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EXACT EVALUATION OF SOME HIGHLY OSCILLATORY INTEGRALS

OMRAN KOUBA

Abstract. In this note a general result is proved that can be used to evaluate exactly a class
of highly oscillatory integrals. The result can also be used to give a procedure to numerically
evaluate some oscillatory integrals.

1. Introduction

The first of the ten $100,100-digit challenges [11, 5], proposed to calculate the
integral

∫ 1
0 x−1 cos(x−1 logx)dx to ten digits. This was a real challenge since the inte-

grand oscillates infinitely often inside the interval of integration.
In this note, a general result is proved that will allow us to determine exactly the

value of some highly oscillating integrals. To give you the flavour of what we will
prove, here is one of the simplest integrals evaluated by the methods of this paper:∫ π/2

0

dx

1+8sin2(tanx)
=

π
6

(
2e2 +1
2e2−1

)
, (1.1)

where the graph of the integrand is depicted in Figure 1.
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Figure 1: The graph of the function x �→ 1
1+8sin2(tanx)

on
[
0, π

2

)
.

In section 2 we will prove our main results and in section 3 we will give some
detailed examples and applications.
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2. The main results

First, let us set the framework of our investigation. Our starting point will be a
2π -periodic locally integrable function f ∈ L1(T) . We are interested in the evaluation

of the Cauchy principal value H f (z) of the integral
∫
R

f (x)
x−z dx where z is a non-real

complex number. Recall that H f (z) is defined as follows:

H f (z) = lim
a→∞

∫ a

−a

f (x)
x− z

dx. (2.1)

The existence of the limit in (2.1) is not obvious. It will follow from Proposition
2.2.

Our approach is simple; we consider the Fourier series expansion of f :

S[ f ] = ∑
n∈Z

Cn( f )en (2.2)

where en(x) = einx and the Cn( f )’s are the exponential Fourier coefficients of f . Then
we prove that for f ∈ L1(T) , we have

H f (z) = ∑
n∈Z

Cn( f )H en(z), for ℑz �= 0. (2.3)

Note that in this general setting, the Fourier series S[ f ] of f does not necessarily
converge to f neither in the L1 -norm, nor pointwise, (even, there exits a function f in
L1(T) such that its Fourier series diverges everywhere.) Moreover, the only general re-
sult concerning the family of Fourier coefficients (Cn( f ))n∈Z is the Riemann-Lebesgue
lemma: limn→±∞Cn( f ) = 0.

Clearly, the H en(z)’s play an important role in this investigation, they are explic-
itly calculated in the next lemma.

LEMMA 2.1. For an integer n and a complex number z with ℑz �= 0 we have

H en(z) = iπ
(
sgn(n)+ sgn(ℑz)

)
einz (2.4)

where sgn(x) is the sign of x with the convention sgn(0) = 0 .

Proof. Indeed, the evaluation of H en(z) is standard. First, note that for n = 0
the function x �→ Log(x− z) (where Log the principal branch of the logarithm) is a
primitive of x �→ 1/(x− z) , and H e0(z) can be determined directly:∫ a

−a

dx
x− z

= log
|a− z|
|a+ z| + i(Arg(a− z)−Arg(−a− z))

But lim
a→∞

Arg(a− z) = 0 and lim
a→∞

Arg(−a− z) = −π sgn(ℑz) . This proves (2.4) for

n = 0.
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Now, for n > 0 and a > |z| we have, by the Cauchy integral formula, that∫ a

−a

einx

x− z
dx+

∫
γa

einξ

ξ − z
dξ = 2iπeinzχP+(z) (2.5)

where γa is the positively oriented semi-circle of diameter [−a,a] contained in the
upper half plane P+ = {w : ℑw > 0} , and χP+ is the characteristic function of P+ .
This implies, by a well-known argument [8, Lemma 4.8b], that∣∣∣∣∫ a

−a

einx

x− z
dx−2iπeinzχP+(z)

∣∣∣∣� π
n(a−|z|) .

