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ASYMPTOTICS OF THE GAUSS HYPERGEOMETRIC

FUNCTION WITH LARGE PARAMETERS, II

R. B. PARIS

Abstract. We obtain asymptotic expansions by application of the method of steepest descents
for the Gauss hypergeometric function

F(a+ ε1λ ,b+ ε2λ ;c+λ ;z)

as |λ | → ∞ when 0 < ε1 < 1 and ε1 > 1 where, without loss of generality, it is supposed that
ε1 � ε2 . The resulting expansions are of Poincaré type and break down in the neighbourhood of
certain critical points in the z -plane. Numerical results illustrating the accuracy of the different
expansions are given.

1. Introduction

This is the continuation of [2] on the asymptotic expansion of the Gauss hyperge-
ometric function

F

(
a + ε1λ , b + ε2λ

c + ε3λ ;z

)
(1.1)

for large complex values of λ when the parameters ε j are finite. It was shown that it is
sufficient to consider just three basic types of hypergeometric function corresponding
to the parameter sets (ε,0,1) (Type A), (ε,−1,0) (Type B) and (ε1,ε2,1) (Type C).
The expansion of (1.1) for large |λ | corresponding to Types A and B was discussed in
[2]. Here we shall consider the expansion of functions of Type C.

It is clear that, by a straightforward scaling of λ , it is possible to take ε3 = 1
without loss of generality and so consider the function

F3(λ ;z) ≡ F

(
a + ε1λ , b + ε2λ

c + λ ;z

)
. (1.2)

In addition, from the symmetry of F(a,b;c;z) in the numerator parameters a and b ,
it is sufficient to take ε1 � ε2 . The treatment of this function then divides itself into
two cases: (i) 0 < ε1 < 1 and (ii) ε1 > 1. The case ε1 = 1 can be excluded from
our consideration, since F3(λ ;z) reduces to a function of Type B by application of
transformation (T1) in [2, §2]; if, in addition ε2 = 1, the transformation (T1) can be
applied again to reduce F3(λ ;z) to F(c−a,c−b;c+λ ;z) with a single large parameter
in the denominator, for which the expansion is well known [1, p. 397].
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Although some of the large λ -expansions we shall obtain are valid in a sector
greater than the right-half λ -plane, the expansion of F3(λ ;z) for λ situated in the left-
half plane can be obtained by application of the transformations (T1) and (T3) given in
[2]. For such values of arg λ , we may write λ = λ ′e∓π i , with |arg λ ′| < 1

2 π , to find

F3(λ ;z) = (1− z)c−a−b+(ε1+ε2−1)λ ′ {
Az1−c+λ ′

F1 + Bzb−c+(1−ε2)λ ′
F2

}
, (1.3)

where

F1 ≡ F

(
1−a + ε1λ ′, 1−b + ε2λ ′

2− c + λ ′ ;z

)
,

F2 ≡ F

(
1−b + ε2λ ′, c−b− (1− ε2)λ ′

1+ a−b +(ε2− ε1)λ ′ ;
1
z

)

=
(

1− 1
z

)b−1−ε2λ ′

F

(
1−b + ε2λ ′, 1+ a− c +(1− ε1)λ ′

1+ a−b +(ε2− ε1)λ ′ ;
1

1− z

)
(1.4)

and

A =
eπ i(c−λ ′)Γ(c−1−λ ′)Γ(1+ a− c +(1− ε1)λ ′)Γ(1−b + ε2λ ′)

Γ(a− ε1λ ′)Γ(c−b− (1− ε2)λ ′)Γ(1− c + λ ′)
,

B =
eπ i(c−b−(1−ε2)λ ′)Γ(1−b + ε2λ ′)Γ(1+ a− c +(1− ε1)λ ′)

Γ(1− c + λ ′)Γ(1+ a−b +(ε2− ε1)λ ′)
.

Then, with ε1 < ε2 and the rescaling λ ′ → (ε2 − ε1)λ ′ in F2 , it is seen that when
ε2 > 1 both functions F1 and F2 in (1.3) are of the same form as F3(λ ;z) in (1.2)
with |arg λ |< 1

2 π . When ε1 < ε2 < 1, the second representation of F2 in (1.4) is also
of this form. In the case ε1 = ε2 , the function F2 can be seen to reduce to a function
of Type B discussed in [2, §4].

As in [2], we shall employ the method of steepest descents applied to suitable in-
tegral representations of the function in (1.2). The resulting expansions are of Poincaré
type and so break down in the neighbourhood of certain critical points in the z-plane.
The asymptotic treatment in the neighbourhood of these points, or at a value of z cor-
responding to a Stokes phenomenon, is beyond the scope of the present paper and will
be addressed elsewhere. We give numerical examples to illustrate the validity of the
expansions so obtained.

