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NEW MATRIX FORMULAS FOR LAGUERRE MATRIX POLYNOMIALS

BAYRAM ÇEKİM AND ABDULLAH ALTIN

Abstract. In this paper, we obtain some properties for Laguerre matrix polynomials. The rela-
tions between Laguerre and Jacobi matrix polynomials in this study are indicated. We also derive
multilinear and multilateral generating matrix functions for Laguerre matrix polynomials.

1. Introduction

In the recent papers, matrix polynomials have significant emergent. Some results
in the theory of classical orthogonal polynomials have been extended to orthogonal
matrix polynomials, see [1, 2, 3, 4, 6]. In [5], these matrix polynomials are orthogo-
nal as examples of right orthogonal matrix polynomial sequences for appropriate right
matrix moment functionals of integral type. Jacobi and Laguerre matrix polynomials
have been introduced and studied in [1, 6] for matrices in CN×N . Our main aim in this
paper is to prove new properties for the Laguerre matrix polynomials. The outline of
this paper is as follows. In section 2, we demonstrate some properties of the Laguerre
matrix polynomials. The relations between Laguerre and Jacobi matrix polynomials in
this study are also indicated in section 3. Multilinear and multilateral generating matrix
functions for Laguerre matrix polynomials are derived in section 4.

Throughout this paper, for a matrix A in CN×N , its spectrum σ(A) denotes the
set of all eigenvalues of A . If f (z) and g(z) are holomorphic functions of the complex
variable z , which are defined in an open set Ω of the complex plane and A is a matrix
in CN×N with σ(A) ⊂ Ω , then from the properties of the matrix functional calculus in
[7], it follows that: f (A)g(A) = g(A) f (A). Hence, if B ∈ CN×N is a matrix for which
σ(B) ⊂ Ω and if AB = BA , then f (A)g(B) = g(B) f (A). We say that the matrix A in
CN×N is a positive stable if Re(λ ) > 0 for all λ ∈ σ(A) . Furthermore the identity
matrix of C

N×N will be denoted by I.

LEMMA 1. For matrices A(k,n) and B(k,n) in CN×N where n � 0, k � 0 the
following relations are satisfied by Defez and Jódar in [2]:

∞

∑
n=0

∞

∑
k=0

A(k,n) =
∞

∑
n=0

n

∑
k=0

A(k,n− k) (1.1)

∞

∑
n=0

n

∑
k=0

A(k,n) =
∞

∑
n=0

∞

∑
k=0

A(k,n+ k). (1.2)
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From [3], one can see

(P)n = P(P+ I)(P+2I)...(P+(n−1)I); n � 1; (P)0 = I.

The hypergeometric matrix function 2F1(A,B;C;z) has been given in [3]

2F1(A,B;C;z) =
∞

∑
n=0

(A)n(B)n

n!
[(C)n]−1 zn

for matrices A,B and C in CN×N such that C + nI is invertible for all integer n � 0
and for |z| < 1.

Let A be a matrix in CN×N where (−α) is not an eigenvalue of A for every integer
α > 0 and λ be a complex number whose real part is positive. Then the Laguerre

matrix polynomials L(A,λ )
n (x) are defined by [6]:

L(A,λ )
n (x) =

n

∑
k=0

(−1)k

k!(n− k)!
(A+ I)n [(A+ I)k]

−1 (λx)k ; n � 0. (1.3)

Such matrix polynomials have following generating matrix function:

∞

∑
n=0

L(A,λ )
n (x)tn = (1− t)−A−Ie−

λxt
1−t ; x ∈ C, t ∈ C, |t| < 1. (1.4)

The Jacobi matrix polynomials have been given in [1], P(A,B)
n (x) for parameter matrices

A and B whose eigenvalues, z , all satisfy Re(z) > −1. For any natural number n > 0,

the Jacobi matrix polynomials P(A,B)
n (x) are defined by

P(A,B)
n (x) =

(−1)n

n! 2F1

(
A+B+nI,−nI;B+ I;

1+ x
2

)
Γ−1(B+ I)Γ(B+(n+1)I)

(1.5)
or

P(A,B)
n (x) =

1
n! 2F1

(
A+B+nI,−nI;A+ I;

1− x
2

)
Γ−1(A+ I)Γ(A+(n+1)I). (1.6)

DEFINITION 1. Let P be a positive stable matrix in CN×N , then Gamma matrix
function in [4] is defined by

Γ(P) =
∞∫

0

e−t tP−I dt , tP−I = exp [(P− I) ln t] . (1.7)

DEFINITION 2. Let P and Q be positive stable matrices in CN×N , then Beta
matrix function in [4] is defined by

B (P,Q) =
1∫

0

tP−I (1− t)Q−I dt. (1.8)
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LEMMA 2. Let P,Q, P+Q be positive stable matrices in CN×N and PQ = QP,
then

B (P,Q) = Γ(P)Γ(Q)Γ−1 (P+Q) (1.9)

[4].

