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FOURIER EXPANSIONS FOR A LOGARITHMIC FUNDAMENTAL

SOLUTION OF THE POLYHARMONIC EQUATION

HOWARD S. COHL

Abstract. In even-dimensional Euclidean space for integer powers of the Laplacian greater than
or equal to the dimension divided by two, a fundamental solution for the polyharmonic equation
has logarithmic behavior. We give two approaches for developing an azimuthal Fourier expan-
sion of this logarithmic fundamental solution. The first approach is algebraic and relies upon the
construction of two-parameter polynomials which we call logarithmic polynomials. The second
approach depends on the computation of parameter derivatives of Fourier series expressions for
a power-law fundamental solution of the polyharmonic equation. We conclude by comparing the
two approaches and giving the azimuthal Fourier series for a logarithmic fundamental solution
of the polyharmonic equation in rotationally-invariant coordinate systems.

1. Introduction

Solutions of the polyharmonic equation (powers of the Laplacian operator) are
ubiquitous in many areas of computational, pure, applied mathematics, physics and en-
gineering. We concern ourselves, in this paper, with a fundamental solution of the poly-
harmonic equation (Laplace, biharmonic, etc.), which by convolution yields a solution
to the inhomogeneous polyharmonic equation. Solutions to inhomogeneous polyhar-
monic equations are useful in many physical applications including those areas related
to Poisson’s equation such as Newtonian gravity, electrostatics, magnetostatics, quan-
tum direct and exchange interactions (cf. Section 1 in [3]), etc. Furthermore, applica-
tions of higher-powers of the Laplacian include such varied areas as minimal surfaces
[12], Continuum Mechanics [8], Mesh deformation [6], Elasticity [9], Stokes Flow [7],
Geometric Design [20], Cubature formulae [17], mean value theorems (cf. Pizzetti’s
formula) [13], and Hartree-Fock calculations of nuclei [21].

Closed-form expressions for the Fourier expansions of a logarithmic fundamental
solution for the polyharmonic equation are extremely useful when solving inhomoge-
neous polyharmonic problems in even-dimensional Euclidean space, especially when a
degree of rotational symmetry is involved. A fundamental solution of the polyharmonic
equation on d -dimensional Euclidean space Rd has two arguments and therefore maps
from a 2d -dimensional space to the reals. Solutions to the inhomogeneous polyhar-
monic equation can be obtained by convolution of a fundamental solution with an in-
tegrable source distribution. Eigenfunction decompositions of a fundamental solution
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reduces the dimension of the resulting convolution integral to obtain Dirichlet bound-
ary values, replacing it instead by a sum or an integral over some discrete or continuous
parameter space. By taking advantage of rotational or nearly rotational symmetry of the
source distribution, one reduces the dimensionality of the resulting convolution integral
and obtains a rapidly convergent Fourier cosine expansion. In the case of an axisym-
metric (constant angular dependence) source distribution, the entire contribution to the
boundary values are determined by a single term in the azimuthal Fourier series. These
kinds of expansions have been previously shown to be extremely effective in solving
inhomogeneous problems (see for instance the discussion in Cohl & Tohline (1999)
[4]). In general, these methods can be applied to any of the applications described in
the previous paragraph.

It is a well-known fact (see for instance Schwartz (1950) ([16], p. 45); Gel’fand &
Shilov (1964) ([5], p. 202)) that a fundamental solution of the polyharmonic equation
on Rd is given by combinations of power-law and logarithmic functions of the global
distance between two points. In a recent paper (Cohl & Dominici (2010) [3]), we de-
rived an identity over the complex numbers which determined the Fourier coefficients
of a power-law fundamental solution of the polyharmonic equation. The present work
is concerned with computing the Fourier coefficients of a logarithmic fundamental solu-
tion of the polyharmonic equation. One obtains a logarithmic fundamental solution for
the polyharmonic equation only on even-dimensional Euclidean space and only when
the power of the Laplacian is greater than or equal to the dimension divided by two.
The most familiar example of a logarithmic fundamental solution of the polyharmonic
equation occurs in two-dimensions, for a single-power of the Laplacian, i.e., Laplace’s
equation.

We present two different approaches for obtaining Fourier series of a logarithmic
fundamental solution for the polyharmonic equation. The first approach is algebraic
and involves the generation of a certain set of naturally arising two-index polynomi-
als which we refer to as logarithmic polynomials. The second approach starts with
the main result from [3] and determines the Fourier series expansion for a logarithmic
fundamental solution of the polyharmonic equation through parameter differentiation.

This paper is organized as follows. In Section 2 we introduce the problem. In Sec-
tion 3 we describe our algebraic approach to computing a Fourier series for a logarith-
mic fundamental solution of the polyharmonic equation. In Section 4 we give our limit
derivative approach for computing the Fourier series for a logarithmic fundamental so-
lution of the polyharmonic equation. In Section 5 we give some comparisons between
the two approaches. In Section 6 we obtain azimuthal Fourier expansions for a log-
arithmic fundamental solution of the polyharmonic equation in rotationally-invariant
coordinate systems which parametrize points on d -dimensional Euclidean space. In
Appendix A we give some necessary formulae relating to differentiation of associated
Legendre functions of the first kind with respect to the degree. In Appendix B we
present and derive some properties of the logarithmic polynomials.

Throughout this paper we rely on the following definitions. The set of natural
numbers is given by N := {1,2,3, . . .} , the set N0 := {0,1,2, . . .} = N∪{0} , the set of
integers is given by Z := {0,±1,±2, . . .}. The sets Q and R represents the rational and
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real numbers respectively. For a1,a2,a3, . . . ∈ C , if i, j ∈ Z and j < i then ∑ j
n=i an = 0

and ∏ j
n=i an = 1, where C represents the complex numbers.