2. The expansion of F3(λ ;z) when 0 < ε1 < 1

We first deal with the case 0 < ε1 < 1 where it is supposed that ε1 � ε2 . From [2,
(1.4)] we have the integral representation

F3(λ ;z) =
Γ(c + λ )

Γ(a + ε1λ )Γ(c−a +(1− ε1)λ )

∫ 1

0
f (t)eλ ψ(t)dt, (2.1)

where the phase function ψ(t) and amplitude function f (t) are

ψ(t) = ε1 log t +(1− ε1) log(1− t)− ε2 log(1− zt), f (t) =
ta−1(1− t)c−a−1

(1− zt)b .
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The t -plane is cut along (−∞,0] and [1,∞) , and along the ray from the singularity at
1/z to infinity. The conditions in [2, (1.4)] on the integral in (2.1) are satisfied when
0 < ε1 < 1 and λ is a complex variable which is initially taken to satisfy |arg λ |< 1

2 π .
The phase function has saddle points where ψ ′(t) = 0; that is, at the points

ts j =
ϒ∓

2(1− ε2)z
=

2ε1

ϒ±
( j = 1,2), (2.2)

where the upper and lower signs correspond to j = 1 and j = 2 respectively and1

ϒ± ≡ ϒ±(z) := Δ±
√

Δ2 −4ε1(1− ε2)z, Δ := 1+(ε1− ε2)z.

The contribution to the integral in (2.1) (without the pre-factor) from the steepest de-
scent path through the saddle point ts j is given by the formal asymptotic sum

i f (ts j)eλ ψ(ts j)+π iγ j

√
2π

ψ ′′(ts j)

∞

∑
k=0

c( j)
k Γ(k + 1

2 )

λ k+ 1
2 Γ( 1

2 )
( j = 1,2)

as |λ | → ∞ , where

−ψ ′′(ts j) =
ε1(ε2 − ε1)+ ts j(2ε1− ts j)(1− ε2)

ε2t2s j(1− ts j)2
(2.3)

and the coefficients c( j)
k for k � 2 are given by [2, (2.4), (2.5)]. The γ j are orientation

factors that depend on the direction of integration arg(t − ts j) through the saddle point
ts j and have the value either 0 or 1. These factors are determined by

arg(t − ts j) = − 1
2 arg λ − 1

2 arg ψ ′′(ts j)+

{
1
2 π

− 1
2 π

, γ j =
{

0

1
, (2.4)

where the branch of arg ψ ′′(ts j) is chosen throughout to be [0,2π) .
The above expansion will hold provided z is such that the saddle ts j is not in a

neighbourhood of a double saddle. The saddles ts1 and ts2 coalesce to form a double
saddle (a turning point) when Δ2 −4ε1(1− ε2)z = 0; that is, when z = z±∗ , where

z±∗ =
ε1 + ε2−2ε1ε2±2

√
ε1ε2(1− ε1)(1− ε2)

(ε1 − ε2)2 . (2.5)

In the particular case ε1 = ε2 (= ε) , there is only a single (finite) value of z that results
in the formation of a double saddle, which is given by the limit of z∓∗ as ε1 → ε2

according as ε < 1 or ε > 1, respectively; viz.

z∗ =
1

4ε(1− ε)
= lim

ε1→ε2
z∓∗

{
0 < ε < 1
ε > 1.

(2.6)

When ε1 � ε2 < 1, it is not difficult to establish that the turning point (when z = z±∗ ) lies
on the interval t ∈ [1,∞) , whereas when ε1 < 1 and ε2 > 1 it moves into the complex
t -plane. When ε2 � ε1 > 1, the turning point is situated on the negative real t -axis.

1It follows that ts1 ts2 = ε1 z−1/(1− ε2) .
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2.1. The case ε1 � ε2 < 1

In the case of real z (= x ) satisfying x < 1, it can be shown (we omit these details)
that the saddles are situated on the real t -axis with 0 < ts1 < 1 and tA < ts2 < ∞ (when
0 < x < 1) and −∞ < ts2 < −tB (when x < 0), where

tA =

{
1 ε1 + ε2 � 1

ε1

|1− ε2| ε1 + ε2 > 1 , tB =
ε2 − ε1

|1− ε2| . (2.7)

In this case the integration path in (2.1) is the path of steepest descent through the saddle
ts1 . When z moves into the upper (resp. lower) half-plane it is found that ts1 and ts2
move into the upper (resp. lower) and lower (resp. upper) half-planes. The points t = 0
and t = 1 are zeros of the integrand for large |λ | in |arg λ | < 1

2 π , so that paths of
steepest descent can terminate only at these points when ε2 < 1, with paths of steepest
ascent terminating at t = 1/z and infinity. Typical steepest descent paths through the
saddles when z is complex are illustrated2 in Fig. 1.
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Figure 1: Paths of steepest descent and ascent through the saddles ts1 and ts2 when arg λ = 0
and ε1 = ε2 = 1

3 : (a) z = 0.40+0.30i , (b) z = 0.40+0.37644i and (c) z = 0.40+0.60i . The
heavy lines denote branch cuts.

The integration path [0,1] can be reconciled with the path of steepest descent
through ts1 to yield (with γ1 = 0)

F3(λ ;z) ∼ 2π iΓ(c + λ )
Γ(a + ε1λ )Γ(c−a +(1− ε1)λ )

f (ts1)eλ ψ(ts1)√
2πψ ′′(ts1)

∞

∑
k=0

c(1)
k Γ(k + 1

2 )

λ k+ 1
2 Γ( 1

2 )

=
2π iΓ(c + λ )

Γ(a + ε1λ )Γ(c−a +(1− ε1)λ )

× ta−1+ε1λ
s1 (1− ts1)−ν√

2πψ ′′(ts1) (1− zts1)b+ε2λ

∞

∑
k=0

c(1)
k Γ(k + 1

2 )

λ k+ 1
2 Γ( 1

2 )
, (0 < ε1 � ε2 < 1)

(2.8)

2We remark that although Fig. 1(b) illustrates a connection between the saddles, this does not result in a
Stokes phenomenon for the integral in (2.1) since the integration path runs from t = 0 to t = 1 .
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as |λ | → ∞ in the sector |arg λ | < 1
2 π , where for convenience we have set

ν ≡ ν(λ ) := a− c +1+(ε1−1)λ . (2.9)

This expansion will cease to be valid in a neighbourhood of a double saddle; that is,
when z is close to the values z±∗ , or the value z∗ if ε1 = ε2 .