2. Some results for Laguerre matrix polynomials

THEOREM 1. Let A and B be matrices in CN×N satisfying spectral condition
(−α) is not an eigenvalue of A for every integer α > 0, (−β ) is not an eigenvalue of
B for every integer β > 0. Then Laguerre matrix polynomials yield following equation:

n

∑
k=0

(A−B)n−kL
(B,λ )
k (x)

(n− k)!
= L(A,λ )

n (x) (2.1)

where AB = BA, n � 0 and Re (λ ) > 0.

Proof. Using (1.2), we can write

∞

∑
n=0

n

∑
k=0

(A−B)n−kL
(B,λ )
k (x)

(n− k)!
tn

=
∞

∑
n=0

∞

∑
k=0

(A−B)nL
(B,λ )
k (x)

n!
tn+k

=

(
∞

∑
n=0

(A−B)n

n!
tn
)(

∞

∑
k=0

L(B,λ )
k (x)tk

)
. (2.2)

On the other hand, we have
∞

∑
n=0

(A−B)n

n!
tn = (1− t)−(A−B), |t| < 1. (2.3)

Using (2.3) and (1.4) in (2.2), we get

∞

∑
n=0

n

∑
k=0

(A−B)n−kL
(B,λ )
k (x)

(n− k)!
tn = (1− t)−(A−B)(1− t)−B−Ie−

λxt
1−t

= (1− t)−A−Ie−
λxt
1−t

=
∞

∑
n=0

L(A,λ )
n (x)tn.

Comparing coefficients of tn in last equation, we have desired relation. �

THEOREM 2. Let A be a matrix in CN×N where (−α) is not an eigenvalue of A
for every integer α > 0 and Re(λ ) > 0. Then Laguerre matrix polynomials satisfy:

n

∑
k=0

(A+(k+1)I)n−kL
(A,λ )
k (z)

(n− k)!
wk(1−w)n−k = L(A,λ )

n (zw); |w| < 1. (2.4)



62 B. ÇEKİM AND A. ALTIN

Proof. Starting from left-hand side of (2.4) and using (1.2), we have

∞

∑
n=0

n

∑
k=0

(A+(k+1)I)n−kL
(A,λ )
k (z)

(n− k)!
wk(1−w)n−ktn

=
∞

∑
n=0

∞

∑
k=0

(A+(k+1)I)nL
(A,λ )
k (z)

n!
wk(1−w)ntn+k

=
∞

∑
k=0

L(A,λ )
k (z)

(
∞

∑
n=0

(A+(k+1)I)n

n!
(1−w)ntn

)
(wt)k.

On the other hand, we get

∞

∑
n=0

(A+(k+1)I)n

n!
(1−w)ntn = (1− t + tw)−(A+(k+1)I); |t− tw| < 1. (2.5)

By using (1.4) and (2.5), we obtain

∞

∑
n=0

n

∑
k=0

(A+(k+1)I)n−kL
(A,λ )
k (z)

(n− k)!
wk(1−w)n−ktn

=
∞

∑
k=0

L(A,λ )
k (z)

(
(1− t + tw)−(A+(k+1)I)

)
(wt)k

= (1− t + tw)−A−I
∞

∑
k=0

L(A,λ )
k (z)

(
wt

1− t + tw

)k

;

∣∣∣∣ wt
1− t + tw

∣∣∣∣< 1

= (1− t + tw)−A−I
(

1− wt
1− t + tw

)−A−I

e
− λz( wt

1−t+tw)
1−( wt

1−t+tw )

= (1− t)−A−Ie−
λzwt
1−t

=
∞

∑
n=0

L(A,λ )
n (zw)tn.

Comparing of the coefficients of tn, theorem is proved. �

THEOREM 3. Let A and C be matrices in C
N×N where (−α) is not an eigen-

value of A for every integer α > 0 and Re(λ ) > 0. Then Laguerre matrix polynomials
satisfy:

∞

∑
n=0

(C)n(A+ I)−1
n L(A,λ )

n (z)wn = (1−w)−C
1F1

(
C;A+ I;

−λ zw
1−w

)
; |w| < 1 (2.6)

where AC = CA.