2. Fundamental solution of the polyharmonic equation and the non-logarithmic
Fourier series

If Φ : Rd → R satisfies the polyharmonic equation given by

(−Δ)kΦ(x) = 0, (1)

where x ∈ Rd , Δ : Cp(Rd) →Cp−2(Rd) for p � 2, is the Laplacian operator defined

by Δ := ∂ 2

∂x2
1
+ . . .+ ∂ 2

∂x2
d
, k ∈ N and Φ ∈C2k(Rd), then Φ is called polyharmonic. We

use the nonnegative Laplacian −Δ � 0. The inhomogeneous polyharmonic equation is
given by

(−Δ)kΦ(x) = ρ(x), (2)

where we take ρ to be an integrable function so that a solution to (2) exists. A fun-
damental solution for the polyharmonic equation on Rd is a function gd

k : (Rd ×Rd)\
{(x,x) : x ∈ Rd}→ R which satisfies, in the sense of distributions, the equation

(−Δ)kgd
k (x,x′) = cδ (x−x′), (3)

for some c ∈ R, c �= 0, where δ is the Dirac delta distribution and x′ ∈ Rd . When
c = 1, we call a fundamental solution of the polyharmonic equation normalized, and
denote it by G d

k : (Rd×Rd)\{(x,x) : x∈Rd}→R . The Euclidean inner product (·, ·) :
Rd ×Rd → R defined by (x,x′) := x1x′1 + . . . + xdx′d , induces a norm (the Euclidean
norm) ‖ · ‖ : Rd → [0,∞) , on the finite-dimensional vector space Rd , given by ‖x‖ :=√

(x,x).
In the rest of this paper, we will use the gamma function Γ : C\−N0 → C , which

is a natural generalization of the factorial function (see for instance Chapter 5 in Olver
et al. (2010) [14]). A fundamental solution of the polyharmonic equation is given as
follows.

THEOREM 1. Let d,k ∈ N . Define G d
k : (Rd ×Rd) \ {(x,x) :x ∈ Rd} → R such

that

G d
k (x,x′) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)k+d/2+1 ‖x−x′‖2k−d

(k−1)! (k−d/2)! 22k−1πd/2

(
log‖x−x′‖−βk−d/2,d

)
if d even, k � d/2,

Γ(d/2− k)‖x−x′‖2k−d

(k−1)! 22kπd/2
otherwise,

where βp,d ∈ Q is defined as βp,d := 1
2

[
Hp +Hd/2+p−1−Hd/2−1

]
, with Hj being the

j th harmonic number

Hj :=
j

∑
i=1

1
i
.
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Proof. See Boyling (1996) [2, (2.1)] and [17, Section II.2]. In regard to a loga-
rithmic fundamental solution of the polyharmonic equation, note that in [17] the term
proportional to ‖x−x′‖2k−d is missing. This term is in the kernel of the polyharmonic
operator (−Δ)k , so any constant multiple of this term βp,d may be added to a funda-
mental solution of the polyharmonic equation. Our choice for this constant is given so
that

−ΔG d
k = G d

k−1, (4)

is satisfied for all k > d/2, and that for k = d/2, the constant vanishes. Boyling’s
fundamental solution satisfies (4) for all k > d/2, but is missing the term proportional
to Hd/2−1 , and therefore only vanishes when k = d/2 for d = 2. Sobolev does not
include this constant term, so for him G d

k is purely logarithmic for all k � d/2, d � 2
even. However (4) is not strictly satisfied for k > d/2. �

In this paper we restrict our attention to separable rotationally-invariant coordinate
systems for the polyharmonic equation on Rd which are given by

x1 = R(ξ1, . . . ,ξd−1)cosφ
x2 = R(ξ1, . . . ,ξd−1)sinφ
x3 = x3(ξ1, . . . ,ξd−1)

...
xd = xd(ξ1, . . . ,ξd−1)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (5)

These coordinate systems are described by d -coordinates: an angle φ ∈ R plus (d −
1)-curvilinear coordinates (ξ1, . . . ,ξd−1) . Rotationally-invariant coordinate systems
parametrize points on the (d − 1)-dimensional half-hyperplane given by φ = const
and R � 0 using the curvilinear coordinates (ξ1, . . . ,ξd−1) . A separable rotationally-
invariant coordinate system transforms the polyharmonic equation into a set of d -
uncoupled ordinary differential equations with separation constants m ∈ Z and k j for
1 � j � d−2. For a separable rotationally-invariant coordinate system, this uncoupling
is accomplished, in general, by assuming a solution to (1) of the form

Φ(x) = eimφ R(ξ1, . . . ,ξd−1)
d−1

∏
i=1

Ai(ξi,m,k1, . . . ,kd−2),

where the properties of the functions R and Ai , for 1 � i � d − 1, and the constants
k j for 1 � j � d − 2, depend on the specific separable rotationally-invariant coordi-
nate system in question. Note that separable coordinate systems are divided into two
distinct classes, those which are simply separable (R = const), and those which are R -
separable. For a general description of the theory of separation of variables see Miller
(1977) [11].

The Euclidean distance between two points x,x′ ∈Rd , expressed in a rotationally-
invariant coordinate system, is given by

‖x−x′‖ =
√

2RR′ [χ − cos(φ −φ ′)
]1/2

,
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where the toroidal parameter χ > 1, is given by

χ :=

R2 +R′2 +
d

∑
i=3

(xi − x′i)
2

2RR′ , (6)

where R,R′ ∈ (0,∞) are defined in (5). The hypersurfaces given by χ > 1 equals
constant are independent of coordinate system and represent hyper-tori of revolution.