The sector of validity of the expansion (2.8) can be extended by means of the
arguments described in [2, §2.2]. From [2, (3.11)], the sector of validity can be extended
to |arg λ | � π − δ for values of z situated in the domain in which ξ > 0, where

ψ(ts1)−ψ(ts2) ≡ ξ + iη (2.10)

and ξ , η are real. Some routine algebra making use of (2.2) shows that ξ = 0 when∣∣∣∣∣ϒ−
ϒ+

(
ϒ+ −2ε1

ϒ−−2ε1

)1−ε1
(

ϒ+ −2(1− ε2)
ϒ−−2(1− ε2)

)ε2
∣∣∣∣∣ = 1. (2.11)

Examples of the curves in the z-plane in the vicinity of the interval [0,1] on which
ξ = 0 are shown in Fig. 2; the node on the real axis to the right of z = 1 corresponds to
the point z = z−∗ . Also displayed is the curve (shown dashed) on which η = 0, where
the saddles become connected; see Fig. 1(b). However, in the case of the integral in
(2.1) taken between the endpoints t = 0 and t = 1, this does not result in a Stokes
phenomenon. In the domain surrounding the point z = 1 (shown shaded) the quantity
ξ > 0; in this domain the sector of validity of (2.8) is given by

− 1
2 π −ω−+ δ < arg λ < 1

2 π + ω+− δ , (2.12)

where

ω± = arctan

(
2π ∓η

ξ

)
, ω∓ = ±arctan(η/ξ ), (2.13)

with the upper or lower signs corresponding to η > 0 and η < 0, respectively. Outside
of this domain, ξ < 0 and ω± = 1

2 π , so that the expansion (2.8) holds in the wider
sector |arg λ | � π − δ .

2.2. The case ε1 = ε2 < 1

In the special case ε1 = ε2 = ε < 1, the expression (2.11) reduces to∣∣∣∣∣ϒ−
ϒ+

(
ϒ+ −2ε
ϒ−−2ε

)1−2ε
∣∣∣∣∣ = 1. (2.14)

An example of this curve is shown in Fig. 2(b) where the vertex on the right of z = 1 is
the value z∗ . When ε = 1

3 , the domain bounded by (2.14) agrees with that obtained in
[3, p. 305] with z∗ = 9

8 . In this case a little algebra shows that the leading term of (2.8)
agrees with the asymptotic behaviour given in [3, p. 207].

The case ε = 1
2 (corresponding to Riemann’s example – see [2, §1]) is worthy of

special mention. It is not difficult to see from (2.14) that in this case the curves on which
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Figure 2: The domain in the z-plane in which ξ > 0 (shaded) and the curve η = 0 (dashed)
when (a) ε1 = 0.25 , ε2 = 0.50 , (b) ε1 = ε2 = 0.25 and (c) ε1 = 0.50 , ε2 = 1.20 ; outside the
shaded domains ξ < 0 except on the line issuing from the node where ξ = 0 . In (c) the vertices
of the crescent-shaped domain where ξ < 0 correspond to z±∗ and the vertical lines from these
points are branch cuts.

ξ = 0 are symmetrical about ε = 1
2 ; that is, the curves corresponding to ε = 1

2 ± ε ′

(0 < ε ′ < 1
2 ) are the same. In addition, the domain about the point z = 1 where ξ > 0

shrinks to zero as ε → 1
2 . This follows from the fact that when ε = 1

2 (2.14) reduces
to ∣∣∣∣1−

√
1− z

1+
√

1− z

∣∣∣∣ = 1.

With 1− z = ρeiϕ , this yields ρ1/2 cos 1
2 ϕ = 0, whence ρ = 0 or ϕ = ±π . Conse-

quently, when ε = 1
2 , the curve on which ξ = 0 consists only of the interval [1,∞) in

the z-plane.
Finally, as ε → 1− , we see that z−∗ → +∞ and (2.14) becomes in the limit∣∣∣∣ z

z−1

∣∣∣∣ = 1 or Re(z) = 1
2 .

Thus, as ε → 1− , the expansion (2.8) holds in the wider sector |arg λ | � π − δ when
Re (z) � 1

2 , which agrees with the domain of validity of the standard result quoted in
[2, (1.2)] combined with the transformation (T1).