Proof. Starting from right-hand side of (2.6), we can write

(1−w)−C
1F1

(
C;A+ I;

−λ zw
1−w

)
=

∞

∑
k=0

(C)k(A+ I)−1
k

k!
(−λ zw)k(1−w)−C−kI.
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In the last equation, if we consider Taylor expansion of F(w) = (1−w)−C−kI at w = 0,

we can write F(w) = ∑
n�0

(C)n+k

n!
[(C)k]

−1 wn. Then using (1.1) and (1.3), theorem can

be proved. �

THEOREM 4. Let A be a matrix in CN×N where (−α) is not an eigenvalue of A
for every integer α > 0 and Re(λ ) > 0. Then Laguerre matrix polynomials satisfy:

∞

∑
k=0

L(A+kI,λ )
n (z)

k!
wk = ewL(A,λ )

n (λ z−w). (2.7)

Proof. Starting from left-hand side of (2.7) and using (1.4), we get

∞

∑
n=0

∞

∑
k=0

L(A+kI,λ )
n (z)

k!
wktn =

∞

∑
k=0

{
∞

∑
n=0

L(A+kI,λ )
n (z)tn

}
wk

k!

=
∞

∑
k=0

{
(1− t)−A−kI−Ie−

λzt
1−t

} wk

k!

= (1− t)−A−Ie−
λzt
1−t

∞

∑
k=0

(
w

1−t

)k
k!

= (1− t)−A−Ie−
λzt
1−t e

w
1−t

= ew(1− t)−A−Ie−
t(λz−w)

1−t .

Also again using (1.4) and comparing of the coefficients of tn , we get proof of theo-
rem. �

THEOREM 5. Let A and B be matrices in CN×N satisfying spectral condition
Re(z) >−1 for every eigenvalue z∈ σ(A), Re (z) >−1 for every eigenvalue z∈ σ(B)
and (A−B) be a positive stable matrix in CN×N . Then Laguerre matrix polynomials
yield following equation:

L(A,λ )
m+n (x)

[
L(A,λ )

m+n (0)
]−1

= Γ(A+ I)Γ−1(A−B)Γ(B+ I)×
1∫

0

tB(1− t)A−B−IL(B,λ )
m (xt)

[
L(B,λ )

m (0)
]−1

LA−B−I
n (x(1− t))

[
LA−B−I

n (0)
]−1

dt (2.8)

where AB = BA, n,m � 0 and Re (λ ) > 0.

Proof. By using (1.3), right-hand side of equation in (2.8) can be written

S = Γ(A+ I)Γ−1(A−B)Γ(B+ I)

×
1∫

0

tB(1− t)A−B−IL(B,λ )
m (xt)

[
L(B,λ )

m (0)
]−1

LA−B−I
n (x(1− t))

[
LA−B−I

n (0)
]−1

dt
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= Γ(A+ I)Γ−1(A−B)Γ(B+ I)

×
1∫

0

tB(1− t)A−B−I

(
∞

∑
k=0

(−mI)k

k!
(B+ I)m [(B+ I)k]

−1 (tλx)k

)

×(B+ I)−1
m

(
∞

∑
l=0

(−nI)l

l!
(A−B)n [(A−B)l]

−1 [(1− t)λx]l
)

[(A−B)n]
−1 dt.

By making necessary arrangements and using Beta matrix function in (1.8) and equa-
tion in (1.9), we obtain

S =
∞

∑
k=0

∞

∑
l=0

(−m)k

k!
(−n)l

l!
[(A+ I)k+l]

−1 (λx)k+l .

By using (1.1) and following equation

k

∑
l=0

(−n)l(−m)k−l

l!(k− l)!
=

(−m−n)k

k!
,

we get proof of theorem. �

3. Connections between Laguerre and Jacobi matrix polynomials

THEOREM 6. Let A and B be matrices in CN×N satisfying spectral condition
Re(z) >−1 for every eigenvalue z∈σ(A), Re (z) >−1 for every eigenvalue z∈σ(B),
Re(z) > 0 for every eigenvalue z∈σ(A+B) and Re (λ )> 0. Then connection between
Laguerre and Jacobi matrix polynomials is

P(A,B)
n (x) = Γ−1(A+B+nI+ I)

∞∫
0

tA+B+nIe−tL(A,λ )
n

(
(1− x)t

2λ

)
dt. (3.1)

Proof. By using (1.3), right-hand side of equation in (3.1) can be written

Γ−1(A+B+nI+ I)
∞∫

0

tA+B+nIe−tL(A,λ )
n

(
(1− x)t

2λ

)
dt

= Γ−1(A+B+nI+ I)
n

∑
k=0

{
(−nI)k

k! n!

(
1− x

2

)k

×
⎧⎨
⎩

∞∫
0

tA+B+nI+kIe−tdt

⎫⎬
⎭(A+ I)n [(A+ I)k]

−1

⎫⎬
⎭ .