From Theorem 1 we see that, apart from multiplicative constants, the algebraic
expression ldk : (Rd ×Rd) \ {(x,x) : x ∈ Rd} → R of an unnormalized fundamental
solution for the polyharmonic equation on Euclidean space Rd for d even, k � d/2, is
given by

ldk (x,x′) := ‖x−x′‖2k−d (
log‖x−x′‖−βk−d/2,d

)
. (7)

By expressing ldk in a rotationally-invariant coordinate system (5) we obtain

ldk (x,x′) =
(
2RR′)p

[
1
2

log
(
2RR′)−βp,d

][
χ − cos(φ −φ ′)

]p

+
1
2

(
2RR′)p [

χ − cos(φ −φ ′)
]p

log
[
χ − cos(φ −φ ′)

]
, (8)

where p = k− d/2 ∈ N0 . For the polyharmonic equation on even-dimensional Eu-
clidean space Rd with 1 � k � d/2−1, apart from multiplicative constants, the alge-
braic expression for an unnormalized fundamental solution of the polyharmonic equa-
tion hd

k : (Rd ×Rd)\ {(x,x) : x ∈ Rd}→ R is given by

hd
k (x,x′) := ‖x−x′‖2k−d.

By expressing hd
k in a rotationally-invariant coordinate system we obtain

hd
k (x,x′) =

(
2RR′)−q [

χ − cos(φ −φ ′)
]−q

, (9)

where q = d/2− k .
For computation of Fourier expansions about the azimuthal separation angle (φ −

φ ′) of ldk and hd
k , all that is required is to compute the Fourier cosine series for the

following three functions fχ ,hχ : R → (0,∞) and gχ : R → R defined as

fχ (ψ) := (χ − cosψ)p ,

gχ(ψ) := (χ − cosψ)p log(χ − cosψ) , and

hχ(ψ) := (χ − cosψ)−q ,

where p ∈ N0 , q ∈ N and χ > 1 is a fixed parameter.
The Fourier series of fχ is given in [3] (cf. (4.4) therein), namely

(z− cosψ)p = (z2 −1)p/2
p

∑
n=0

εn cos(nψ)
(−p)n(p−n)!

(p+n)!
Pn

p

(
z√

z2 −1

)
, (10)
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where the Neumann factor εn := 2− δn,0 commonly occurs in Fourier series, δn,0 is
the Kronecker delta, and

(z)n :=
n

∏
i=1

(z+ i−1),

for z ∈ C and n ∈ N0 , is the Pochhammer symbol (rising factorial). We have used
Whipple’s formula in (10) (see for instance, (8.2.7) in Abramowitz & Stegun (1972)
[1]) to convert the associated Legendre function of the second kind Qμ

ν : (1,∞) → C
appearing in [3] to the associated Legendre function of the first kind Pμ

ν : (1,∞) → R .
The associated Legendre function of the first kind can be defined (and analytically
continued) using the Gauss hypergeometric function ((14.3.6) and Section 14.21(i) in
[14]) defined as

Pμ
ν (z) :=

1
Γ(1− μ)

(
z+1
z−1

)μ/2

2F1

(
−ν,ν +1;1− μ ;

1− z
2

)

where |1− z|< 2.
The Fourier series of hχ is given in [3] (where the Whipple formula (8.2.7) in

Abramowitz & Stegun (1972) [1] has been used and cf. (4.5) therein), namely

1
(z− cosψ)q =

(z2 −1)−q/2

(q−1)!

∞

∑
n=0

εn cos(nψ)(n+q−1)!P−n
q−1

(
z√

z2 −1

)
, (11)

where q ∈ N . Since the Fourier series of hχ is computed in [3], we understand how
to compute Fourier expansions of hd

k (9) in separable rotationally-invariant coordinate
systems. In order to compute Fourier expansion of ldk (8) in separable rotationally-
invariant coordinate systems, all that remains is to determine the Fourier series of gχ .
This is the goal of the next two sections.

3. Algebraic approach to the logarithmic Fourier series

Since χ > 1, one may make the substitution χ = coshη to evaluate the Fourier se-
ries of gχ , which is given in the form of (coshη − cosψ)p log(coshη − cosψ), where
p ∈ N0 . For p = 0 the result is well-known (see for instance Magnus, Oberhettinger &
Soni (1966) [10], p. 259)

log(coshη − cosψ) = η − log2−2
∞

∑
n=1

e−nη

n
cos(nψ), (12)

which as we will see, should be compared with (11) for q = 1, namely

1
coshη − cosψ

=
1

sinhη

∞

∑
n=0

εn cos(nψ)e−nη . (13)

Note that for η > 0 we may write eη and therefore η as a function of coshη since
sinhη =

√
cosh2 η −1, eη = coshη +

√
cosh2 η −1, and therefore η = log(coshη +√

cosh2 η −1).
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We now examine the p = 1 case for gχ . If we multiply both sides of (12) by
(coshη − cosψ) and take advantage of the formula

cos(nψ)cosψ =
1
2

{
cos[(n+1)ψ ]+ cos[(n−1)ψ ]

}
, (14)

then we have

(coshη − cosψ) log(coshη − cosψ) = (η − log2)coshη

−(η − log2)cosψ −2coshη
∞

∑
n=1

e−nη

n
cos(nψ)