2.3. The case ε1 < 1 , ε2 > 1

When ε1 < 1, ε2 > 1 and z is real, the saddle ts1 again satisfies 0 < ts1 < 1 for
x < 1, with the saddle ts2 situated in the intervals −∞ < ts2 < −tA (when 0 < x < 1)
and tB < ts2 < ∞ (when x < 0), where tA and tB are defined in (2.7). When z is in
the upper (resp. lower) half-plane, both saddles are situated in the upper (resp. lower)
half-plane and further interaction between them now becomes possible. When ε2 > 1,
we observe that paths of steepest descent can also terminate at infinity, in addition to the
points t = 0 and t = 1, since the exponential factor in the integrand is O(exp [tλ (1−ε2)])
as t → ∞ .
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Figure 3: Paths of steepest descent and ascent through the saddles ts1 and ts2 when arg λ = 0
and ε1 = 2

3 , ε2 = 4
3 : (a) z = 0.60+1.20i , (b) z = 0.60+1.35036i , (c) z = 0.60+1.50i , (d)

z = 0.50+ i , (e) z = 0.50+ i
√

2 and (f) z = 0.50+1.50i . The heavy lines denote branch cuts.

Typical steepest descent paths are shown in Fig. 3 for the case ε1 = 2
3 , ε2 = 4

3 ,
λ > 0 and a sequence of z values. We note from (2.5) that z±∗ = 1

2 ± i
√

2 for these
values of ε1 and ε2 . In Fig. 3(a)–(c) we show the paths when z = 0.60+ iy , with three
different values of y > 0. When y = 1.20 only the saddle ts1 contributes to the integral
(2.1); when y

.= 1.35036 the saddles connect to produce a Stokes phenomenon; and
when y = 1.5 both saddles contribute. The integration path in this last case emanates
from t = 0, passing to infinity over the saddle ts2 , and returns from infinity over the
saddle ts1 to terminate at t = 1. In Fig. 3(d)–(f) we show the paths when z = 0.50+ iy
for three different values of y > 0; when y =

√
2, so that z = z+∗ = 1

2 + i
√

2, the saddles
coalesce to form a double saddle.

An example of the curves in the z-plane where ξ = 0 is repeated in Fig. 4(a)
where, in addition, the Stokes curves on which η = 0 (when arg λ = 0) that result
in a Stokes phenomenon are shown dashed. It should be noted that a third Stokes
curve emanating from z+∗ and terminating at z = 0 has not been shown as no Stokes
phenomenon associated with the integral in (2.1) is found to take place on this latter
curve; a similar remark applies to z−∗ . The vertices of the crescent-shaped domain
(where ξ < 0) correspond to the points z±∗ . In Fig. 4(b) we show the locus of z = z+∗ in
the upper half of the z-plane3 as a function of ε2 when ε1 = 0.50 corresponding to the
formation of a double saddle in the t -plane. The behaviour of z−∗ in the lower half-plane

3From (2.5) it is easily seen that z±∗ → (1− ε1)−1 as ε2 → 1+ and z±∗ → 0 for large ε2 .
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is the conjugate image. Also shown in the figure are the two Stokes curves issuing from
z+∗ for different values of ε2 (when λ > 0) that result in a Stokes phenomenon. As one
crosses a particular curve from left to right the saddle ts2 switches on. We remark that
it is possible for more than one Stokes phenomenon to occur as Im (z) varies at fixed
Re (z) . For example, when ε2 = 1.3 and z = 1+ iy a Stokes phenomenon occurs for
y

.= 0.61853 and y
.= 1.61673.
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Figure 4: (a) The curves in the z-plane on which ξ = 0 (solid) and η = 0 (dashed) when
ε1 = 0.50 and ε2 = 1.20 . The heavy dots denote the points z±∗ . (b) The locus (dashed curve)
of z+∗ in the upper-half z -plane corresponding to the formation of a double saddle point when
arg λ = 0 and ε1 = 0.50 as a function of ε2 > 1 . The solid curves show the values of z for
different ε2 for which η = 0 (the Stokes curves) to produce a Stokes phenomenon; the heavy
dots denote the corresponding values of z+∗ . The curves in the lower half-plane are the conjugate
images.

In regions of the z-plane where only the saddle ts1 contributes the expansion of
F3(λ ;z) is given by (2.8). When both saddles contribute we have the expansion

F3(λ ;z) ∼ 2π iΓ(c + λ )
Γ(a + ε1λ )Γ(c−a +(1− ε1)λ )

{
f (ts1)eλ ψ(ts1)+π iγ1√

2πψ ′′(ts1)

∞

∑
k=0

c(1)
k Γ(k + 1

2)

λ k+ 1
2 Γ( 1

2 )

+
f (ts2)eλ ψ(ts2)+π iγ2√

2πψ ′′(ts2)

∞

∑
k=0

c(2)
k Γ(k + 1

2 )

λ k+ 1
2 Γ( 1

2 )

}
(2.15)

for |λ | → ∞ , where the orientation factors γ1 and γ2 are determined from (2.8). The
λ -domain of validity of this composite expansion is discussed in [2, §4.3]; see (4.14)
therein. The expansion for complex λ in the left-hand plane can be obtained from
(1.3).

2.4. Numerical results

In this section we present the results of numerical calculations of the hypergeo-
metric function F3(λ ;z) defined in (2.1) with ε1 < 1, ε1 � ε2 and its asymptotic repre-
sentation in (2.8). For real λ and real values of z (= x ) in the range x < 1, we show in
Table 1 the values of F3(λ ;x) and the absolute relative error using the truncation index
k = 2 in the asymptotic expansion.
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Table 1: Values of F3(λ ;x) and the absolute relative error resulting from the asymptotic expansion (2.8)
(with k � 2) when x < 1 . The values shown correspond to λ = 40 with a = 1

4 , b = 1
2 , c = 3

4 and three
sets of values of ε1 , ε2 .