Letting a tend to +∞ we conclude of the validity of (2.4) for n > 0.
Finally, the case n < 0 follows from the fact that H en(z) =−H e−n(−z) . �
In the next proposition, the question of existence of H f (z) for an arbitrary f ∈

L1(T) and ℑz �= 0 is answered.

PROPOSITION 2.2. Consider f ∈ L1(T) . For every complex number z with ℑz �=
0 , the limit

lim
a→∞

∫ a

−a

f (x)
x− z

dx

does exist, and consequently H f (z) is well-defined.

Proof. First, let us consider the particular case where we suppose that
∫
T

f (x)dx =
0. Under this condition, the function F defined by F(t) =

∫ t
0 f (x)dx becomes a con-

tinuous, 2π -periodic function. In particular, F is bounded on R .
An integration by parts shows that, for X > 0, we have∫ X

0

f (x)
x− z

dx =
F(X)
X− z

+
∫ X

0

F(x)
(x− z)2 dx. (2.6)

This version of “integration by parts” is a direct application of Fubini’s theorem, see
for instance [3, Theorem 5.2.3]. Now, if M = supR |F| , we have

∀x ∈ R,

∣∣∣∣ F(x)
(x− z)2

∣∣∣∣� M
(x−ℜz)2 +(ℑz)2

and consequently, the integral
∫
R

F(x)
(x−z)2 dx is absolutely convergent. This implies, ac-

cording to (2.6), the convergence of the considered integral, and that∫ ∞

−∞

f (x)
x− z

dx =
∫ ∞

−∞

F(x)
(x− z)2 dx.

Now, let us come to the general case. Consider the 2π -periodic function g∈ L1(T)
defined by g(x) = f (x)− 1

2π
∫
T

f (t)dt. Since
∫
T
g(x)dx = 0, we conclude that H g(z)

exists according to the previous case. But also we know that lim
a→∞

∫ a
−a

dx
x−z does exist,

(this is the case n = 0 of (2.4)) Combining these two results proves the proposition. �
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Now, we can prove our main result, where we find a formula that allows the deter-
mination of H f (z) , and proves (2.3).

THEOREM 2.3. Consider f ∈ L1(T) .

i. For a non-real complex number z, we have

H f (z) =
1
2

∫
T

cot

(
x− z

2

)
f (x)dx (2.7)

where H f (z) is defined by (2.1).

ii. If
(
Cn( f )

)
n∈Z

are the exponential Fourier coefficients of f then, for every z ∈C

with ℑz �= 0 , we have

H f (z) = ∑
n∈Z

Cn( f )H en(z), (2.8)

where en(x) = einx . More precisely, we have:

H f (z) =

⎧⎨⎩
iπ
(
C0( f )+2∑∞

n=1Cn( f )einz
)

if ℑz > 0,

−iπ
(
C0( f )+2∑∞

n=1C−n( f )e−inz
)

if ℑz < 0.
(2.9)

Proof. Recall that, (see [2, pages 187-190],)

cot(ξ ) =
1
ξ

+
∞

∑
n=1

(
1

ξ −πn
+

1
ξ + πn

)
= lim

n→∞

n−1

∑
k=−n

1
ξ + πk

,

with normal convergence on every compact set K contained in C \ πZ . Applying
this to the compact segment K =

{
x−z
2 : x ∈ [0,2π ]

}
, and recalling that f ∈ L1(T) , we

conclude that∫ 2π

0
cot

(
x− z

2

)
f (x)dx = lim

n→∞

n−1

∑
k=−n

(∫ 2π

0

2 f (x)
x+2πk− z

dx

)

= 2 lim
n→∞

n−1

∑
k=−n

(∫ 2π(k+1)

2πk

f (x)
x− z

dx

)
= 2 lim

n→∞

∫ 2πn

−2πn

f (x)
x− z

dx

= 2H f (z)

where we used Proposition 2.2. This is (i).
On the other hand, consider, for a non-real complex number z , the continuous

2π -periodic function gz defined by

gz(x) =−π cot

(
x+ z

2

)
.
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Since, gz is twice continuously differentiable, we conclude that the Cn(gz) = O(|n|−2) ,
(see [9, Ch. I, Sec. 4],) and consequently

∑
n∈Z

|Cn(gz)|< +∞.