+
∞

∑
n=1

e−nη

n
cos[(n+1)ψ ]+

∞

∑
n=1

e−nη

n
cos[(n−1)ψ ]. (15)

Collecting the contributions to the Fourier cosine series, we obtain

(coshη − cosψ) log(coshη − cosψ) = (1+ η − log2)coshη

−sinhη + cosψ
(

log2−1−η− 1
2
e−2η

)

+2
∞

∑
n=2

e−nη cosnψ
n(n2−1)

(coshη +nsinhη). (16)

If we compare (16) with (11) for q = 2, namely

1
(coshη − cosψ)2 =

1

sinh3 η

∞

∑
n=0

εn cos(nψ)e−nη(coshη +nsinhη), (17)

we notice that the factor (coshη +nsinhη) appears in both series.
For p = 2 in gχ , we use (14) and similarly have

(coshη − cosψ)2 log(coshη − cosψ) = (η − log2)cosh2 η
−2(η − log2)coshη cosψ

+(η − log2)cos2 ψ − (2cosh2 η +1)
∞

∑
n=1

e−nη

n
cos(nψ)

+2coshη
∞

∑
n=1

e−nη

n
cos[(n+1)ψ ]+2coshη

∞

∑
n=1

e−nη

n
cos[(n−1)ψ ]

−1
2

∞

∑
n=1

e−nη

n
cos[(n+2)ψ ]− 1

2

∞

∑
n=1

e−nη

n
cos[(n−2)ψ ].

If we collect the contributions of the Fourier cosine series, we obtain

(coshη − cosψ)2 log(coshη − cosψ)

= (η − log2)
(

cosh2 η +
1
2

)
+2coshη e−η − 1

4
e−2η
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+

[
−2(η − log2)coshη −

(
2cosh2 η +

3
2

)
e−η + coshη e−2η − 1

6
e−3η

]
cosψ

+

[
1
2
(η − log2)+2coshη e−η − 1

2
(2cosh2 η +1)e−2η

+
2
3

coshη e−3η − 1
8
e−4η

]
cos2ψ

−4
∞

∑
n=3

e−nη cos(nψ)
n(n2−1)(n2−4)

[
(n2 −1)sinh2 η +3nsinhη coshη +3cosh2 η

]
. (18)

By comparing (18) with (11) for q = 3, namely

1
(coshη − cosψ)3 =

1

2sinh5 η

∞

∑
n=0

εn cos(nψ)e−nη

×[
(n2−1)sinh2 η +3nsinhη coshη +3cosh2 η

]
, (19)

then we notice that the factor
(
(n2−1)sinh2 η +3nsinhη coshη +3cosh2 η

)
appears

in both series. We will demonstrate in Section 5, why the identification mentioned in
(17) and (19) occurs.

The algebraic approach for determining the Fourier series of gχ described above
is generalized by the following theorem.

THEOREM 2. Let p ∈ N0 , η ∈ (0,∞) , ψ ∈ R , Pp
n the associated Legendre func-

tion of the first kind (with Pn := P0
n being the Legendre polynomial), and Rk

p(coshη)
the logarithmic polynomials. Then

(coshη − cosψ)p log(coshη − cosψ) =
∞

∑
n=0

cos(nψ)Qn,p(coshη), (20)

where the function Qn,p : (1,∞) → R is defined such that if n = 0 ,

Q0,p(coshη) := (η − log2)sinhp ηPp(cothη)+2
p

∑
k=1

(−1)k+1e−kη

k
Rk

p(coshη),

if 1 � n � p−1 ,

Qn,p(coshη) := 2(η − log2)sinhp η
(−p)n(p−n)!

(p+n)!
Pn

p(cothη)

+e−nη
n−1

∑
k=0

εk(−1)k+1
[

e−kη

n+ k
+

ekη

n− k

]
Rk

p(coshη)

+2e−nη
p

∑
k=n

(−1)k+1 e−kη

n+ k
Rk

p(coshη)
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+2enη
p

∑
k=n+1

(−1)k e−kη

n− k
Rk

p(coshη),

if 1 � n = p,

Qp,p(coshη) := 2(−1)p(η − log2)sinhp η
p!

(2p)!
Pp

p (cothη)

+e−pη
p−1

∑
k=0

εk(−1)k+1
[

e−kη

p+ k
+

ekη

p− k

]
Rk

p(coshη)

+(−1)p+1 e−2pη

p
Rp

p(coshη),

and if n � p+1 ,

Qn,p(coshη) :=
e−nη(n+ p)!

(n− p−1)!(n2− p2) · · · (n2−1)n

×
p

∑
k=0

εk(−1)k+1
[

e−kη

n+ k
+

ekη

n− k

]
Rk

p(coshη).

Proof. By starting with (12) and repeatedly multiplying by factors of (coshη −
cosψ) , we see that the general Fourier series of gχ can be given in terms of a sequence
of polynomials Rk

p : (1,∞) → R , with p ∈ N0 and k ∈ Z , as

(coshη − cosψ)p log(coshη − cosψ) = (η − log2)(coshη − cosψ)p

+2
p

∑
k=−p

(−1)k+1Rk
p(coshη)

∞

∑
n=1

e−nη

n
cos[(n+ k)ψ ]. (21)

We will refer to Rk
p(coshη) as logarithmic polynomials in coshη (in our notation p

and k are both indices). See Appendix B for a description of some of the properties of
the logarithmic polynomials.

