
Journal of
Classical

Analysis

Volume 2, Number 1 (2013), 61–72 doi:10.7153/jca-02-06

A NOTE ON RELATIVE TYPE OF ENTIRE FUNCTIONS

REPRESENTED BY VECTOR VALUED DIRICHLET SERIES

G. S. SRIVASTAVA

Abstract. We introduce in this paper a new parameter Tg( f ) , the relative growth type of en-
tire function f (s) represented by a vector valued Dirichlet series with respect to another entire
VVDS g(s) when their relative order is one. We establish a few lemmas, and show that under
certain conditions type and relative type of VVDS are equal. Several basic results have also been
obtained.

1. Introduction

Let f (s) be an entire function defined by an everywhere absolutely convergent
vector valued Dirichlet series (VVDS)

f (s) =
∞

∑
n=1

ane
sλn s = σ + it, (σ , t are real variables) (1)

where an
′s belong to a Banach space (E,‖.‖) , λn

′s are non-negative real numbers such
that 0 � λ1 < λ2 < · · · · · · < λn → ∞ as n → ∞ , and satisfy the conditions

lim sup
n→∞

logn
λn

= D < ∞ (2)

and

lim sup
n→∞

log‖an‖
λn

= −∞. (3)

B. L. Srivastava [4] defined the growth parameters such as order, type, lower order and
lower type of entire functions represented by VVDS as defined above. He also obtained
the results for coefficient characterization of order and type. Bernal [1] introduced the
concept of relative order of entire functions represented by a power series. Lahiri and
Banerjee [2] extended these results for entire functions reprsented by Dirichlet series.In
this paper,we have introduced relative type of two entire VVDS to measure the growth
rate when their relative order is one.We have given the alternate definition of relative
order also which is different from that given in [2] and is more suited for Dirichlet
series.
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For an entire function f (s) defined by (1), we define its maximum modulus as

M(σ) = M(σ , f ) = sup
−∞<t<∞

‖ f (σ + it)‖ .

Then, its order ρ is given by

ρ = lim sup
σ→∞

loglogM (σ)
σ

, (0 � ρ � ∞) . (4)

If 0 < ρ < ∞ , the type of f is defined as

T = lim sup
σ→∞

logM(σ)
eρσ , (0 � T � ∞)

and the lower type τ of f (s) is defined as

τ = lim inf
σ→∞

logM (σ)
eσρ .

The function f (s) is said to be of perfectly regular growth if 0 < τ = T < ∞ .
We also define the maximum term m(σ) and the rank N(σ) of the maximum term

as

m(σ) = max{||an||eσλn ; n ∈ N+},
N(σ) = max{n; ||an||eσλn = m(σ), n ∈ N+}.

Then m(σ) and N(σ) are indefinitely increasing functions of σ and m(σ) � M(σ) .
Let f and g be two entire VVDS of the form (1), F(σ) and G(σ) denote their

respective maximum moduli.

DEFINITION 1. The relative order of f (s) with respect to g(s) , denoted by ρg( f )
is defined as

ρg( f ) = inf{μ > 0 : F(σ) < G(σ μ) for all σ > σ0(μ)}

i.e. ρg ( f ) = lim sup
σ→∞

G−1F(σ)
σ .

If we choose g(s) = exp(exp(s)) as the comparison function, the above definition
coincides with the classical definition of Ritt order as in (4).

When ρg( f ) = 1 i.e., ρ( f ) = ρ(g) = ρ then to discuss their relative growth we
need to have further refinement of the growth parameter. Hence we introduce the rela-
tive type of f (s) with respect to g(s) .

DEFINITION 2. The relative type of f (s) with respect to g(s) , denoted by Tg( f )
when ρg( f ) = 1 is defined as

Tg ( f ) = inf

{
μ > 0 : F (σ) < G

[
1
ρ

log(μeσρ)
]
for all σ > σ0(μ)

}
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i.e.

Tg ( f ) = lim sup
σ→∞

exp[ρG−1F (σ)]
eσρ .

DEFINITION 3. The relative lower type of f (s) with respect to g(s) , denoted by
τg( f ) when ρg( f ) = 1 is defined as

τg ( f ) = lim inf
σ→∞

exp[ρG−1F (σ)]
eσρ

and if Tg( f ) = τg( f ) then f is said to be of regular type with respect to g .

