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MOMENTS OF A q–BASKAKOV–BETA OPERATORS IN CASE 0 < q < 1

A. R. GAIROLA, P. N. AGRAWAL, G. DOBHAL AND K. K. SINGH

Abstract. In this paper we obtain the estimates of the central moments for the recently defined
q -analogue of Baskakaov-beta operators. We obtain the evaluation for the rate of convergence
in term of the first modulus of smoothness and Voronovskaja-type theorem for these operators.

1. Introduction

Recently, Phillips [19] proposed the following generalization of celebrated Bern-
stein polynomials operators based on q -integers

Bn,q( f ,x) =
n

∑
k=0

f

(
[k]
[n]

)
pn,k(q;x), f ∈C[0,1]

where pn,k(q;x) =
[n
k

]
xk ∏n−k−1

r=0 (1− qrx). These operators have been studied by sev-
eral authors (cf. [12], [19]–[25]). The Bernstein polynomials were suitably modified
by Durrmeyer to approximate Lebesgue integrable functions (cf. [7], [15]). Derrien-
nic [5] introduced a q -analogue of the Durrmeyer operators wherein she established
some approximation properties of the q -Durrmeyer operators. Similar to these modi-
fication, the q -analogue of some well known positive linear operators e.g. Bernstein,
Baskakov and Szász operators were introduced and studied by several authors, many
of which have been introduced by Gupta (see [2], [8], [10], [11]). Motivated by these
modifications the authors in [3] introduced the q -Baskakov-beta operators Bn,q( f ,x)
as follows:

Let N be the set of positive integer and f ∈ CB[0,∞) (the class of the continu-
ous and bounded functions on [0,∞)). For any n ∈ N, the operator Bn,q : CB[0,∞) →
C∞[0,∞) is defined by

Bn,q( f ,x) =
[n−1]

[n]

∞

∑
k=0

bn,k(q;x)

∞/A∫
0

qkpn,k(q;u) f (u)dqu,

where bn,k(q;x) =
qk(k−1)/2xk

Bq(k+1,n)(1+ x)(n+k+1) , pn,k(q;x) =
[
n+ k−1

k

]
qk(k−1)/2xk

(1+ x)(n+k) and

(1+ x)(n) = ∏n−1
j=0(1+q jx).
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The operators Bn,q are linear positive and reproduce constant functions. Some
approximation properties was established by the authors in [3]. In order to make the
paper self contained we recall some definitions and properties of q -calculus. (see [14],
[20]).

Let q be a real number satisfying 0 < q < 1. For n ∈ N, we define

[n] =

{
1−qn

1−q , q �= 1
n, q = 1.

[n]! =
{

[n][n−1][n−2].....[1], n = 1,2, ......
1, n = 0.

The q -binomial coefficients are defined by[
n
k

]
=

[n]!
[k]![n− k]!

, 0 � k � n.

And by

(a+b)(n) =
n−1

∏
j=0

(a+q jb)

we denote the q -rising factorial. The q -analogue Ex
q of classical exponential function

which we shall use in this paper is given by

Ex
q =

∞

∑
j=0

q j( j−1)/2 x j

[ j]!
.

For further properties see [14]. The q -Jackson integrals and q -improper integrals are
given by [13] and [17].

a∫
0

f (x)dqx = (1−q)a
∞

∑
n=0

f (aqn)qn

and
∞/A∫
0

f (x)dqx = (1−q)
∞

∑
n=−∞

f

(
qn

A

)
qn

A
, A > 0

respectively, whenever the sums converge absolutely.
For q ∈ (0,1) and any arbitrary real function f : R → R, the q -derivative Dq f (t)

is defined as

Dq f (x) =

{ f (x)− f (qx)
(1−q)x ; x �= 0

limx→0 Dq f (t); x = 0.

The q -derivative of the product is given by the formula

Dq( f (x)g(x)) = f (qx)Dq(g(x))+g(x)Dq( f (x))
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Analogous to the well known gamma and beta function the q -gamma and q -beta func-
tions are introduced.

We define q -gamma function

Γq(t) =

1/(1−q)∫
0

xt−1E−qx
q dqx.

The q -beta function is given by

Bq(t,s) = K(A,t)

∞/A∫
0

xt−1

(1+ x)(t+s) dqx,

where K(x, t) = 1
1+x x

t(1+ 1
x )

t
q(1+ x)1−t

q . In particular, for any positive integer n

K(x,n) = q
n(n−1)

2 , K(x,0) = 1

and

Bq(t,s) =
Γq(t)Γq(s)
Γq(t + s)

.