ε1 = 0.25, ε2 = 0.40 ε1 = ε2 = 0.25 ε1 = 0.50, ε2 = 1.20
x F3(λ ;x) Rel. Error F3(λ ;x) Rel. Error F3(λ ;x) Rel. Error
0.75 6.30919(+1) 2.376(−6) 1.17533(+1) 1.334(−6) 2.27456(+15) 1.338(−6)
0.50 1.16561(+1) 7.490(−7) 4.51425(+1) 9.495(−7) 3.04454(+7) 4.219(−7)
0.25 3.06503(+0) 5.533(−7) 2.01760(+0) 6.277(−7) 1.12575(+3) 7.757(−7)

−0.50 1.60013(−1) 3.426(−7) 3.03632(−1) 4.411(−7) 6.84559(−5) 9.151(−7)
−1.00 3.63117(−2) 1.171(−7) 1.11898(−1) 1.134(−7) 9.38275(−8) 1.101(−6)

Table 2: Values of the absolute relative error in F3(λ ;z) resulting from the asymptotic expansions (2.8)
and (2.15) (with k � 2) when λ = 80eiθ for different θ and a = 1

4 , b = 1
2 , c = 3

4 .

ε1 = ε2 = 0.25 ε1 = 0.25, ε2 = 0.40
z = 0.50 (ξ < 0) z = 0.50+0.50i (ξ < 0)

θ/π Rel. Error θ/π Rel. Error θ/π Rel. Error θ/π Rel. Error
0 1.117(−7) 0 7.512(−8)
0.20 1.104(−7) −0.20 1.104(−7) 0.20 8.165(−8) −0.20 6.931(−8)
0.40 1.070(−7) −0.40 1.070(−7) 0.40 8.668(−8) −0.40 6.801(−8)
0.60 1.027(−7) −0.60 1.027(−7) 0.60 8.871(−8) −0.60 6.911(−8)
0.80 9.901(−8) −0.80 9.901(−8) 0.80 8.704(−8) −0.80 7.514(−8)
0.90 9.795(−8) −0.90 9.795(−8) 0.90 8.488(−8) −0.90 7.866(−8)
0.95 1.003(−7) −0.95 1.003(−7) 0.95 8.438(−8) −0.95 7.849(−8)

ε1 = 0.50, ε2 = 1.20 ε1 = 0.50, ε2 = 1.20
z = −1+ i (ξ < 0) z = 1.50+0.50i (ξ > 0)

θ/π Rel. Error θ/π Rel. Error θ/π Rel. Error θ/π Rel. Error
0 2.899(−7) 0 2.688(−5)
0.20 2.835(−7) −0.20 2.965(−7) 0.20 3.172(−5) −0.20 2.880(−5)
0.40 2.792(−7) −0.40 3.005(−7) 0.50 2.595(−5) −0.50 2.817(−5)
0.60 2.784(−7) −0.60 2.999(−7) 0.80 2.626(−5) −0.60 2.728(−5)
0.80 2.814(−7) −0.80 2.948(−7) 0.90 2.547(−5) −0.65 2.035(−5)
0.90 2.842(−7) −0.90 2.913(−7) 0.95 2.513(−5) −0.75 6.174(−3)
0.95 2.858(−7) −0.95 2.894(−7) 0.99 3.622(−4) −0.80 2.329(−1)

Table 2 shows values of the error in the computation of F3(λ ;x) using (2.8) and
(2.15) for complex values of λ and different values of z . The first three values of z
selected correspond to the domain in the z-plane where ξ < 0, so that the expansion
(2.8) in these cases is valid in the wider sector |arg λ | � π − δ . The final entry is
for z = 1.50+ 0.50i with ε1 = 0.50 and ε2 = 1.20, which is situated to the right of
the η = 0 curve in Fig. 4(a) so that (2.15) is applicable. These values correspond to
(ξ ,η) = (0.156,0.247) , so that the expansion (2.15) is valid for |λ |→∞ in the reduced
sector (2.12), where ω+ = 0.492π and ω− = 0.321π from (2.13).
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3. The expansion of F3(λ ;z) when ε2 � ε1 > 1

When ε2 � ε1 > 1, we employ the integral representation for F3(λ ;z) given in [2,
(1.5)]

F3(λ ;z) =
Γ(c + λ )Γ(1− c + a +(ε1−1)λ )

2π iΓ(a + ε1λ )

∫ (1+)

0
f (t)eλ ψ(t)dt (3.1)

valid for |arg λ | < 1
2 π and |arg(1− z)| < π , where the phase function ψ(t) and am-

plitude function f (t) are

ψ(t) = ε1 log t +(1− ε1) log(t −1)− ε2 log(1− zt), f (t) =
ta−1(t −1)c−a−1

(1− zt)b .

(3.2)
The integration path is a loop surrounding the point t = 1 in the positive sense that
starts and terminates at t = 0, but excludes the branch point t = 1/z . The t -plane is cut
along [−∞,1] and along the ray from 1/z to infinity in a suitable direction. The phase
function has saddle points at ts1 and ts2 given by (2.2)

3.1. Real z

We consider first the case of real z (= x ) satisfying x < 1. When ε2 > ε1 > 1, the
quantities z±∗ defined in (2.5) are real and satisfy z−∗ < z+∗ < 0. There are four ranges of
x to consider, namely (i) 0 < x < 1, (ii) z+∗ � x < 0, (iii) z−∗ < x < z+∗ and (iv) x � z−∗ .
When ε1 = ε2 = ε > 1, there is only one value of z that results in a double saddle given
by z∗ =−1/{4ε(ε−1)} from (2.6). In this case there are three ranges of x to consider,
namely (i) 0 < x < 1, (ii) z∗ � x < 0 and (iii) x < z∗ .

