ay < /e ©

Hence by using (3), (4), (5) and (6), we have from Lemma 2.5 that outside a set of
measure at most

nmer

—1/o
10 ki R (S 6
Ry (n+1)3- Tt 2 2m )
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the number of zeros of f(x) in Cy with ro=1/n, xo=1,and C,,, m=1,2,---,y,plogn

o220

with x,, =1 — 2im, R =2r,, is at most gz < logn. So, considering all the
circles Cy,Cy,-++,Cy,Cplogn the total number of zeros inside all these is at most
plogn plogn
Y, Nu(r) < 3, plogn < p(logn)?, ®)
m=1 m=1

and also in Cp, itis ulogn < u(logn)?. Let

plogn [/ n —1l/e
D (2;&’) =851+

m=1 \r=0

logn/log2 [/ n —1/e plogn n ~1/a
Si= Y (Z x,ﬁ’> + (Z x,ﬁ’> . 9)
r=0 ( 1

m=1 logn/log2)+

where

Proceeding as Samal and Mishra, [7], we get

S; < 1 logn (10)
and |
Hqlogn
S2< e (11)

Using (9), (10) and (11), we get from (7) that the measure of the exceptional is at most

paky ) u'logn  pslogn He M7 H
(n+ 1)30:—1 nl+l/a n + nl"% < l’ll+é_£ nl—¢  plo—l-g’ (12)
(We have used the fact that k¢ = O(logn) and logn < n for large n, 1(:1%" 1 =)

Now adopting the procedure of Samal and Mishra, [7], we consider the segment (O 1/2).
Let us take a circle with center zero and radius 1/2.

The circle |z| <  is interior to the circle |z| < 1. Now applying Lemma 2.5 with
20=0, r=1/2 and R =1, we get from (3) that outside a set of measure at most

L
(n+ 1)sat (13)
We have
max, < | £(2)] < ka(n+1)%. (14)

Again by using Lemma 2.3, we obtain

P(tro <)) <5, as
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Using (12), (13) and (14), we get from Lemma 2.5 that the number of zeros inside the
circle |z < 3 does not exceed

wlogn < u(logn)? (16)
outside a set of measure at most
Uik s
CER R an

Similarly, the number of zeros of f(x) inside the circle |z—p|<1—p,0<p < 1/2
and radius 1/2 is at most

u(logn)? (18)
except the set of measure
Uik Mo
CER R (19

So, from (8), (12), (16), (17), (18) and (19), we have the the number of zeros of f(x)
inside the interval (0,1) is at most u(logn)? except the set of measure at most

H He M7 Mg Mo p pu
n3a—1-¢ + T - + nl—¢ + n + n < pda—l—¢ T yl—¢" (20)
Therefore the measure of exceptional set is at least
,U* ‘u**
1 _(n3oc—1—e nl—s)'
Hence the proof.
2.2. Proof of Theorem 2.2
As proceeding in proof of Theorem 2.1, we have by using Lemma 2.3
n [,le,?
P({\arér\s(nﬂ)log, 0<r<n}> > o e 1)
So, we have
max|f(2)] = maxpj<iiam D, larl|Ell2l"
r=0
<k (142/n)" (n+ 1)l 1,
Since (1+2/n)" — e* as n— oo, 50
max |f(2)| < kne? (n+ 1)+ (22)
outside a set of measure er‘)la% . Also, we have by using Lemma 2.3

1 ~1/a
P ({f(xm) < CERVT }) < 0 +~ul2)logn (Zx’ﬁr) 1/ (23)
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form=1,2,---,y, plogn, and similarly

!

1 I
P<{|f(X())| < (n+1)logn }> S (n+1)logn+l/a' 24)

So, we have from Lemma 2.5, by using (21), (22), (23) and (24) that the number of
zeros of f(x) in G, m=1,2,--- y,plogn, and in Cy with ro = 1/n, xo = 1 is at

most U (log n)2. Hence, the total number of zeros in the circles Co,Cy, -+ ,Cy,Cplogn 18
at most
plogn
2 t(logn)* < u(logn)’ (25)

outside a set of measure

/ —1/o
ulk"‘ u u plogn [ n i
(n+ 1)a};ogn—1 + (n+ 1)logn+1/a + (n+1 logn 21 Ez)xa ' (26)

Proceeding as in Theorem 2.1, we have from (26) measure of exceptional set is

Uy .U/ s

: €
ologn e T ogni1/a t o ogne (Since logn <n®for 0<e<1)

hich i
which is w 1y

nlogn—1—¢ + nlogn—e

27)

where ologn—1—¢>1 for 0 <e <1 and 0 < o < 2. Now, let us consider the
segment (0, 1/2), and so the circle with zo =0, r = 1/2 and R = 1. We get from (21)

that outside a set of measure at most % , we have
(n+l)"‘ logn
maxp < | £(2)] < ka(n+ 1)L (28)
Again, by using Lemma 2.3, we obtain
1 Hs
P 0)] < < . 29
(070 < o} < G )

the number of zeros in

. kor
So, outside a set of measure at most 1% +

(,H_l)alogn 1 (,H_l)logn ’
lz| < 1/21is

< u(logn)? < u(logn)’. (30)

Accordingly, we have number of zeros of f(x) inside the circle |z—p| < 1—p does
not exceed u(logn)? outside a set of measure at most

ik LM
(n + l)alognfl (n + l)logn :

€1V
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So, from (25), (27), (30) and (31) the total number of zeros of f(x) inside the interval
(0,1) is at most u(logn)* except the set of measure at most

Hi H2 Hs He
(l’l—|— l)alognflfs + (n_|_ l)lognfe + (l’l—|— l)logn + (n_|_ l)logn
H M2
< (n+ 1)alogn—1—£ + (n+ 1)logn—£'

(32)

Therefore, for each n > ng, we have N, < p(logn)?, and the measure of exceptional
set is at most

=3

z Jaa! 4 2
(n+ 1)alogn—1—£ (n+ 1)logn—£

n=nq
< t i)
< Z ((n+1)alognolg + (n—|— 1)10g"08>

n=nq

i "
p LM
ologng—2—¢ logng—1—¢
g My

<

(By integral test)

where 0 < ¢ <2 and 0 < € < 1 for all n > ny. Hence the measure of exceptional set

is at least
! "

u u

1= ( ologny—2—¢ + logng—1—¢ )-
1y L)

Thus, the proof of Theorem 2.2 is complete.
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