Also, we have |Cn( f )|� ‖ f‖1 for every n ∈ Z , therefore

∑
n∈Z

|Cn(gλ )| |Cn( f )| < +∞.

This implies that the continuous 2π -periodic function gz ∗ f , which is the convolution
product of gz and f defined by

gz ∗ f (t) =
1
2π

∫
T

gz(t− x) f (x)dx,

is equal to its Fourier series expansion. In particular,

gz ∗ f (0) =
1
2π

∫ 2π

0
f (x)gz(−x)dx = ∑

n∈Z

Cn( f )Cn(gz)

that is,
1
2

∫ 2π

0
cot

(
x− z

2

)
f (x)dx = ∑

n∈Z

Cn( f )Cn(gz).

Equivalently
H f (z) = ∑

n∈Z

Cn( f )Cn(gz).

Because this conclusion is valid for every f ∈ L1(T) then choosing f = ek , for
some k ∈ Z , shows that H ek(z) = Ck(gz) .

The final assertion in the theorem follows from Lemma 2.1. This proves (ii). �
Noting that

cot

(
x− iz

2

)
− cot

(
x+ iz

2

)
=

2isinhz
coshz− cosx

cot

(
x− iz

2

)
+ cot

(
x+ iz

2

)
=

2sinx
coshz− cosx

and combining H f (iz) and H f (−iz) we obtain the next corollary.

COROLLARY 2.4. Consider f ∈ L1(T) and a complex number z with ℜz > 0 ,
then ∫ ∞

−∞

f (x)
x2 + z2 dx =

sinhz
2z

∫
T

f (x)
coshz− cosx

dx, (2.10)

=
π
z ∑

n∈Z

Cn( f )e−|n|z, (2.11)
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and ∫ ∞

−∞

x f (x)
x2 + z2 dx =

1
2

∫
T

sinx
coshz− cosx

f (x)dx, (2.12)

= iπ ∑
n∈Z

sgn(n)Cn( f )e−|n|z, (2.13)

where
(
Cn( f )

)
n∈Z

are the exponential Fourier coefficients of f .

In particular, this result takes a beautiful form when f is even or odd:

COROLLARY 2.5. Consider f ∈ L1(T) and a complex number z with ℜz > 0 .

i. If f is even and its Fourier series expansion is S[ f ](x) =
a0

2
+ ∑

n�1

an cosnx , then

∫ ∞

0

f (x)
x2 + z2 dx =

π
2z

(
a0

2
+

∞

∑
n=1

ane
−nz

)
.

ii. If f is odd and its Fourier series expansion is S[ f ](x) = ∑
n�1

bn sinnx , then

∫ ∞

0

x f (x)
x2 + z2 dx =

π
2

∞

∑
n=1

bne
−nz.

Theorem 2.3 and Corollaries 2.4 and 2.5 are interesting even when we only seek
numerical evaluation of the considered integrals, since the integrands on the left are not
oscillatory, and the series have geometric convergence.

For example, consider the function f from L1(T) defined by

f (t) =
∞

∑
n=2

cos(nt)
lnn

,

(see [9, Theorem 4.1].) The series defining f is very slowly convergent, and evaluating
f to a high precision is a difficult task, so the numerical evaluation of the integral
(2.11) using standard methods for oscillatory integrals is clearly hard. But according to
Corollary 2.5 we have

I =
∫ ∞

0

f (x)
1+ x2 dx =

π
2

∞

∑
n=2

e−n

lnn

and the evaluation of this series to a very high precision is very easy, for instance, using
the first 115 terms, we obtain

I = 0.40850 78850 46648 98588 85437 84734 12731 60971 32032 06994

to 50 exact digits. Another numerical example will be presented in the next section.
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There is a case where our results take a more practical form; where we obtain
a closed form for the considered integrals. Let us change our point of view. Let
D = D(0,1) be the open unit disk in the complex plane, and let G : D−→C be a
continuous function on the closed unit disk D , that is analytic in D . We are interested
in determining a “closed form” for the value of the H G̃(z) where G̃ is the 2π -periodic
continuous functions defined by G̃(x) = G(eix) . This is done in the next theorem:

THEOREM 2.6. Let G : D−→C be a continuous function on the closed unit disk
D , that is analytic in D . For every z with ℑz �= 0 , one has

H G̃(z) = iπ
(
2χP+(z)G(eiz)−G(0)

)
(2.14)

where G̃(x) = G(eix) , and χP+ is the characteristic function of the upper half plane:
P+ = {w : ℑw > 0} .

Proof. Note that G has a power series expansion G(z) = ∑∞
n=0 cnzn (with radius

of convergence greater or equal to 1.) This implies that the Fourier series expansion of
the continuous, 2π -periodic function G̃ is given by:

S[G̃](x) =
∞

∑
n=0

cne
inx.

Thus, the conclusion of the theorem follows immediately from Theorem 2.3. �
Similarly, from Corollary 2.4 we obtain the next result:

COROLLARY 2.7. Let G : D−→C be a continuous function on the closed unit
disk which is analytic on D . For every complex number z with ℜz > 0 , one has∫ ∞

−∞

G(eix)
x2 + z2 dx =

π
z
G(e−z), (2.15)

and

∫ ∞

−∞

xG(eix)
x2 + z2 dx = iπ

(
G(e−z)−G(0)

)
, (2.16)

3. Examples and applications

EXAMPLE 3.1. Consider the 2π -periodic function f (x) = 1/(1 + 8sin2 x) , it is
straightforward to see that

1

1+8sin2 x
=

−e2ix

(e2ix−2)(2e2ix−1)

=
1
3

(
1

2e2ix−1
− 2

e2ix−2

)
=

1
3 ∑

n∈Z

2−|n|e2inx.
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Thus, applying Corollary 2.4 with z = 1 we obtain

∫ ∞

−∞

f (x)
1+ x2 dx =

π
3 ∑

n∈Z

(
2e2)−|n| = π

3
· 2e2 +1
2e2−1

,

which is formula (1.1) of our example in the introduction (after the substitution x = tan t ).

This example can easily be generalized by considering the analytic function G
defined on the domain Ω = C\ {e2α} , by

G(z) =
e2α + z
e2α − z

. (3.1)

where α is some positive real. Here, it is straightforward to check that

G(eix) =
sinh2α + isinx
cosh2α− cosx

, (3.2)

so, from Corollary 2.7, we conclude that, for λ > 0, we have

∫ ∞

−∞

G(eix)
4λ 2 + x2 dx =

π
2λ
· e

2α + e−2λ

e2α − e−2λ , (3.3)∫ ∞

−∞

xG(eix)
4λ 2 + x2 dx = iπ · 2e−2λ

e2α − e−2λ . (3.4)

Formula (3.2) implies, using parity and making the change of variables x← 2x in (3.3):

∫ ∞

0

1

sinh2 α + sin2 x
· dx

λ 2 + x2 =
π

λ sinh2α
· e

2α + e−2λ

e2α − e−2λ . (3.5)

Similarly, from (3.4), we find that, for λ > 0∫ ∞

0

xsinx
(cosh2α− cosx)(λ 2 + x2)

dx =
π

e2α+λ −1
. (3.6)

The integrals (3.5) and (3.6) are listed in [6, formulæ 3.792(10) and 3.792(13), page
450], with the notation sinh(α) = μ or cosh(2α) = μ respectively.

EXAMPLE 3.2. In our second example we consider the even function f ∈ L1(T)
defined by

f (x) =−1
2

lnsin2
( x

2

)
, for x /∈ 2πZ . (3.7)

It is well-known, (see for instance [12, Ch. 3, Sec. 14],) that f has the Fourier series
expansion:

S[ f ](x) = ln2+
∞

∑
n=1

cosnx
n

.
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Thus, applying Corollary 2.5 we obtain that, for λ > 0, we have

∫ ∞

0

ln(sin2(x/2))
4λ 2 + x2 dx =− π

2λ

(
ln2+

∞

∑
n=1

e−2nλ

n

)
=− π

2λ

(
ln2− ln(1− e−2λ)

)
.