When 0 < x < 1 and ε2 � ε1 > 1, the saddles are situated on the real t -axis with
1 < ts1 < 1/x and −∞ < ts2 < −tA , where tA is defined in (2.7). When z+∗ � x < 0,
the saddle ts1 progressively moves to the right as x decreases, with ts2 now situated
on the positive real axis such that ts1 � ts2 < ∞ ; when x = z+∗ the saddles coalesce
to form a double saddle. When z−∗ < x < z+∗ (ε2 > ε1 ), the saddles move off the real
axis to become a conjugate pair; |Im (ts j)| at first increases and then decreases to zero
as x → z−∗ , with Re (ts j) steadily decreasing as x decreases in this interval. A similar
behaviour occurs when ε1 = ε2 for x < z∗ , except that ts1,ts2 → 0 as x →−∞ . Finally,
when x � z−∗ (ε2 > ε1 ) the saddles are situated on the real t -axis again forming a double
saddle when x = z−∗ , with ts1 → 0 and ts2 → tB < 1 as x →−∞ .

In Fig. 5 we show typical paths of steepest descent for the cases z+∗ < x < 1,
z−∗ < x < z+∗ and x < z−∗ when ε2 > ε1 > 1. When z+∗ < x < 1, the path of steepest
descent through ts1 is a loop emanating from the origin that surrounds the point t = 1;
see Fig. 5(a). The expansion is then (with γ1 = 0 and ψ ′′(ts1) > 0)

F3(λ ;x) ∼ Γ(c + λ )Γ(1− c + a +(ε1−1)λ )
Γ(a + ε1λ )

f (ts1)eλ ψ(ts1)+π iγ1√
2πψ ′′(ts1)

∞

∑
k=0

c(1)
k Γ(k + 1

2 )

λ k+ 1
2 Γ( 1

2 )

(z+
∗ < x < 1, ε2 � ε1 > 1). (3.3)
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Figure 5: Paths of steepest descent and ascent through the saddles ts1 and ts2 when arg λ = 0
and ε1 = 1.20 , ε2 = 2.50 : (a) z = 0.50 , (b) z = −1.00 and (c) z = −2.80 . The heavy lines
denote branch cuts. In (a) and (c) the steepest ascent paths through ts2 and ts1 (not shown)
terminate at the point 1/z .

When z−∗ < x < z+∗ (ε2 > ε1 ), or x < z∗ (ε1 = ε2 ), the integration path in (3.1) can
be expanded to coincide with the steepest path through ts1 in the lower half-plane that
passes to infinity and returns along the steepest path through ts2 in the upper half-plane;
see Fig. 5(b). In this case the expansion is given by (with γ1 = 0, γ2 = 1)

F3(λ ;x) ∼ Γ(c + λ )Γ(1− c + a +(ε1−1)λ )
Γ(a + ε1λ )

{
f (ts1)eλ ψ(ts1)+π iγ1√

2πψ ′′(ts1)

∞

∑
k=0

c(1)
k Γ(k + 1

2)

λ k+ 1
2 Γ( 1

2 )

+
f (ts2)eλ ψ(ts2)+π iγ2√

2πψ ′′(ts2)

∞

∑
k=0

c(2)
k Γ(k + 1

2)

λ k+ 1
2 Γ( 1

2 )

}

(z−∗ < x < z+
∗ , ε2 > ε1 > 1; x < z∗, ε1 = ε2 > 1). (3.4)

Finally, when x < z−∗ (ε2 > ε1 ) the steepest path between t = 0 and ts2 coincides
with the real axis on the lower side of the branch cut, passing over the dominant saddle
ts1 where ψ ′′(ts1) < 0. At ts2 , the steepest path turns through − 1

2 π and passes to
infinity. The steepest path in the upper half-plane is the symmetrical image of that in
the lower half-plane and passes to the origin over the saddle ts1 on the upper side of the
cut; see Fig. 5(c). Taking into account the behaviour of the factor (ts1 − 1)−ν on both
sides of the cut, where ν is defined in (2.9), we obtain

F3(λ ;x)∼ 2sin(πν)Γ(c + λ )Γ(1− c + a +(ε1−1)λ )
Γ(a + ε1λ )

f̂ (ts1)eλ ψ̂(ts1)√
2π |ψ ′′(ts1)|

∞

∑
k=0

c(1)
k Γ(k + 1

2 )

λ k+ 1
2 Γ( 1

2 )

(x < z−∗ , ε2 > ε1 > 1; ν 
= N). (3.5)

The quantities f̂ (t) and ψ̂(t) are as defined in (3.2), but with t −1 replaced by 1− t .
When ν = N , where N is a positive integer, the sine factor in (3.5) vanishes. In this
case the contribution taken between t = 0 and ts2 cancels and we are left with the
contribution from the subdominant saddle ts2 : half the contribution leaving ts2 in the



12 R. B. PARIS

lower half-plane and half entering ts2 in the upper half-plane. Thus we find (with γ2 = 1
and ψ ′′(ts2) > 0)

F3(λ ;x) ∼ Γ(c + λ )Γ(1− c + a +(ε1−1)λ )
Γ(a + ε1λ )

f (ts2)eλ ψ(ts2)+π i√
2πψ ′′(ts2)

∞

∑
k=0

c(2)
k Γ(k + 1

2 )

λ k+ 1
2 Γ( 1

2 )

(x < z−∗ , ε2 > ε1 > 1, ν = N). (3.6)

In each of (3.3) – (3.6), the coefficients c( j)
k are obtained from [2, (3.4), (3.5)] and

ψ ′′(ts j) is given by (2.3). Again, it must be emphasised that the branch of argψ ′′(ts j)
in (3.4) is chosen to be [0,2π) ; see the comment after (2.4).

