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FOURIER EXPANSIONS FOR A LOGARITHMIC FUNDAMENTAL

SOLUTION OF THE POLYHARMONIC EQUATION

HOWARD S. COHL

Abstract. In even-dimensional Euclidean space for integer powers of the Laplacian greater than
or equal to the dimension divided by two, a fundamental solution for the polyharmonic equation
has logarithmic behavior. We give two approaches for developing an azimuthal Fourier expan-
sion of this logarithmic fundamental solution. The first approach is algebraic and relies upon the
construction of two-parameter polynomials which we call logarithmic polynomials. The second
approach depends on the computation of parameter derivatives of Fourier series expressions for
a power-law fundamental solution of the polyharmonic equation. We conclude by comparing the
two approaches and giving the azimuthal Fourier series for a logarithmic fundamental solution
of the polyharmonic equation in rotationally-invariant coordinate systems.
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