The double sum in (21) is simplified by making the replacement n+ k 	→ n . It
then follows that the resulting double sum naturally breaks into two disjoint regions,
one triangular

A := {(k,n) : −p � k � p−1, k+1 � n � p},
with p(2p+1) terms and the other infinite rectangular

B := {(k,n) : −p � k � p, p+1 < n < ∞}.
By rearranging the order of the k and n summations in (21), we derive

(coshη − cosψ)p log(coshη − cosψ) = (η − log2)(coshη − cosψ)p

+
p

∑
n=0

cos(nψ)e−nη r−p,n−1
n,p (coshη)
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+
p−1

∑
n=1

cos(nψ)enη r
−p,−n−1
−n,p (coshη)

+
∞

∑
n=p+1

cos(nψ)e−nη

n(n2−1) · · ·(n2− p2)
ℜn,p(coshη), (22)

where r
k1,k2
n,p ,ℜn,p : (1,∞) → R are defined as

rk1,k2
n,p (coshη) := 2

k2

∑
k=k1

(−1)k+1ekηRk
p(coshη)

n− k
,

and

ℜn,p(coshη) :=
(n+ p)!

(n− p−1)!
r−p,p
n,p (coshη),

n � p + 1, respectively. We can also write the Fourier series directly in terms of the
logarithmic polynomials Rk

p(coshη) as follows

(coshη − cosψ)p log(coshη − cosψ) = (η − log2)(coshη − cosψ)p

+2
p

∑
n=0

cos(nψ)e−nη
n−1

∑
k=−p

(−1)k+1ekηRk
p(coshη)

n− k

−2
p−1

∑
n=1

cos(nψ)enη
−n−1

∑
k=−p

(−1)k+1ekηRk
p(coshη)

n+ k

+2
∞

∑
n=p+1

cos(nψ)e−nη
p

∑
k=−p

(−1)k+1ekηRk
p(coshη)

n− k
. (23)

Note that by using (10), then we can express (coshη − cosψ)p as a Fourier series,
namely

(coshη − cosψ)p = sinhp η
p

∑
n=0

εn cos(nψ)
(−p)n(p−n)!

(p+n)!
Pn

p(cothη), (24)

where p ∈ N0 .
If we define the function Pn,p : (1,∞) → R such that

Pn,p(coshη) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r
−p,−1
0,p (coshη) if n = 0,

Dn,p(coshη)+En,p(coshη) if 1 � n � p−1,

e−pηr−p,p−1
p,p (coshη) if 1 � n = p,

e−nη

(n2− p2) · · · (n2−1)n
ℜn,p(coshη) if n � p+1,

(25)

where Dn,p,En,p : (1,∞) → R are defined as

Dn,p(coshη) =
{

0 if p = 0,1,

enηr
−p,−n−1
−n,p (coshη) if p � 2,
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and

En,p(coshη) =
{

0 if p = 0,

e−nηr−p,n−1
n,p (coshη) if p � 1,

respectively, then we can write (22) as

(coshη − cosψ)p log(coshη − cosψ)

= (η − log2)(coshη − cosψ)p +
∞

∑
n=0

cos(nψ)Pn,p(coshη).

Note that if p = 1 then En,p(coshη) gives the n = 0 contribution to (25). In fact, if we
use (24), then we can express gχ as

(coshη − cosψ)p log(coshη − cosψ) =
∞

∑
n=0

cos(nψ)Pn,p(coshη)

+(η − log2)sinhp η
p

∑
n=0

εn cos(nψ)
(−p)n(p−n)!

(p+n)!
Pn

p(cothη).

Furthermore, if we define Qn,p as

Qn,p(coshη) := Pn,p(coshη)+
εn(−p)n(p−n)!

(p+n)!
(η − log2)sinhp ηPn

p(cothη),

we have completed our proof. �

4. Limit derivative approach to the logarithmic Fourier series

We now use a second approach to compute the Fourier series for a logarithmic
fundamental solution of the polyharmonic equation (7). We would like to match our
results to the computations in Section 3, which clearly demonstrate different behaviors
for the two regimes, 0 � n � p and n � p+1.

THEOREM 3. Let p ∈ N0 , η ∈ (0,∞) , ψ ∈ R , Pp
n the associated Legendre func-

tion of the first kind. Then

(coshη − cosψ)p log(coshη − cosψ)

= (η − log2)(coshη − cosψ)p + p! sinhp η
p

∑
n=0

(−1)nεn cos(nψ)
(p+n)!

× [2ψ(2p+1)−ψ(p+1+n)−ψ(p+1−n)]Pn
p(cothη)

+(−1)pp! sinhp η
p−1

∑
n=0

εn cos(nψ)
(p+n)!

×
p−n−1

∑
k=0

(−1)k(2n+2k+1)
[
1+ k!(p+n)!

(2n+k)!(p−n)!

]
(p−n− k)(p+n+ k+1)

Pn
n+k(cothη)
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+2(−1)pp! sinhp η
p

∑
n=1

(−1)n cos(nψ)
(p−n)!

n−1

∑
k=0

(−1)k(2k+1)
(p− k)(p+ k+1)

P−n
k (cothη)

+2(−1)p+1p! sinhp η
∞

∑
n=p+1

cos(nψ)(n− p−1)!P−n
p (cothη). (26)

Proof. By applying the identity

(coshη − cosψ)p log(coshη − cosψ) = lim
ν→0

∂
∂ν

(coshη − cosψ)ν+p, (27)

where p ∈ N0 , to

(coshη − cosψ)ν = sinhν η
∞

∑
n=0

(−1)nεn cos(nψ)
(ν +1)n

Pn
ν (cothη), (28)

where ν ∈ C \−N (cf. (3.11b) in [3]), one can compute the Fourier cosine series of
(coshη −cosψ)p log(coshη −cosψ) , provided availability of the necessary parameter
derivatives.