3.2. Complex λ and z

When arg λ 
= 0, the above steepest descent paths are modified principally by the
introduction of a spiral approach to the singular points t = 0 and t = 1/z . When z is
complex, the point t = 1/z moves off the positive real axis into the complex plane to
produce typical steepest paths as illustrated in Fig. 6 (when arg λ = 0), where we show
a sequence of z values with Re (z) = 0.50. It is seen that the saddles ts1 and ts2 connect
for a certain value of Im (z) to produce a Stokes phenomenon.

The Stokes curve in the z-plane on which η = 0 (see (2.10)) for the particular
choice of the parameters ε1 = 1.20 and ε2 = 2.50 is shown by the dashed curve in
Fig. 7. Inside this curve only the saddle ts1 contributes to the integral (3.1) with the
expansion of F3(λ ;z) given by (3.3); outside this curve, both saddles contribute and
the expansion is given by (3.4), with the orientation factors γ j in each case determined
by (2.4). The shaded domain in Fig. 7 corresponds to the region in which ξ < 0, where
the expansion (3.3) holds for |λ | →∞ in |arg λ |� π−δ ; outside this domain, we have
ξ > 0 (except on the line issuing from the node where ξ = 0) and the expansion (3.3)
will hold in the reduced sector (2.12). The validity of the expansion (3.4) is determined
from [2, (4.14)].
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Figure 6: Paths of steepest descent and ascent through the saddles ts1 and ts2 when arg λ = 0
and ε1 = 1.20 , ε2 = 2.50 : (a) z = 0.50+0.50i , (b) z = 0.50+0.52229i and (c) z = 0.50+ i .
The heavy lines denote branch cuts.
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Figure 7: The domain in the z-plane in which ξ < 0 (shaded) and the curve η = 0 (dashed)
when ε1 = 1.20 and ε2 = 2.50 . Outside the shaded domain ξ > 0 except on the line issuing
from the node z+∗ where ξ = 0 .

3.3. Numerical results

We present the results of numerical calculations of the hypergeometric function
F3(λ ;z) defined in (2.1) with ε2 � ε1 > 1 and its various asymptotic representations.
For real λ and real values of z (= x ) in the three ranges z+∗ < x < 1, z−∗ < x < z+∗
and x < z−∗ , we show in Tables 3 and 4 the values of F3(λ ;x) and the absolute relative
error using the truncation index k = 2 in the asymptotic expansions. The particular
case chosen corresponds to ε1 = 1.20, ε2 = 2.50, for which z+∗

.=−0.23825 and z−∗
.=

−2.48365. In Table 3, corresponding to the range z−∗ < x < 1, the asymptotic values
are obtained from (3.3) and (3.4). The values shown in Table 4 correspond to the
range x < z−∗ and noninteger (upper figures) and integer values (lower figures) of ν :=
c−a+1+(ε1−1)λ . The asymptotic approximations employed are those in (3.5) and
(3.6).

Table 3: Values of F3(λ ;x) and the absolute relative error resulting from the asymptotic expansion (3.3)
(with k � 2) when z−∗ < x < 1 . The values shown correspond to λ = 40 and two sets of values of ε1 , ε2
with a = 1

4 , b = 1
2 , c = 3

4 .

ε1 = 1.20, ε2 = 2.50 ε1 = ε2 = 1.50
x F3(λ ;x) Rel. Error F3(λ ;x) Rel. Error
0.75 +2.12737(+64) 4.645(−6) +2.81974(+50) 3.154(−7)
0.50 +1.69875(+34) 4.666(−6) +5.39572(+25) 3.589(−7)
0.25 +3.02852(+14) 4.868(−6) +7.99433(+10) 4.882(−7)

−0.10 +9.99825(−06) 4.375(−5) +1.78640(−04) 8.755(−6)
−1.00 −4.35190(−36) 2.701(−5) −1.89498(−29) 2.349(−5)

Table 5 shows values of the absolute relative error in the computation of F3(λ ;x)
using (3.3) for three different values of x in the range z−∗ < x < 1 and complex values
of λ . In the case x = 0.50, the quantities ξ and η defined in (2.10) have the values
ξ = 3.614, η = π ; from (2.13) this yields ω± = 0.228π . It then follows from (2.12)
that the sector of validity of (3.3) for this value of x can be extended to |arg λ | �
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Table 4: Values of F3(λ ;x) and the absolute relative error resulting from the asymptotic expansions (3.5)
and (3.6) (with k � 2) when x < z−∗ . The values shown correspond to ε1 = 1.20 , ε2 = 2.50 and a = 1

4 ,
b = 1

2 .