DEFINITION 4. A non-constant entire function g(s) defined by a VVDS is said
to have property (A), if for any δ > 1 and σ > σ0(δ ) ,

[G(σ)]2 � G(σδ ).

Property (A) has been closely studied by Bernal [1].

2. Auxiliary results

In this section we present some results which will be used in the sequel. We prove

LEMMA 1. Let g(s) be an entire function represented by VVDS given in (1) and
let α > 1 , 0 < β < α , be given. Then,

G(ασ) > eβ σG(σ) for all large σ .

Proof. Let g(s) = ∑∞
n=1 bnesλn . Then following [5, Lemma 1, p. 2653], we have

G(σ) � O(1) m(σ +D+ ε)

where ε > 0 is arbitrary and the bounded constant in O(1) does not contain σ or λn .
Let us choose α0 > 1, β < α0 < α . Then

eβ σG(σ) � O(1)eβ σm(σ +D+ ε) = O(1) ||bN(σ ′)|| eβ σ+σ ′λN(σ ′′)

where σ ′ = σ +D+ ε and N(σ ′) is the rank of the maximum term m(σ ′) . Hence for
suitably large σ ,

eβ σG(σ) � ||bN(σ ′)|| eβ σ+α0 σ λN(σ ′′) .

Also β + α0 λn < α λn for all sufficiently large n . Hence we get

eβ σG(σ) � ||bN(σ ′)|| eβ σ+α0 σ λN(σ ′′) � m(ασ) � M(ασ) = G(ασ).

Thus the proof of Lemma 1 is complete. �

Next we prove
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LEMMA 2. Let g(s) satisfy the property (A); then for any positive integer n and
for all δ > 1 , we have

[G(σ)]n < G(δσ) for all large σ .

Proof. Let n be any positive integer. Then there exists an integer m such that
2m > n . Now we can write

G(δσ) = G(σδ 1/2δ 1/2) �
[
G(σδ 1/2)

]2

=
[
G(σδ 1/4δ 1/4)

]2

�
[
G(σδ 1/4)

]4
� · · · · · · �

[
G(σδ 1/2m

)
]2m

.

Since δ 1/2k
> 1, k � 1 and 2m > n , we have G(δσ) � [G(σ)]n . This proves

Lemma 2. �

Next we have

LEMMA 3. Let f (s) be VVDS defined by (1), k > 1 , 0 < μ < λ and n is any
positive integer. Then

lim
σ→∞

F(kσ)
F(σ)

= lim
σ→∞

F(λ σ)
F(μσ)

= ∞ (5)

and

lim
σ→∞

F (kσ)
σnF (σ)

= lim
σ→∞

F (λ σ)
σnF (μσ)

= ∞. (6)

Proof. Since k > 1, choosing 0 < β < k, we have from Lemma 1,

lim
σ→∞

F(kσ)
F(σ)

� lim
σ→∞

eβ σ = ∞.

The second part of (5) follows on taking k = λ/μ .
Again for k > 1, we choose β , 0 < β < k . Then from Lemma 1,

lim
σ→∞

F (kσ)
σnF (σ)

� lim
σ→∞

eβ σ

σn = ∞.

This proves (6) and the proof of Lemma 3 is complete. �

LEMMA 4. Let f (s) be an entire VVDS and n is any positive integer. Then
ρg( f ) = ρg( f n).

Proof. By Lemma 2, we get [F(σ)]n < F(δσ) where δ > 1 is arbitrary. By
definition of relative order, we have

ρg ( f n) = lim
σ→∞

sup
G−1[F (σ)]n

σ
� lim

σ→∞
sup

G−1[F (δσ)]
σ

.
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Now letting δ → 1+ , we obtain ρg( f ) � ρg( f n). The inequality ρg( f n) � ρg( f )
is evident. From the above two inequalities we have ρg( f ) = ρg( f n) which proves
Lemma 4. �

Using the definition of relative type, we easily get the following results

LEMMA 5.

1. Let f1 , f2 and g be entire VVDS such that F1(σ) � F2(σ) for all large σ and
ρg( f1) = ρg( f2) = 1 . Then Tg( f1) � Tg( f2).

2. Let f , g1 and g2 be entire VVDS such that G1(σ) � G2(σ) for all large σ and
ρg1( f ) = ρg2( f ) = 1 . Then Tg2( f ) � Tg1( f ).