Γq(t) and Bq(t,s) are the q -analogues of the gamma and beta functions. In the limit
q → 1 they reduce to Γ(t) and B(t,s) respectively and also satisfy certain well known
properties of classical Γ(t) and B(t,s) functions. The space CB[0,∞) is endowed with
the norm ‖ f‖ = sup{| f (x)| : x ∈ [0,∞)}. The first order modulus of smoothness of
f ∈CB[0,∞) is defined by

ωφ ( f ,
√

δ ) = sup
0<h�

√
δ

sup
x∈[0,∞)

| f (x+h)− f (x)|.

In what follows, we shall denote
√

x(1+ x) by φ(x) and C2
B[0,∞) will be used for

the space of all twice continuously differentiable functions for which f ′′ is bounded.
Further, throughout this paper C is a constant different at each occurrence.

2. Moment Estimates

In this section we shall use the identities (see [3])

qkφ2(x)Dq[pn,k(q;x)] =
(
[k]−qk[n]x

)
pn,k(q;qx)

and
qkφ2(x)Dq[bn,k(q;x)] =

(
[k]−qk[n+1]x

)
bn,k(q;qx),

frequently, where Dq denotes the q -derivative operator.
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LEMMA 1. [3] Let us define An,m(x) = Bn,q(tm,x). Then, we have

An,0(x) = 1,

An,1(x) =
1

q[n−2]

(
1+

[n+1]x
q

)
and

An,2(x) =

(
q3[2]+q[2]2[n+1]x+[n+1][n+2]x2

)
q6[n−2][n−3]

.

Further, there holds the recurrence relation:

qm+1[n−m−2]An,m+1(qx) =
(
[n+1]x+[m+1]

)
An,m(qx)+ φ2(x)DqAn,m(x) (1)

COROLLARY 1. [3] Since, Bn,q( f ,x) are linear and preserve constants, it follows
that

Bn,q((t− x),x) =
(

[n+1]
q2[n−2]

−1

)
x+

1
q[n−2]

.

And

Bn,q((t− x)2,x) =
1

q6[n−2][n−3]

[
q3(1+q)+

(
q(q+1)2[n+1]−2q5[n−3]

)
x

+
(
[n+1][n+2]−2q4[n+1][n−3]+q6[n−2][n−3]

)
x2
]
.

Moreover, there holds the inequality

Bn,q((t − x)2,x) � 8
q6[n−2]

(
φ2(x)+ 1

[n−3]

)
= 16

q6[n−2]δ
2
n (x),

where δ 2
n (x) = max{φ2(x), 1

[n−3]}.

LEMMA 2. Let T q
n,m(x) = Bn,q((t−x)(m),x) be the mth q-central moments of the

operators Bn,q, then there holds the recurrence relation

φ2(x)Dq
(
Tq
n,m(x)

)
=
(
qm+1[n−m−2]

)
Tq
n,m+1(qx)+

[(
[n]xqm−1− [n+1]x+[n]xqm− [n]xq−1)

−[m+1](1+2qmx+qm−1x+q2m−1x2)− [m+2]x
(

qm − 1
q

)]
Tq
n,m(qx)

−
[(

[m]φ2(x)+ [n+1](qm−1)x2−qm−1[n]x2(qm −1)
)

+[m+1]x(qm−1)(1+qmx+qm−1x)

+[m+1]qmx2(qm −1)(1+qm−1x)

]
Tq
n,m−1(qx).
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Proof. We have

φ2(x)Dq
(
Tq
n,m(x)

)
=

[n−1]
[n]

∞

∑
k=0

φ2(x)

∞/A∫
0

qkpn,k(q;t)Dq

(
bn,k(q;x)(t − x)(m)

)
dqt

=
[n−1]

[n]

∞

∑
k=0

φ2(x)

∞/A∫
0

qkpn,k(q;t)bn,k(q;qx)
(
Dq(t− x)(m) dqt

)

+
[n−1]

[n]

∞

∑
k=0

φ2(x)

∞/A∫
0

qkpn,k(q; t)(t − x)(m) (Dqbn,k(q;x)
)

dqt

= E1 +E2 say.

E1 = −[m]
[n−1]

[n]

∞

∑
k=0

φ2(x)bn,k(q;qx)

∞/A∫
0

qkpn,k(q; t)(t −qx)(m−1)dqt

= −[m]φ2(x)Tn,m−1(qx).