The change of variables x← 2x yields:

∫ ∞

0

ln(sin2 x)
λ 2 + x2 dx =

π
λ

ln

(
1− e−2λ

2

)
, for λ > 0. (3.8)

EXAMPLE 3.3. (Numerical Quadrature) In this third example we aim to illustrate
the use of Theorem 2.3 and Corollary 2.4 to calculate a numerical approximation of a
highly oscillatory integral. Consider the 1-periodic even function f defined by f (x) =
exp({x}(1−{x})) where {x} is the fractional part of x . We propose to calculate
numerically the value of the integral:

I =
∫ ∞

0

f (x)
1+ x2 dx = π

∫
R

1
4π2 + x2 f

( x
2π

)
dx

According to Corollary 2.4 we have

I =
sinh(2π)

4

∫
T

1
cosh(2π)− cos(x)

f
( x

2π

)
dx

=
π sinh(2π)

2

∫ 1

0

et(1−t)

cosh(2π)− cos(2πt)
dt

=
4
√

eπ sinh(2π)
2

∫ 1

0

e−x2/4

cosh(2π)+ cos(πx)
dx

where we used the change of variables x← 2t − 1 in the last line. To calculate the
resulting I to 51 digits we can use the trapezoidal rule of numerical quadrature, after
transforming the integrand in two steps: First, we map integral over [0,1] onto the
real line by the transformation x = 1/(1+ e−u) . Then, we accelerate the decay of the
integrand by a sinh transformation [13]. This yields

I = 1.86040 77510 49016 03858 77820 00396 84086 80005 27974 88674.

The calculation took less than one twentieth of a second using Wolfram Mathematica R©

on a 2.83GHz personal computer.

Our next example is a generalization of an old problem.

EXAMPLE 3.4. (A Generalization of A Problem of NarayanaAiyar) Let t1,t2, . . . ,
tn and a be positive real numbers, such that

0 < t1 � t2 � . . . � tn < a.
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Consider the meromorphic function G defined by

G(z) =
1

(a− t1z)(a− t2z) · · · (a− tnz)
. (3.9)

Clearly, G is analytic in the domain Ω = C\
{

a
tk

: 1 � k � n
}

that contains the closed

unit disk. For a given real x , let

φk(x) = arctan

(
tk sinx

a− tk cosx

)
, ρk(x) =

√
a2−2tkacosx+ t2k . (3.10)

To simplify the notation, we will simply write φk and ρk to denote φk(x) and ρk(x)
respectively. It is clear that

a− tke
ix = ρke

−iφk , for 1 � k � n . (3.11)

Thus,

G(eix) =
ei(φ1+···+φn)

ρ1 · · ·ρn
. (3.12)

Using Theorem 2.6, with z =−i , we obtain

∫ ∞

−∞

G(eix)
x+ i

dx =−iπG(0) =− iπ
an .

Taking imaginary parts, we conclude that∫ ∞

0

cos(φ1 + · · ·+ φn)− xsin(φ1 + · · ·+ φn)
ρ1 · · ·ρn

dx
1+ x2 =

π
2an . (3.13)

The evaluation of the integral (3.13), when a = 1 and tk = kr for some 0 < r <
1/n , is an unsolved problem proposed by Narayana Aiyar in the beginning of the twen-
tieth century [4], while the generalization, corresponding to a > 0 and tk = kr for some
0 < r < a/n , is a problem proposed by M. D. Hirchhorn [7].