LEMMA 6. Let f , g and h be three vector valued entire Dirichlet series such that
ρg( f ) = ρg(h) = 1 . Then

τg( f )
Tg(h)

� lim
σ→∞

inf
exp

[
ρG−1F(σ)

]
exp [ρG−1H(σ)]

� τg( f )
τg(h)

� lim
σ→∞

sup
exp

[
ρG−1F(σ)

]
exp [ρG−1H(σ)]

� Tg( f )
τg(h)

.

3. Main results

In this section we present the main results of the paper. First we prove

THEOREM 1. If f1 , f2 and g are entire VVDS defined by (1) such that ρg( f1) =
ρg( f2) = 1 and g satisfies property (A) then

1. Tg( f1 ± f2) � max
{
Tg( f1),Tg( f2)

}
. The equality holds when Tg( f1) �= Tg( f2).

2. Tg( f1 · f2) � Tg( f1)+Tg( f2).

Proof. (1) We may suppose that both Tg( f1) and Tg( f2) are finite since otherwise
the result is trivial.

Case 1. Let f = f1 + f2 , T = Tg( f ) , Ti = Tg( fi) ; i = 1,2 and T1 � T2. For
arbitrary ε > 0 and for all large σ , we have

F1(σ) < G

[
1
ρ

log [(T1 + ε)eσρ ]
]

� G

[
1
ρ

log [(T2 + ε)eσρ ]
]

(7)

and

F2 (σ) < G

[
1
ρ

log [(T2 + ε)eσρ ]
]
. (8)

So for all large σ , F(σ) � F1(σ)+F2(σ). Using inequalities (7) and (8), we get

F(σ) < 2G

[
1
ρ

log [(T2 + ε)eσρ ]
]

<

{
G

[
1
ρ

log [(T2 + ε)eσρ ]
]}2

.
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Since G satisfies property (A), therefore F(σ) < G
[

δ
ρ log [(T2 + ε)eσρ ]

]
, where

δ > 1.
Hence exp

[ρ
δ G−1F (σ)−σρ

]
< [T2 + ε] for all large σ . Since δ > 1 and ε > 0

are arbitrary, proceeding to limits as σ → ∞ we have T � T2.
Case 2. Let T1 < T2 and suppose that T1 < μ < λ < T2. Then for all large σ , we

have

F1 (σ) < G

[
1
ρ

log(μeσρ)
]

and there exists an increasing sequence {σn}→ ∞ such that

F2 (σn) > G

[
1
ρ

log(λeσnρ)
]
. (9)

By (1) of Lemma 3, we have

lim
σ→∞

G
[

1
ρ log(λeσρ)

]

G
[

1
ρ log(μeσρ)

] = ∞.

Then for all large σ and arbitrary ε > 0, we obtain

G
[

1
ρ log [λeσρ ]

]

G
[

1
ρ log [μeσρ ]

] >
2
ε
. (10)

Now for all large σ , we have F(σ) � F2(σ)−F1(σ). Hence using (9) and (10), we
obtain

F (σ) > G

[
1
ρ

log
[
λeσρ]]− ε

2
G

[
1
ρ

log
[
λeσρ]]

=
(
1− ε

2

)
G

[
1
ρ

log
[
λeσρ]]

> G

[
1
ρ

log[(1− ε)λeσρ ]
]

for all large σ .
Proceeding to limits as σ → ∞ , we obtain Tg( f ) > μ where μ = (1− ε)λ .
Considering case (1) and the above obtained results, we have

Tg( f1 ± f2) � max
{
Tg( f1),Tg( f2)

}
which proves part (1).

(2) Let us put T ( fi) = Ti and T (g) = T ′ . Using the definition of type, we have
G(σ) = exp(T ′eρσ ) for all large σ .

Therefore

G−1(σ) =
[

1
ρ

log

(
1
T ′ logσ

)]
for all large σ → ∞. (11)
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Now for all large σ , we have

F(σ) � F1(σ) ·F2(σ)

By definition of relative type

Tg ( f ) = lim
σ→∞

sup
exp[ρG−1F (σ)]

eσρ � lim
σ→∞

sup
exp

[
ρG−1 (F1 (σ) ·F2 (σ))

]
eσρ .

Using the relation (11), we have

Tg ( f ) � lim
σ→∞

sup
log(F1 (σ) ·F2 (σ))

T ′eσρ .