And in view of qkφ2(x)Dq[bn,k(q;x)] =
(
[k]−qk[n+1]x

)
bn,k(q;qx) we get

E2 =
[n−1]

[n]

∞

∑
k=0

q−kbn,k(q;qx)

∞/A∫
0

[k]qkpn,k(q; t)(t − x)(m) dqt

−[n+1]x
[n−1]

[n]

∞

∑
k=0

bn,k(q;qx)

∞/A∫
0

qkpn,k(q; t)(t− x)(m) dqt

= E3 +E4 say.

It is obtained easily that (t − x)(m) = x(qm − 1)(t − qx)(m−1) + (t − qx)(m). Therefore,

E4 = −[n+1]x
[
x(qm −1)Tq

n,m−1(qx)+Tq
n,m(qx)

]
. Next,

E3 =
[n−1]

[n]

∞

∑
k=0

q−kbn,k(q;qx)

∞/A∫
0

(
[k]−qk−1[n]t

)
qkpn,k(q; t)(t− x)(m) dqt

+
[n−1]

[n]

∞

∑
k=0

q−kbn,k(q;qx)

∞/A∫
0

(
qk−1[n]t

)
qkpn,k(q; t)(t− x)(m) dqt

= E5 +E6 say.

Again,

E6 = q−1[n]
[n−1]

[n]

∞

∑
k=0

bn,k(q;qx)

∞/A∫
0

qkpn,k(q; t)(t−qmx)(t − x)(m) dqt
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+q−1[n]
[n−1]

[n]

∞

∑
k=0

bn,k(q;qx)

∞/A∫
0

qmxqkpn,k(q; t)(t − x)(m) dqt

= E7 +E8 say.

Clearly, E8 = qm−1[n]x
[
x(qm −1)Tq

n,m−1(qx)+Tq
n,m(qx)

]
. Next,

E7 = q−1[n]
[n−1]

[n]

∞

∑
k=0

bn,k(q;qx)

∞/A∫
0

qkpn,k(q; t)(t − x)(m+1) dqt

= q−1[n]
[
x(qm+1−1)Tq

n,m(qx)+Tq
n,m+1(qx)

]
.

In order to simplify E5 we take the transformation t = qz which is valid in the case of
q -integration.

E5 =
[n−1]

[n]

∞

∑
k=0

bn,k(q;qx)

∞/A∫
0

q
(
[k]−qk[n]z

)
(qz− x)(m)pn,k(q;qz)dqz

=
[n−1]

[n]

∞

∑
k=0

bn,k(q;qx)

∞/A∫
0

qφ2(z)Dq(pn,k(q;z))(qz− x)(m) dqz. (2)

Next, we write the function φ2(z)= z+z2 as φ2(z)= (qmx+qm−1x+1)(qz−qmx)
q +qm−1x(1+

qm−1x)+ (qz−qmx)(qz−qm+1x)
q2 and substitute in (2). We obtain three terms corresponding

to the three terms in (2), namely E9, E10 and E11.

E9 =
(

qmx+qm−1x+1
q

)
[n−1]

[n]

∞

∑
k=0

q−kbn,k(q;qx)

×
∞/A∫
0

qk.qDq(pn,k(q;z))(qz− x)(m+1) dqz.

Now, we integrate by parts and then make the inverse transformation z = q−1t which
gives

E9 =
(

qmx+qm−1x+1
q

)
[n−1]

[n]

∞

∑
k=0

q−kbn,k(q;qx)

×
{[

pn,k(q;z)(qz− x)(m+1)

]∞/A

0

−
∞/A∫
0

pn,k(q;qz)Dq

(
(qz− x)(m+1)

)
dqz

}

= −[m+1]q2
(

qmx+qm−1x+1
q

)
[n−1]

[n]

∞

∑
k=0

bn,k(q;qx)qk
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×
∞/A∫
0

pn,k(q;qz)(qz− x)(m) dqz

= −[m+1]q
(

qmx+qm−1x+1
q

)
[n−1]

[n]

∞

∑
k=0

bn,k(q;qx)qk

×
∞/A∫
0

pn,k(q;t)(t − x)(m) dqz

= −[m+1](qmx+qm−1x+1)
[
x(qm −1)Tn,m−1(qx)+Tn,m(qx)

]
.