Note that Corollary 2.7 yields more precise results, valid for ℜz > 0, namely:∫ ∞

0

cos(φ1 + · · ·+ φn)
ρ1 · · ·ρn

· dx
x2 + z2 =

π
2z

n

∏
k=1

1
a− tke−z , (3.14)

and

∫ ∞

0

sin(φ1 + · · ·+ φn)
ρ1 · · ·ρn

· xdx
x2 + z2 =

π
2

(
n

∏
k=1

1
a− tke−z −

1
an

)
, (3.15)

where t1, . . . ,tn are real numbers from the interval (0,a) and the φk ’s and ρk ’s are
defined by (3.10).
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EXAMPLE 3.5. (Bernoulli Polynomials and Polylogarithms) In this example we
consider the sequence (Bm)m�0 of Bernoulli polynomials. They can be defined via the
generating function

tetx

et −1
=

∞

∑
m=0

Bm(x)
tm

m!
, (3.16)

or recursively by B0 = 1 and

∀n > 0, B′n = nBn−1, and
∫ 1

0
Bn(t)dt = 0. (3.17)

In particular,

B1(X) = X− 1
2
, B2(X) = X2−X +

1
6
, B3(X) = X(X− 1

2
)(X−1). (3.18)

Now, denote by B̃m the 2π -periodic function defined by

B̃m(x) = Bm

({ x
2π

})
, where {u} is the fractional part of u . (3.19)

For m � 1, the Fourier series expansion of B̃m , is well-known and easy to find
(using the recursive definition (3.17), see, for example [1, Ch. 23].) We have

S[B̃2m−1](x) =
(−1)m2(2m−1)!

(2π)2m−1

∞

∑
n=1

sin(nx)
n2m−1 , (3.20)

S[B̃2m](x) =
(−1)m2(2m)!

(2π)2m

∞

∑
n=1

cos(nx)
n2m . (3.21)

Applying Corollary 2.5 we conclude that, for m � 1 and ℜz > 0, we have∫ ∞

0

x
x2 + z2 B̃2m−1(x)dx =

(−1)m(2m−1)!
2(2π)2m−2

∞

∑
n=1

e−nz

n2m−1 ,

∫ ∞

0

1
x2 + z2 B̃2m(x)dx =

(−1)m(2m)!
2z(2π)2m−1

∞

∑
n=1

e−nz

n2m .

The change of variables x← 2πx and z← 2πz yields the next result, for m � 1 and
ℜz > 0: ∫ ∞

0

xB2m−1({x})
x2 + z2 dx = (−1)m (2m−1)!

2(2π)2m−2 Li2m−1(e−2πz), (3.22)∫ ∞

0

B2m({x})
x2 + z2 dx = (−1)m (2m)!

2(2π)2m−1

Li2m(e−2πz)
z

, (3.23)

where the function Lik is the polylogarithm of order k . It is defined on open unit disk
by the series ∑∞

n=1 zn/nk . (For an extensive account of the polylogarithms see [10].)
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In particular, since B1(X) = X− 1
2 , we see that for λ > 0, we have∫ ∞

0

x({x}−1/2)
λ 2 + x2 dx =

1
2

ln(1− e−2πλ). (3.24)

Also, from the expressions of B2 and B3 we conclude that, for λ > 0, we have∫ ∞

0

{x}(1−{x})
λ 2 + x2 dx =

π
12λ

+
1

2πλ
Li2(e−2πλ ). (3.25)∫ ∞

0

x{x}({x}−1)({x}−1/2)
λ 2 + x2 dx =

3
4π2 Li3(e−2πλ ). (3.26)

Adding one forth of (3.24) to (3.26) we see that, for λ > 0, we have∫ ∞

0

x({x}−1/2)3

λ 2 + x2 dx =
1
8

ln(1− e−2πλ)+
3

4π2 Li3(e−2πλ ). (3.27)

EXAMPLE 3.6. (A link to Bessel functions) Let (Jn)n∈Z be the family of Bessel
functions of the first kind. It is well-known that the generating function of this family
is given by

e
1
2 ξ (t−1/t) = ∑

n∈Z

tnJn(ξ ), for t �= 0, (3.28)

(see [1, formula 9.1.41].) Using Corollary 2.5 we conclude that, for ξ ∈C and ℜz > 0
we have ∫

R

eiξ cosx

z2 + x2 dx =
π
z

(
J0(ξ )+2

∞

∑
n=1

inJn(ξ )e−nz

)
. (3.29)
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