By the definition of type,

F1 (σ) � exp(T1e
σρ) (12)

and
F2 (σ) � exp(T2e

σρ) . (13)

So, from inequalities (12) and (13), we have

Tg ( f ) � lim
σ→∞

sup
log(exp(T1eσρ)exp(T2eσρ))

T ′eσρ .

Hence, Tg ( f ) � T1
T ′ + T2

T ′ and therefore Tg ( f ) � Tg ( f1)+Tg ( f2) . This completes
the proof of Theorem 1. �

Next we prove

THEOREM 2. Let f and g be entire VVDS such that ρg ( f ) = 1 , P be a vector
valued Dirichlet polynomial and n be a positive integer. Then

1. Tg ( f ) = Tg (P f ) = TPg ( f ) .

2. Tg ( f ) = Tg ( f ′) = Tg′ ( f ) .

3. Tg ( f n) = nTg ( f ) .

Proof. (1) There exists α ∈ (0,1) and let m be a positive integer such that α �
|P(s)| � emσ .

Let h = P f , therefore αF(σ) < H(σ) < emσ F(σ). Since β > 1, using Lemma 1
we have

F(ασ) < αF(σ) < H(σ) < F(β σ).

Hence

exp
[
ρG−1 (F(ασ))

]
eασρ · e

ασρ

eσρ <
exp

[
ρG−1 (H(σ))

]
eσρ <

exp
[
ρG−1 (F(β σ))

]
eβ σρ · eβ σρ

eσρ .
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Proceeding to limits as σ → ∞ , since α < 1 and β > 1 are arbitrary, we have

Tg( f ) � Tg(h) � Tg( f ).

Hence Tg( f ) = Tg(P f ) . Similarly, if we put h = Pg , then by above result,

lim
σ→∞

inf
exp[ρF−1G(σ)]

eσρ = lim
σ→∞

inf
exp[ρF−1H (σ)]

eσρ . (14)

By definition of relative type, we have

Th( f ) = lim
σ→∞

sup
exp[ρH−1F (σ)]

eσρ = lim
σ→∞

sup
exp

[
ρH−1 (σ)

]
exp [ρF−1 (σ)]

= lim
σ→∞

sup
exp[ρσ ]

exp [ρF−1 (H(σ))]

= lim
σ→∞

sup
exp[ρσ ]

exp [ρF−1 (G(σ))]
,

from (14) above,

= lim
σ→∞

sup
exp

[
ρG−1 (σ)

]
exp [ρF−1 (σ)]

= lim
σ→∞

sup
exp[ρG−1 (F (σ))]

eσρ .

Hence we get Tg( f ) = Th( f ) . This proves part (1).
(2) From [3, p. 139], we have for any entire Dirichlet function f (s) = ∑∞

n=1 anesλn ,
M(σ , f )−ε < (σ −σ0)M′(σ , f )+ | f (s0)| for all large σ and M′(σ , f )−ε � 1

δ M(σ +
δ , f ) where ε, δ > 0 and M′(σ , f ) denotes the maximum modulus of the derivative
f ′(s) . We can similarly show that for entire VVDS given by (1),

F(σ) < σF ′(σ)+O(1), F ′(σ)− ε � 1
δ

F(σ + δ ) (15)

Using the above inequalities and the definition of relative order, we have ρg( f ) = ρg( f ′)
i.e., ρ( f ) = ρ( f ′) = ρ(g) = ρ . Let k > 1, then by Lemma 3(ii), F(kσ) > σnF(σ) for
all large σ . Now replacing σ by qσ such that 0 < q < 1 and qk = 1, we get

F(qkσ) > (qσ)nF(qσ).

Hence
F(σ) > (qσ)nF(qσ) > σF(qσ) for all large σ . (16)

From inequalities (15) and (16), we obtain F(qσ) < F(σ)
σ < F ′(σ) for all large

σ . Therefore Tg ( f ′) = lim
σ→∞

sup
exp[ρG−1(F ′(σ))]

eσρ > lim
σ→∞

sup exp[ρG−1(F(qσ))]
eσρ .

Letting q → 1− , we obtain Tg ( f ′) � Tg ( f ) .
For the reverse inequality, by (i) of Lemma 3, we have F(rσ) > 1

δ F(σ) , where
δ > 0 and r > 1.

Therefore F ′(σ) � 1
δ F(σ) < F(rσ).
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By the definition of relative type we have Tg ( f ′) = lim
σ→∞

sup
exp[ρG−1(F ′(σ))]

eσρ �

lim
σ→∞

sup exp[ρG−1(F(rσ))]
erσρ · erσρ

eσρ where r > 1.