Also using Gamma matrix function to evaluate integral and making necessary arrange-
ments, we obtain the required relation. �
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THEOREM 7. Let A be a matrix in CN×N satisfying spectral condition Re (z) >
−1 for every eigenvalue z ∈ σ(A) and Re(λ ) > 0. Then connection between Laguerre
and Jacobi matrix polynomials is

lim
s→∞

P(A,Is)
n (1−2xλ s−1) = L(A,λ )

n (x) (3.2)

where s ∈ (0,∞) .

Proof. Using (1.6) in left-hand side of (3.2), theorem can be proved. �

4. Multilinear and multilateral generating matrix functions
for the Laguerre matrix polynomials

In this section, we derive several families of bilinear and bilateral generating ma-
trix functions for the Laguerre matrix polynomials generated by (1.4). We first state our
result as the following.

THEOREM 8. Corresponding to a non-vanishing function Ωμ(y1, ...,ys ) of s com-
plex variables y1, ...,ys (s ∈ N) and of complex order μ , let

Λμ,ν(y1, ...,ys;z) :=
∞

∑
k=0

akΩμ+νk(y1, ...,ys )zk; (ak �= 0 , μ ,ν ∈ C) (4.1)

and

Θn,p,μ,ν(x;y1, ...,ys;ζ ) :=
[n/p]

∑
k=0

ak L(A,λ )
n−pk(x) Ωμ+νk(y1, ...,ys )ζ k (4.2)

where A is a matrix in CN×N whose eigenvalues, z, (−z) is not an eigenvalue of A
for every integer z > 0, n, p ∈ N and (as usual) [α] represents the greatest integer in
α ∈ R. Then we have

∞

∑
n=0

Θn,p,μ,ν

(
x;y1, ...,ys;

η
t p

)
tn = (1− t)−A−Ie−

λxt
1−t Λμ,ν(y1, ...,ys;η) (4.3)

provided that each member of (4.3) exists for |t| < 1 and Re (λ ) > 0.

Proof. For convenience, let S denote the first member of the assertion (4.3) of
Theorem 8. Then, plugging the polynomials

Θn,p,μ,ν

(
x;y1, ...,ys;

η
t p

)
which comes from (4.2) into the left-hand side of (4.3), we obtain

S =
∞

∑
n=0

[n/p]

∑
k=0

ak L(A,λ )
n−pk(x) Ωμ+νk(y1, ...,ys ) ηk tn−pk . (4.4)
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Upon changing the order of summation in (4.4), if we replace n by n + pk, we can
write

S =
∞

∑
n=0

∞

∑
k=0

ak L(A,λ )
n (x) Ωμ+νk(y1, ...,ys ) ηk tn

=

(
∞

∑
n=0

L(A,λ )
n (x) tn

)(
∞

∑
k=0

ak Ωμ+νk(y1, ...,ys ) ηk

)

= (1− t)−A−Ie−
λxt
1−t Λμ,ν(y1, ...,ys;η),

which completes the proof of Theorem 8. �

If we set s = 2 and Ωμ+νk(y,z) = Hμ+νk(y,z,B) in theorem 8, where the two-
variable Hermite matrix polynomials Hn(y,z,B) are defined by means of the generating
matrix function in [8]

exp
(
yt
√

2B− zt2I
)

=
∞

∑
n=0

1
n!

Hn(y,z,B)tn; |t| < ∞ (4.5)

where B is a positive stable matrix in CN×N then we obtain the following result which
provides a class of multilateral generatingmatrix functions for the two-variable Hermite
and the Laguerre matrix polynomials.

EXAMPLE 1. Taking ak = 1
k! , μ = 0, ν = 1 and |t| < 1, we have

∞

∑
n=0

[n/p]

∑
k=0

L(A,λ )
n−pk(x)

Hk(y,z,B)
k!

ηktn−pk = (1− t)−A−Ie−
λxt
1−t exp

(
yη

√
2B− zη2I

)

where |η | < ∞.

EXAMPLE 2. Taking ak = 1, μ = 0, ν = 1, |t|< 1, B is a matrix in CN×N whose
eigenvalues, z, (−z) is not an eigenvalue of B for every integer z > 0, Re(λ1) > 0 and
Re(λ2) > 0, we have bilinear generating function for Laguerre matrix polynomials

∞

∑
n=0

[n/p]

∑
k=0

L(A,λ1)
n−pk (x) L(B,λ2)

k (y) ηktn−pk = (1− t)−A−Ie−
λ1xt
1−t (1−η)−B−Ie

− λ2yη
1−η

where |η | < 1.

Furthermore, for every suitable choice of the coefficients ak (k ∈ N0), if the mul-
tivariable function Ωμ+ψk(y1, ...,ys), (s ∈ N), is expressed as an appropriate product
of several simpler functions, the assertions of theorem 8 can be applied in order to de-
rive various families of multilinear and multilateral generating matrix functions for the
Laguerre matrix polynomials.
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