x = −4.00, λ = 40 x = −5.00, λ = 40
c F3(λ ;x) Rel. Error F3(λ ;x) Rel. Error

0.75 +6.85587(−68) 8.632(−4) +7.92658(−73) 1.026(−4)
1.25 −1.02799(−71) 1.198(−3) −2.29467(−79) 2.753(−4)

x = −4.00, λ = 41 x = −5.00, λ = 41
c F3(λ ;x) Rel. Error F3(λ ;x) Rel. Error

0.75 +1.14591(−69) 8.751(−4) +1.00057(−74) 9.458(−5)
1.45 −1.78852(−73) 1.458(−3) −2.53018(−81) 3.474(−4)

1
2 π + ω+ − δ , which is confirmed by the corresponding results. Similarly, when x =
−0.10 and x = −1.0, the corresponding values are ξ = −0.404, η = 0 and ξ = 0,
η = 0.793 respectively, so that ω± = 1

2 π in both cases and the expansion (3.3) is valid
in |arg λ | � π − δ .

Table 5: Values of the absolute relative error in F3(λ ;x) resulting from the asymptotic expansions (3.3)
and (3.4) (with k � 2) for complex λ and real x , with λ = 40eiθ , ε1 = 1.20 , ε2 = 2.50 and a = 1

4 , b = 1
2 ,

c = 3
4 . Conjugate values are obtained for θ < 0 .

x = 0.50 x = −0.10 x = −1.00
ω± = 0.228π ω± = 1

2π ω± = 1
2 π

θ/π Rel. Error θ/π Rel. Error θ/π Rel. Error
0 4.666(−6) 0 4.375(−5) 0 2.701(−5)
0.20 4.671(−6) 0.20 4.466(−5) 0.20 3.473(−5)
0.40 4.708(−6) 0.40 4.746(−5) 0.40 3.268(−5)
0.50 4.712(−6) 0.50 4.960(−5) 0.50 3.262(−5)
0.60 4.707(−6) 0.60 5.225(−5) 0.60 3.324(−5)
0.70 4.676(−6) 0.80 5.864(−5) 0.80 3.615(−5)
0.72 8.587(−3) 0.90 6.162(−5) 0.90 1.756(−5)
0.73 1.179(+0) 0.95 4.468(−5) 0.95 7.094(−3)

Finally, in Table 6 we show values of the absolute relative error for complex z , real
λ computed from (3.3) and (3.4), and in Table 7 for both z and λ complex computed
from (3.3). In this last table, which illustrates the case with ε1 = 1.20, ε2 = 2.50, we
have selected two values of z situated in the unshaded and shaded regions shown in
Fig. 7. The first value of z = 0.25+ 0.50i corresponds to ξ > 0, η 
= 0, whereas the
second value of z = −0.10+0.10i is situated in the shaded region where ξ < 0. The
associated values of ω± are indicated, which are seen to be verified by the numerical
results.
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Table 6: Values of the absolute relative error in F3(λ ;z) resulting from the asymptotic expansions (3.3)
and (3.4) (with k � 2) for complex z when λ = 40 and a = 1

4 , b = 1
2 , c = 3

4 .

ε1 = 1.20, ε2 = 2.50 ε1 = 1.20, ε2 = 2.50 ε1 = ε2 = 1.50
z Rel. Error z Rel. Error z Rel. Error

0.5 4.666(−6) −0.1 4.375(−5) −1.0 2.349(−5)
0.5+0.2i 4.611(−6) −0.1+0.2i 1.407(−6) −1.0+0.2i 2.435(−5)
0.5+0.4i 4.486(−6) −0.1+0.4i 1.354(−6) −1.0+0.4i 1.678(−5)
0.5+0.6i 4.402(−6) −0.1+0.6i 1.332(−6) −1.0+0.6i 1.074(−5)
0.5+0.8i 4.408(−6) −0.1+0.8i 3.760(−7) −1.0+0.8i 7.055(−6)
0.5+1.0i 4.484(−6) −0.1+1.0i 3.606(−7) −1.0+1.0i 4.952(−6)
0.5+2.0i 5.813(−6) −0.1+2.0i 3.627(−7) −1.0+2.0i 2.085(−6)

Table 7: Values of the absolute relative error in F3(λ ;z) resulting from the asymptotic expansion (3.3)
(with k � 2) when ε1 = 1.20 , ε2 = 2.50 and λ = 40eiθ for different θ with a = 1

4 , b = 1
2 , c = 3

4 .

z = 0.25+0.50i z = −0.10+0.10i
ω+ = 0.040π , ω− = 0.393π ω± = 1

2 π (ξ < 0)
θ/π Rel. Error θ/π Rel. Error θ/π Rel. Error θ/π Rel. Error
0 4.117(−6) 0 3.020(−5)
0.20 4.131(−6) −0.20 4.139(−6) 0.20 3.330(−5) −0.20 2.848(−5)
0.40 4.161(−6) −0.40 4.173(−6) 0.40 3.715(−5) −0.40 2.809(−5)
0.50 2.901(−5) −0.60 4.178(−6) 0.60 3.890(−5) −0.60 2.884(−5)
0.52 4.986(−3) −0.80 4.154(−6) 0.80 3.473(−5) −0.80 3.061(−5)
0.54 7.842(−1) −0.89 6.661(−2) 0.95 3.974(−3) −0.95 3.875(−4)
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