Applying (27) to (28), we obtain

(coshη − cosψ)p log(coshη − cosψ)

=
[
lim
ν→0

∂
∂ν

sinhν+p η
] ∞

∑
n=0

(−1)nεn cos(nψ)
(p+1)n

Pn
p(cothη)

+sinhp η
∞

∑
n=0

(−1)nεn cos(nψ)
[
lim
ν→0

∂
∂ν

1
(ν + p+1)n

]
Pn

p(cothη)

+sinhp η
∞

∑
n=0

(−1)nεn cos(nψ)
(p+1)n

[
lim
ν→0

∂
∂ν

Pn
ν+p(cothη)

]
.

Note that for p,n ∈ N0 , the associated Legendre function of the first kind Pn
p vanishes

if n � p+1. This is easily seen using the Rodrigues-type formula (cf. (14.7.11) in [14])

Pn
p(z) = (z2 −1)n/2 dnPp(z)

dzn ,

and the fact that Pp(z) (the Legendre polynomial) is a polynomial in z of degree p .
The derivatives are given as follows:

lim
ν→0

∂
∂ν

sinhν+p η = sinhp η logsinhη , (29)

lim
ν→0

∂
∂ν

1
(ν + p+1)n

=
p!

(p+n)!
[ψ(p+1)−ψ(p+1+n)], (30)

and

lim
ν→0

∂
∂ν

Pn
ν+p(cothη) =

[
∂

∂ν
Pn

ν (cothη)
]

ν=p
, (31)
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where ψ : C\−N0 → C is the digamma function defined in terms of the derivative of
the gamma function

d
dz

Γ(z) =: ψ(z)Γ(z)

(see for instance (5.2.2) in [14]). The degree-derivative of the associated Legendre
function of the first kind in (31) is determined using (34) and (35). By collecting terms
and using (29), (30), and (31), we have completed our proof. �

5. Comparison of the two approaches

The limit derivative approach presented in Section 4 might be considered, of the
two methods, preferred for computing the azimuthal Fourier series for a logarithmic
fundamental solution of the polyharmonic equation. This is because it produces az-
imuthal Fourier coefficients in terms of the well-known special functions, associated
Legendre functions. On the other hand, the algebraic approach presented in Section 3
produces results in terms of the two-parameter logarithmic polynomials Rk

p(x) . As far
as the author is aware, these polynomials are previously unencountered in the litera-
ture. By comparison of the two approaches we see how the logarithmic polynomials
Rk

p(x) (perhaps a new type of special function) are related to the associated Legendre
functions. In this section we make this comparison concrete. We should also men-
tion that the following comparison equations resolve to become quite complicated as
p increases, and they have been checked for 0 � p � 10 using Mathematica with the
assistance of an algorithm generated using (39) and (40) from Appendix B.

By equating the Fourier coefficients of gχ using the two approaches we can ob-
tain the following corollary summation formulae which are satisfied by the logarithmic
polynomials.

COROLLARY 1. Let n = 0, p � 1,η ∈ (0,∞) . Then

p

∑
k=1

(−1)k+1e−kηRk
p(coshη)

k
= sinhp η [ψ(2p+1)−ψ(p+1)]Pp(cothη)

+(−1)p sinhp η
p−1

∑
k=0

(−1)k(2k+1)
(p− k)(p+ k+1)

Pk(cothη).

COROLLARY 2. Let 1 � n � p−1 , p � 2, η ∈ (0,∞) . Then

n−1

∑
k=−p

(−1)k+1ekηRk
p(coshη)

n− k
+ e2nη

−n−1

∑
k=−p

(−1)kekηRk
p(coshη)

n+ k

= p!enη sinhp η

{
(−1)n

(p+n)!
[2ψ(2p+1)−ψ(p+1+n)−ψ(p+1−n)]Pn

p(cothη)

+
(−1)p

(p+n)!

p−n−1

∑
k=0

(−1)k(2n+2k+1)
[
1+ k!(p+n)!

(2n+k)!(p−n)!

]
(p−n− k)(p+n+ k+1)

Pn
n+k(cothη)
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+
(−1)p+n

(p−n)!

n−1

∑
k=0

(−1)k(2k+1)
(p− k)(p+ k+1)

P−n
k (cothη)

}
.

COROLLARY 3. Let n = p, p � 1 , η ∈ (0,∞) . Then

p−1

∑
k=−p

(−1)k+1ekηRk
p(coshη)

p− k
= p!epη sinhp η

{
(−1)p

(2p)!
[ψ(2p+1)−ψ(1)]Pp

p (cothη)

+
p−1

∑
k=0

(−1)k(2k+1)
(p− k)(p+ k+1)

P−p
k (cothη)

}
.

COROLLARY 4. Let n � p+1 , p � 0, η ∈ (0,∞) . Then

p

∑
k=−p

(−1)k+1ekηRk
p(coshη)

n− k
= (−1)p+1p!(n− p−1)!enη sinhp ηP−n

p (cothη). (32)

Note that these corollaries may all be written in a form where the sums are over non-
negative indices k as in Theorem 2 using (37). We leave this exercise to the reader.

We now have closed-form expressions for the finite terms involving logarithmic
polynomials in (20), fully in terms of the associated Legendre function of the first kind.
We also have a proof of the correspondence for the function ℜn,q discussed in Section
3. Through (32), the function ℜn,p (cf. (16), (17), (18), (19), and (22)) is directly
related to the associated Legendre function of the first kind, namely

ℜn,p(coshη) = 2(−1)p+1p!(p+n)!enη sinhp ηP−n
p (cothη).