And

E10 = qm−1x(1+qm−1x)
[n−1]

[n]

∞

∑
k=0

bn,k(q;qx)

∞/A∫
0

qk+1Dq
(
pn,k(q;z)

)
(qz− x)(m+1) dqz

= −[m+1]qmx(1+qm−1x)
[n−1]

[n]

∞

∑
k=0

bn,k(q;qx)

∞/A∫
0

qkpn,k(q; t)(t− x)(m) dqt

= −[m+1]qmx(1+qm−1x)
[
x(qm−1)Tn,m−1(qx)+Tn,m(qx)

]
.

Similarly,

E11 = − [m+2]
q

[
x(qm+1−1)Tn,m(qx)+Tn,m+1(qx)

]
.

Combining the estimates E1 −E11 the lemma is established. �
Now, we are in a position to state the following lemma

LEMMA 3. Let m ∈ N , 0 < q < 1. There exists a constant C = C(m) > 0 inde-
pendent of x and n such that for any x ∈ (0,∞) we have

Bn,q((t− x)(m),x) � C

(
1

[n]�(m+1)/2	

)
.

Proof. The proof follows by induction on m and the Lemma 2. �

LEMMA 4. Suppose the functions An,m(x) are expressed as

An,m(x) = am
0 +am

1 x+am
2 x2 + ...am

mxm,

where am
i are corresponding coefficients. Then the recurrence relations hold

q2m+2[n−m−2]am+1
m+1 = [n+m+1]am

m; (3)
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q2m+1[n−m−2]am+1
m = [n+m]am

m−1 +[2m+1]am
m; (4)

q2m−r+1[n−m−2]am+1
m−r = [n+m− r]am

m−r−1 +[2m− r]am
m−r, 1 � r < m (5)

qm+1[n−m−2]am+1
0 = [m+1]am

0 . (6)

Proof. Using An,m(x) = ∑m
i=0 am

i xi in (1) and equating the coefficients of various
powers of x the we get the recurrence relations

q2m+2[n−m−2]am+1
m+1 =

(
[m]+qm[n+1]

)
am

m;

q2m+1[n−m−2]am+1
m =

(
[m−1]+qm−1[n+1]

)
am

m−1 +
(
[m]+qm[m+1]

)
am

m;

q2m−r+1[n−m−2]am+1
m−r =

(
[m− r−1]+qm−r−1[n+1]

)
am

m−r−1

+
(
[m− r]+qm−r[m+1]

)
am

m−r, 1 � r < m

qm+1[n−m−2]am+1
0 = [m+1]am

0 .

Now, using [n] = qk[n− k]+ [k] in these relations (3)–(6) are established. �

LEMMA 5. Let m ∈ N , 0 < q < 1 , n > 4 . There exists a constant C independent
of x and n and q̂ ∈ (0,1) such that

Bn,q((t − x)4,x) � C

(
16

q6[n−2]
δ 2

n (x)

)2

∀q ∈ (0, q̂].

Proof. The quantities An,k(x) , k = 0,1,2 are obtained in Lemma 1. Now, using
(1) we obtain

An,3(x) =
[
([n+1]xq−1 +[3])(q3[2]+q[2]2[n+1]x+[n+1][n+2]x2)

+(φ(x/q))(q[2]2[n+1]+ [2][n+1][n+2]xq−1)
] 1
q9[n−2][n−3][n−4]

and

An,4(x) =

[[
([n+1]xq−1 +[3])([n+1]xq−1+[4])(q3[2]+q[2]2[n+1]

+[n+1][n+2])
]
+ φ(x/q)

{
q[2]2[n+1]+ [2][n+1][n+2]xq−1

+[2]q2[n+1]+ [2]2[3]q[n+1]+ [2]xq−1
(
[2][n+1][n+2]q−2

+[2]2q−1[n+1]+ [2]2[n+1]2 +[3][n+1][n+2]
)

+[3]x2q−2
(
[2][n+1][n+2]q−3+[n+1]2[n+2]q−1

)
+[2]2[n+1]

}]
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× 1
q13[n−2][n−3][n−4][n−5]

We write Bn,q((t−x)4,x)= ∑4
k=0

(4
k

)
(−1)kx4−kAn,k(x) and substitute An,k , k = 0,1, ...4.