Letting r → 1+ , we obtain Tg ( f ′) � Tg ( f ) which leads to Tg ( f ′) = Tg ( f ) .
Similarly, from the above proved equality Tf (g) = Tf (g′) . Therefore

lim
σ→∞

sup
exp[ρF−1 (G(σ))]

eσρ = lim
σ→∞

sup
exp[ρF−1 (G′ (σ))]

eσρ .

By the definition of relative type,

Tg ( f ) = lim
σ→∞

sup
exp[ρG−1 (F (σ))]

eσρ

= lim
σ→∞

sup
exp[ρG−1 (σ)]
exp[ρF−1 (σ)]

, replacing F(σ)by σ

= lim
σ→∞

sup
eσρ

exp[ρF−1G(σ)]
, replacing σ by G(σ)

= lim
σ→∞

sup
eσρ

exp[ρF−1G(σ)]
= lim

σ→∞
sup

exp[ρG−1 (σ)]
exp[ρF−1 (σ)]

= lim
σ→∞

sup
exp[ρG−1 (F (σ))]

eσρ .

Hence Tg ( f ) = Tg′ ( f ) which proves the result.
(3) Since ρg ( f ) = 1, by Lemma 4 we have ρ ( f ) = ρ (g) = ρ ( f n) = ρ . Let

[F(σ)]n be the maximum modulus of f n . Then,

Tg ( f n) = lim
σ→∞

sup
exp

[
ρG−1 [F (σ)]n

]
eσρ

= lim
σ→∞

sup
exp

[
ρG−1 [F (σ)]n

]
logF(σ)

· logF(σ)
eσρ

= lim
σ→∞

sup
exp

[
ρG−1 [F (σ)]n

]
logF(σ)

T ( f )

= lim
σ→∞

sup
exp [ρσ ]

log [G(σ)]
1/n

T ( f ) .

Hence Tg ( f n) = nTg ( f ) . This completes the proof of Theorem 2. �

THEOREM 3. If f is of perfectly regular growth and regular relative type with
respect to g, ρg( f ) = 1 and Tg( f ) = T ( f ) = T then g is of perfectly regular growth
and of type one. Conversely, if g is of perfectly regular growth and of type one then
Tg( f ) = T ( f ) for all entire VVDS f of regular relative type with respect to g.

Proof. Given that Tg( f ) = T ( f ) = T and ρ( f ) = ρ(g) = ρ(say) . Let ε > 0 be
given. By definition of type, since f is of regular type, we have

exp [(T − ε)eσρ ] < F(σ) < exp [(T + ε)eσρ ] , σ > σ0. (17)
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Similarly, since f is of regular relative type with respect to g , we have

G

[
1
ρ

log[(T − ε)eσρ ]
]

< F(σ) < G

[
1
ρ

log[(T + ε)eσρ ]
]
, σ > σ1 (18)

Combining (17) and (18), we have for σ > σ2 = max(σ0,σ1),

G

[
1
ρ

log[(T − ε)eσρ ]
]

< exp [(T + ε)eσρ ] ,

exp [(T − ε)eσρ ] < G

[
1
ρ

log[(T + ε)eσρ ]
]

or exp
[

(T−ε)
(T+ε)e

σρ
]

< G(σ) < exp
[

(T+ε)
(T−ε)e

σρ
]
.

Since ε > 0 is arbitrary, on proceeding to limits, it follows that g is of perfectly
regular growth and of type one. Conversely, if g(s) is of perfectly regular growth and
of type 1 then for arbitrary ε > 0 and σ > σ ′(ε) ,

exp [(1− ε)eσρ ] < G(σ) < exp [(1+ ε)eσρ ] . (19)

From the definition of relative type, for σ > σ ′′(ε) ,

G

[
1
ρ

log[(Tg( f )− ε)eσρ ]
]

< F(σ) < G

[
1
ρ

log[(Tg( f )+ ε)eσρ ]
]
. (20)

Using inequalities (19) and (20), we obtain for

σ > max(σ ′,σ”), G

[
1
ρ

log[(Tg( f )− ε)eσρ ]
]

> exp [(1− ε)(Tg( f )− ε)eσρ ]

and

G

[
1
ρ

log[(Tg( f )+ ε)eσρ ]
]

< exp [(1+ ε)(Tg( f )+ ε)eσρ ] .