Therefore through (11) we have

1
(coshη − cosψ)q =

(−1)q

2[(q−1)!]2 sinh2q−1 η

∞

∑
n=0

εn cos(nψ)e−nηℜn,q−1(coshη).

This demonstrates the correspondences which were mentioned near (13), (17), and (19)
for (22) and (26).

6. Fourier expansion for a logarithmic fundamental solution of the polyharmonic
equation

Now that we have computed the Fourier series for gχ , namely (22) (cf. (20)) and
(26), we are in a position to compute the azimuthal Fourier series for a logarithmic
fundamental solution of the polyharmonic equation (7). For instance, using (8), (24)
and (26), we have the following corollary.
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COROLLARY 5. Let x,x′ ∈ Rd , d � 2 even, with points parametrized using a
rotationally-invariant coordinate system (5). Then the azimuthal Fourier cosine series
of a logarithmic fundamental solution of the polyharmonic equation (8) may be given
by

ldk (x,x′) =
1
2

(
2RR′)p [

log
(
RR′)+ η −βp,d

]
(χ2−1)p/2

×
p

∑
n=0

εn cos[n(φ −φ ′)]
(−p)n(p−n)!

(p+n)!
Pn

p

(
χ√

χ2−1

)

+
1
2
(2RR′)pp!(χ2−1)p/2

p

∑
n=0

(−1)nεn cos[n(φ −φ ′)]
(p+n)!

× [2ψ(2p+1)−ψ(p+1+n)−ψ(p+1−n)]Pn
p

(
χ√

χ2−1

)

+
1
2
(2RR′)pp!(χ2−1)p/2

p−1

∑
n=0

εn cos[n(φ −φ ′)]
(p+n)!

×
p−n−1

∑
k=0

(−1)k(2n+2k+1)
[
1+ k!(p+n)!

(2n+k)!(p−n)!

]
(p−n− k)(p+n+ k+1)

Pn
n+k

(
χ√

χ2−1

)

+(2RR′)p(−1)pp!(χ2−1)p/2
p

∑
n=1

(−1)n cos[n(φ −φ ′)]
(p−n)!

×
n−1

∑
k=0

(−1)k(2k+1)
(p− k)(p+ k+1)

P−n
k

(
χ√

χ2−1

)

+(2RR′)p(−1)p+1p!(χ2−1)p/2

×
∞

∑
n=p+1

cos[n(φ −φ ′)](n− p−1)!P−n
p

(
χ√

χ2−1

)
.

Alternatively, using (8), (10), and (23) one has

COROLLARY 6. Under the same conditions as Corollary 5, one alternatively has

ldk (x,x′) =
1
2

(
2RR′)p [

log
(
RR′)+ η −βp,d

]
(χ2−1)p/2

×
p

∑
n=0

εn cos[n(φ −φ ′)]
(−p)n(p−n)!

(p+n)!
Pn

p

(
χ√

χ2−1

)

+(2RR′)p
p

∑
n=0

cos[n(φ −φ ′)]
(

χ −
√

χ2−1

)n
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×
n−1

∑
k=−p

(−1)k+1
(

χ +
√

χ2−1
)k

Rk
p(χ)

n− k

−(2RR′)p
p−1

∑
n=1

cos[n(φ −φ ′)]
(

χ +
√

χ2−1

)n

×
−n−1

∑
k=−p

(−1)k+1
(

χ +
√

χ2−1
)k

Rk
p(χ)

n+ k

+(2RR′)p
∞

∑
n=p+1

cos[n(φ −φ ′)]
(

χ −
√

χ2−1

)n

×
p

∑
k=−p

(−1)k+1
(

χ +
√

χ2−1
)k

Rk
p(χ)

n− k
.

Using the above two corollaries, one can, for instance, obtain the axisymmet-
ric component of a logarithmic fundamental solution of the polyharmonic equation,
namely

ldk (x,x′)
∣∣∣
n=0

=
1
2
(2RR′)p(χ2−1)p/2

×[
log(RR′)+ η −βp,d +2ψ(2p+1)−2ψ(p+1)

]
Pp

(
χ√

χ2−1

)

+(2RR′)p(χ2−1)p/2
p−1

∑
k=0

(−1)k(2k+1)
(p− k)(p+ k+1)

Pk

(
χ√

χ2−1

)
,

or

ldk (x,x′)
∣∣∣
n=0

=
1
2
(2RR′)p(χ2−1)p/2 [

log(RR′)+ η −βp,d
]
Pp

(
χ√

χ2−1

)

+(2RR′)p
p

∑
k=1

(−1)k+1(χ −
√

χ2−1)kRk
p(χ)

k
.

The above expressions for the axisymmetric component of a logarithmic fundamental
solution of the polyharmonic equation is one type of expression sought after in Tsai,
Chen & Hsu (2009) [19].

A. Derivatives with respect to the degree of certain integer-order associated
Legendre functions of the first kind

The derivative with respect to its degree for the associated Legendre function of the
first kind evaluated at degree zero, is given in Section 4.4.3 of Magnus, Oberhettinger
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& Soni (1966) [10] as[
∂

∂ν
Pν(z)

]
ν=0

=
z−1

2 2F1

(
1,1;2;

1− z
2

)
. (33)

An important generalization of this formula has recently been derived in Szmytkowski
(2011) [18]. The degree-derivative of the associated Legendre function of the first kind
for p,m ∈ N0 and 0 � m � p (cf. (5.12) in [18]) is given by[

∂
∂ν

Pm
ν (z)

]
ν=p

= Pm
p (z) log

z+1
2

+[2ψ(2p+1)−ψ(p+1)−ψ(p−m+1)]Pm
p (z)

+(−1)p+m
p−m−1

∑
k=0

(−1)k
(2k+2m+1)

[
1+ k!(p+m)!