The coefficient of x4 in the quantity C
(

16
q6[n−2]δ

2
n (x)

)2 −Bn,q((t − x)4,x) is obtained
as

(
256Cq8

5

∏
k=2

[n− k]+4q18(q2[n+1]+1)[n+1][n+2][n−2][n−5]
)

−
(
q20[n−2]

5

∏
k=2

[n− k]+6q14
2

∏
k=1

[n+ k][n−2][n−4][n−5]+ [3]
3

∏
k=1

[n+ k]
)

× 1

q20[n−2]∏5
k=2[n− k]

Now the coefficient of the terms of O([n]5) in numerator is 4−q10+6q14

q10 which is

positive iff q �
(

2
3+q6

)1/4
. Further for sufficiently large n, remaining terms in the

numerator are positive. Therefore the coefficient of x4 becomes positive for q ∈ (0, q̂),

where q̂ =
(

2
3+q6

)1/4
. Similarly the coefficients of xi , i = 1,2,3 are positive for large

n. In case q → 1, we have [n] → n as [n] is continuous function of q, the lemma is
established easily in this case again. This completes the proof. �

LEMMA 6. For the coefficients am
i defined in lemma 4 there holds

am
m−r = O

(( 1
[n]

)r
)

.

Proof. For r = 1, we need to prove am
m−1 = O

(
1
[n]

)
. In case m = 1, we have

a1
0 = 1

q[n−2] and using recurrence relation q2m+1[n−m−2] = [n+m]am
m−1 +[2m+1]am

m

with am
m = [n+1]....[n+m]

qm(m+1)[n−2]....[n−m−1]
, the lemma is proved for r = 1. Suppose the lemma is

true for a certain r, then from the recurrence relation (5), we get

[n+m− r]am
m−(r+1) = q2m−r+1[n−m−2]am+1

m−r − [2m− r+1]am
m−r

= q2m−r+1[n−m−2]O

(
1
[n]

)r+1

− [2m− r+1]O

(
1
[n]

)r

⇒ am
m−(r+1) = O

(
1
[n]

)r+1

.

This proves the lemma. �
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3. Applications of the moments

The following theorem due to Pop [21] will be used in our asymptotic results.

THEOREM 1. Let I ⊂ R be an interval, a ∈ I , n ∈ N and the function f : I ⇒ R,
f is n times derivable in a. According to Taylor’s expansion theorem for the function
f around a, we have

f (x) =
r

∑
k=0

(x−a)k

k!
f (k)(a)+ (x−a)rμ(x−a),

where μ is a bounded function and limt→xμ(x−a)= 0. If f (r) is a continuous function

on I, then for any δ > 0 |μ(x−a)|� 1
r! [1+ δ−2(x−a)2]ω1

(
f (r),δ

)
.

THEOREM 2. Let r � 0 and s � 1. Then, for 0 < q < 1,

Dr
q

(
Bn,q(tr+s,x)

)
=

[r+ s]!
[s]!

[n+1]....[n+ r+ s]
q(r+s)(r+s+1)[n−2]....[n− r− s−1]

xs

+
[r+ s−1]!

[s−1]!

[n+1]....[n+ r+ s]
(

∑r+s−1
j=0 qr+s− j−1[2 j +1]

)
q(r+s)2+3(r+s)+1[n−2]...[n− r− s−2]

xs−1

+
r+s

∑
j=2

Mjx
r+s− jO

(
1

[n] j

)
,

where Mj ’s are independent of n.

Proof. Using Lemma 1 we get following coefficients

a0
0 = 1, a1

0 =
1

q[n−2]
,

a2
0 =

[2]
q6[n−2][n−3]

, a2
1 =

q[2]2[n+1]
q6[n−2][n−3]

, a2
2 =

[n+1][n+2]
q6[n−2][n−3]

and in general

am
0 =

1

qm(m+1)/2

m−2

∏
j=0

(
[1+ j]

[n−2− j]

)
m � 3.

From previous Lemma 6, it is known that

ar+s
r+s =

[n+1]....[n+ r+ s]
q(r+s)(r+s+1)[n−2]....[n− r− s−1]
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Simplifying recurrence relation (4), we get

q2m+1[n−m−2]am+1
m = [n+m]am

m−1 +[2m+1]am
m.

Now, putting m = 1,2, ... we obtain from above recurrence relation

am+1
m =

[n+1][n+2]...[n+m]
(
qm +[3]qm−1 + ....+[2m+1]

)
qm2+3m+1[n−2]...[n−m−1]

=
∏m

i=1[n+ i]∑m
j=0 qm− j[2 j +1]

qm2+3m+1 ∏m+2
k=2 [n− k]

.