Hence

exp [(1− ε)(Tg( f )− ε)eσρ ] < F(σ) < exp [(1+ ε)(Tg( f )+ ε)eσρ ]

or

exp
[{

Tg( f )−ε (1+Tg( f )−ε)
}

eσρ]
< F(σ) < exp

[{
Tg( f )+ε (1+Tg( f )+ε)

}
eσρ]

Since ε > 0 is arbitrary, on proceeding to limits as σ → ∞ , we obtain T ( f ) =
Tg( f ) which completes the proof of Theorem 3. �
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4. Asymptotic behaviour of two functions

DEFINITION. Two entire VVDS f1 and f2 are said to be asymptotically equiva-
lent if

lim
σ→∞

F1(σ)
F2(σ)

= 1.

In this case we write f1 ∼ f2 then clearly f2 ∼ f1 .
Now we prove

THEOREM 4. Let f1 , f2 , f , g1 , g2 and g be entire VVDS. Then

1. If ρg( f1) = ρg( f2) = 1 and f1 ∼ f2 then Tg( f1) = Tg( f2) .

2. If ρg1( f ) = ρg2( f ) = 1 and g1 ∼ g2 then Tg1( f ) = Tg2( f ) .

Proof. (1) Consider ρ( f1) = ρ( f2) = ρ(g) = ρ . Given that f1 ∼ f2 , therefore
there exists ε > 0 such that F1(σ) < (1+ ε)F2(σ) for all large σ .

Using Lemma 1 and assuming that (1+ ε) < β , we have F1(σ) < F2(β σ) .
By definition of relative type

Tg( f1) = limsup
σ→∞

exp
[
ρG−1 (F1(σ))

]
eσρ � limsup

σ→∞

exp
[
ρG−1 (F2(β σ))

]
eσρ .

As β → 1 i.e., ε → 0, we obtain Tg( f1) � Tg( f2) . The reverse inequality follows
similarly. Hence Tg( f1) = Tg( f2) .

(2) Let ρ( f ) = ρ(g1) = ρ(g2) = ρ . Given that g1 ∼ g2 , therefore there exists
ε > 0 such that for all large σ

G1(σ) < (1+ ε)G2(σ).

Consider α > 1.Then by Lemma 1, we have G1(σ) < G2(ασ) and thus

σ < G−1
1 (G2(ασ)).

Now put G2(ασ) = t , then 1
α G−1

2 (t) < G−1
1 (t) for all large value of σ . Hence by

definition of relative type,

Tg2( f ) = limsup
σ→∞

exp
[
ρG−1

2 (F(σ))
]

eσρ � limsup
σ→∞

exp
[
ραG−1

1 (F(σ))
]

eσρ .

Now letting α → 1+ , we have Tg2( f ) � Tg1( f ) . The reverse inequality Tg2( f ) �
Tg1( f ) holds similarly. Hence Tg1( f ) = Tg2( f ) . This completes the proof of Theorem
4. �

Acknowledgement. The author is very much thankful to the referee for his valuable
comments and suggestions which helped in improving the paper.



72 G. S. SRIVASTAVA

RE F ER EN C ES

[1] L. BERNAL, Orden relative de crecimiento de funcionesenteras, Collect. Math., 39 (1988), 209–229.
[2] B. K. LAHIRI AND D. BANERJEE,Relative Ritt order of entire Dirichlet series, Int. J. Contemp. Math.

Sciences, Vol. 5, No. 44 (2010), pp. 2157–2165.
[3] Q. I. RAHMAN, The Ritt order of the derivative of an entire function, Ann. Polon. Math., Vol. 17

(1965), pp. 137–140.
[4] B. L. SRIVASTAVA,A Study of Spaces of Certain Classes of Vector Valued Dirichlet Series, Thesis, I.

I. T. Kanpur, (1983).
[5] G. S. SRIVASTAVA AND ARCHNA SHARMA, On generalized order and generalized type of vector

valued Dirichlet series of slow growth, Int. J.Math. Archive, 2 (12) (2011), pp. 2652–2659.

(Received October 6, 2012) G. S. Srivastava
Department of Mathematics

Jaypee Institute of Information Technology
A-10, Sector-62, Noida-201309, Uttar Pradesh

India
e-mail: gs91490@gmail.com

Journal of Classical Analysis
www.ele-math.com
jca@ele-math.com