(k+2m)!(p−m)!

]
(p−m− k)(p+m+ k+1)

Pm
k+m(z)

+(−1)p (p+m)!
(p−m)!

m−1

∑
k=0

(−1)k 2k+1
(p− k)(p+ k+1)

P−m
k (z), (34)

and for m � p+1 (cf. (5.16) in [18]) there is[
∂

∂ν
Pm

ν (z)
]

ν=p
= (−1)p+m+1(p+m)!(m− p−1)!P−m

p (z). (35)

Some special cases of (34) include for m = 0[
∂

∂ν
Pν(z)

]
ν=p

= Pp(z) log
z+1

2
+2 [ψ(2p+1)−ψ(p+1)]Pp(z)

+2(−1)p
p−1

∑
k=0

(−1)k 2k+1
(p− k)(p+ k+1)

Pk(z),

and for m = p[
∂

∂ν
Pp

ν (z)
]

ν=p
= Pp

p (z) log
z+1

2
+[2ψ(2p+1)−ψ(p+1)+ γ]Pp

p (z)

+(−1)p(2p)!
p−1

∑
k=0

(−1)k 2k+1
(p− k)(p+ k+1)

P−p
k (z),

where γ = −ψ(1) is Euler’s constant (see (5.2.3) in [14]). Of course we also have for
m = p = 0 [

∂
∂ν

Pν(z)
]

ν=0
= log

z+1
2

,

which exactly matches (33).
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B. The logarithmic polynomials

The logarithmic polynomials Rk
p(x) are nonvanishing only for −p � k � p and by

construction, they satisfy the recurrence relation

Rk
p(x) =

1
2
Rk−1

p−1(x)+ xRk
p−1(x)+

1
2
Rk+1

p−1(x). (36)

From (12) we have that R0
0(x) = 1. This gives us the starting point for the recursion. It

is evident by construction that these polynomials are even in the index k , i.e.,

Rk
p(x) = R−k

p (x). (37)

Some of the first few logarithmic polynomials are given by

R0
0(x) = 1,

R0
1(x) = x, R±1

1 (x) = 1
2

R0
2(x) = 1

2 + x2, R±1
2 (x) = x, R±2

2 (x) = 1
4 ,

R0
3(x) = 3

2x+ x3, R±1
3 (x) = 3

8 + 3
2x2, R±2

3 (x) = 3
4x, R±3

3 (x) = 1
8 .

We can find a generating function for the logarithmic polynomials as follows. Let

F(x,y,z) =
∞

∑
p=0

∞

∑
k=−∞

Rk
p(x)y

kzp

be a generating function for the logarithmic polynomials Rk
p(x) . If we define the func-

tion

Sp(x,y) =
∞

∑
k=−∞

Rk
p(x)y

k,

then using the recurrence relation for Rk
p(x) (36) we can show

Sp(x,y) =
(

x+
1
2

(
y+

1
y

))
Sp−1(x,y).

Combining this result along with the fact that R0
0(x) = 1, we have

Sp(x,y) =
(

x+
1
2

(
y+

1
y

))p

.

We have therefore derived for the logarithmic polynomials Rk
p(x), the bilateral gener-

ating functions (
x+

1
2

(
y+

1
y

))p

=
∞

∑
k=−∞

Rk
p(x)y

k, (38)

{
1− z

(
x+

1
2

(
y+

1
y

))}−1

=
∞

∑
p=0

∞

∑
k=−∞

Rk
p(x)y

kzp.
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PROPOSITION 1. The derivative of the logarithmic polynomials Rk
p(x) is given by

d
dx

R±k
p (x) = pR±k

p−1(x).

Proof. Differentiating both sides of (38) with respect to x and comparing with the
original bilateral series completes the proof. �

COROLLARY 7. The logarithmic polynomials Rk
p(x) are in the Appell sequence.

Proof. By Proposition 1 and [15, Theorem 2.5.6]. �
An algorithm for generating the logarithmic polynomials can be obtained by solv-

ing the set of difference equations

a0(p) = 1
2a0(p−1)

a1(p) = 1
2a1(p−1)+ xa0(p−1)

a2(p) = 1
2a2(p−1)+ xa1(p−1)+ 1

2a0(p−1)

...

an(p) = 1
2an(p−1)+ xan−1(p−1)+ 1

2an−2(p−1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (39)

subject to the boundary conditions

a0(0) = 1
a1(1) = xa0(0)
a2(2) = xa1(1)+a0(1)

...
an(n) = xan−1(n−1)+an−2(n−1)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (40)

where Rk
p = ap−|k|(p) is given along diagonals for a fixed p− |k| . For instance, one

can obtain

R±p
p (x) =

1
2p ,

R±(p−1)
p (x) =

p
2p−1 x,

R±(p−2)
p (x) =

p
2p +

p(p−1)
2p−1 x2,

R±(p−3)
p (x) =

p(p−1)
2p−1 x+

p(p−1)(p−2)
3 ·2p−2 x3,

R±(p−4)
p (x) =

p(p−1)
2p+1 +

p(p−1)(p−2)
2p−1 x2 +

p(p−1)(p−2)(p−3)
3 ·2p−1 x4,
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where p � 0,1,2,3,4 respectively.
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