Similarly simplification of (5) gives

q2m[n−m−2]am+1
m−1 = [n+m−1]am

m−2+[2m]am
m−1.

Now, in view of Lemma 6, it follows that

am+r
m+r− j = O

(
1
[n]

) j
, j = 2,3, .... This completes the Theorem. �

Following is a Voronovskaya-type theorem for monomials.

THEOREM 3. Let r � 0 and s � 1 and (qn) be a sequence in (0,1) such that
qn → 1 as n → ∞, then

lim
n→∞

[n]
[
Dr

q

(
Bn,q(tr+s,x)

)− (r+ s)!
s!

xs
]

=
(r+ s)(r+ s)!

(s−1)!
xs−1

Proof. It results from Theorem 2 and the limit

n → ∞[n]
[r+ s−1]!

[s−1]!
[n+1]....[n+ r+ s]

(
[2]2qr+s +[5]qr+s−1 + ...+[2r+2s+1]

)
q(r+s)2+3(r+s)+1[n−2]...[n− r− s−2]

=
(r+ s−1)![(r+ s)(r+ s+2)−3]

(s−1)!
. �

THEOREM 4. For f ∈C2
B[0,∞) , q ∈ (0, q̂] we have∣∣∣∣∣Bn,q( f ,x)−

2

∑
k=0

Bn,q((t−x)k,x)
k!

f (k)(x)

∣∣∣∣∣� ω

(
f ′′,

4

q3
√

[n−2]
δn(x)

)[
16

q6[n−2]
δ 2

n (x)

]
.

Proof. From finite Taylor’s expansion for the function f around x, given in The-
orem 1, we have

∣∣∣Bn,q( f ,x)−
2

∑
k=0

Bn,q((t− x)k,x)
k!

f (k)(x)
∣∣∣

=
∣∣∣Bn,q((t − x)2μ(t− x),x)

∣∣∣
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� 1
2!

ω
(
f ′′,δ

)[∣∣∣Bn,q((t − x)2,x)
∣∣∣+ δ−2

∣∣∣Bn,q((t − x)4,x)
∣∣∣
]

� 1
2!

ω
(
f ′′,δ

)[ 16
q6[n−2]

δ 2
n (x)+ δ−2

(
16

q6[n−2]
δ 2

n (x)

)2]
.

Choosing δ 2 = 16
q6[n−2]δ

2
n (x) the theorem follows. �

THEOREM 5. If f ∈C2
B[0,∞), and qn be a sequence in (0,1) such that limn→∞ qn

= 1, then we have

lim
n→∞

[n]
[
Bn,q( f ,x)− f (x)

]
=

d
dx

(
x(1+ x) f ′(x)

)
.

Proof. Throughout the proof it will be assumed that [n] = [n]qn . The proof re-
sults from Theorem 4 and the limits limn→∞[n]Bn,qn((t − x) j,x) , j = 0,1,2. We have
limn→∞[n]Bn,qn(1,x) = 0 and

lim
n→∞

[n]Bn,qn((t− x),x) = lim
n→∞

[n]
(

[n+1]
q2[n−2]

−1

)
x+

1
q[n−2]

= lim
n→∞

[2](1+qn)x
q2[n−2]

+ (1+qn)x+
[2]

q[n−2]
+q

= 1+2x,

where we have used the relation [n] = [2]+q2[n−2].
Writing Bn,qn((t − x)2,x) = c0 + c1x+ c2x2, where c′is are the coefficients given

in Cor. 1. Then,

lim
n→∞

[n]Bn,q((t− x)2,x) = lim
n→∞

[n](c0 + c1x+ c2x
2)

Clearly,

lim
n→∞

[n]c0 = 0,

lim
n→∞

[n]c1x = lim
n→∞

[n]

(
q3(1+q)+

(
q(q+1)2[n+1]−2q5[n−3]

)
q6[n−2][n−3]

x

= lim
n→∞

(
[2]+q2[n−2]

)( [2]2[4]q
q6[n−2][n−3]

+
([2]2q5−2q5)

q6[n−2]

)
x

= 2x.
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And simplification yields

lim
n→∞

[n]c2x
2 = lim

n→∞
[n]

(
[n+1][n+2]−2q4[n+1][n−3]+q6[n−2][n−3]

)
x2

q6[n−2][n−3]

= lim
n→∞

[n]
(

([4]−2[3])
q2[n−2]

+
[4]

q2[n−3]
+

[4]2

q6[n−2][n−3]

)
x2

= 2x2. �
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