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ON RATIONAL APPROXIMATION OF FUNCTIONS

IN REARRANGEMENT INVARIANT SPACES

HASAN YURT AND ALI GUVEN

Abstract. Some direct theorems for polynomial and rational approximation of functions in the
complex plane are proved.

1. Introduction and main results

Let (R,μ) be a non-atomic σ -finite measure space, i.e., a measure space with
non-atomic σ -finite measure μ given on a σ -algebra of subsets of R. We shall denote
by M the set of all μ -measurable complex valued functions on R , and M + will be
the subset of functions from M whose values lie in [0,∞] . The characteristic function
of a μ -measurable set E ⊂ R will be denoted by χE .

A mapping ρ : M + → [0,∞] is called a function norm if it satisfies the following
properties for all functions f ,g, fn ∈ M + (n ∈ N) , for all constants a � 0, and for all
μ -measurable set E ⊂ R :

(1) ρ ( f ) = 0 ⇔ f = 0 μ −a.e. , ρ (a f ) = aρ ( f ) , ρ ( f +g) � ρ ( f )+ ρ (g) ,

(2) 0 � g � f μ −a.e.⇒ ρ (g) � ρ ( f ) ,

(3) 0 � fn ↑ f μ −a.e.⇒ ρ ( fn) ↑ ρ ( f ) ,

(4) μ (E) < ∞ ⇒ ρ (χE ) < ∞,

(5) μ (E) < ∞ ⇒ ∫
E f dμ � CE ρ ( f ) , where CE is a constant depending on E and

ρ , but does not depend on f .

If ρ is a function norm, its associate function norm ρ is defined by

ρ ′ (g) := sup

{∫
R

f gdμ : f ∈ M +, ρ ( f ) � 1

}
(1)

for g ∈ M +. If ρ is a function norm, then ρ ′ is itself a function norm [2, pp. 8–9].
Let ρ be a function norm. We denote by X = X (ρ) the linear space of all func-

tions f ∈M for which ρ (| f |) < ∞. The space X is called a Banach function space. If
we define the norm of f ∈ X by

‖ f‖X := ρ (| f |)
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then X will be a Banach space [2, pp. 6–7]. It follows by property (5) that if the
measure space (R,μ) is finite, i.e., if μ (R) < ∞, then X ⊂ L1 (R,μ) .

Let ρ be a function norm and ρ ′ be its associate function norm. The Banach
function space determined by the function ρ ′ is called the associate space of X and
will be denoted by X ′.

If f ∈ X and g ∈ X ′, then the Hölder inequality∫
R
| f g|dμ � ‖ f‖X ‖g‖X ′

holds [2, Ch. 1, p. 9, Theorem 2.4].
Every Banach function space X coincides [2, Theorem 2.7, pp. 10–12] with its

second associate space X ′′ = (X ′)′ and ‖ f‖X = ‖g‖X ′′ for all f ∈ X . So, by (1) we
have

‖ f‖X = sup

{∫
R
| f g|dμ : g ∈ X ′,‖g‖X ′ � 1

}
(2)

and

‖g‖X ′ = sup

{∫
R
| f g|dμ : f ∈ X , ‖ f‖X � 1

}
. (3)

Let M0 and M +
0 be classes of μ −a.e. finite functions in M and M +, respectively.

The distribution function μ f of f ∈ M0 is defined by

μ f (λ ) := μ {x ∈ R : | f (x)| > λ}
for λ � 0. Two functions f ,g ∈ M0 are said to be equimeasurable if μ f (λ ) = μg (λ )
for all λ � 0.

DEFINITION 1. [2, p. 59] If ρ ( f ) = ρ (g) for every pair of equimeasurable func-
tions f ,g∈M+

0 , the function norm ρ is called a rearrangement invariant function norm.
In this case, the Banach function space generated by ρ is called a rearrangement in-
variant function space.

Let f ∈ M0. The function f ∗ defined by

f ∗ (t) := inf
{

λ : μ f (λ ) � t
}

, t � 0

is called the decreasing rearrangement of the function f .
Let X be a rearrangement-invariant space over a non-atomic finite measure space

(R,μ) . By the Luxemburg representation theorem [2, pp. 62–64], there is a (not nec-
essarily unique) rearrangement-invariant function norm ρ over (R+,m) such that

ρ ( f ) = ρ ( f ∗) , f ∈ M +
0 ,

where m is the Lebesgue measure on R+ := [0,∞) .
The rearrangement invariant space over (R+,m) generated by ρ is denoted by

X .
Let us consider the dilation operator Ex, x > 0 defined on M0 (R+,m) by

(Ex f ) (t) :=
{

f (xt) , xt ∈ [0,μ (R)]
0, xt /∈ [0,μ (R)] , t > 0.
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It is known that E1/x ∈ B
(
X

)
for each x > 0, where B

(
X

)
is the Banach algebra

of bounded linear operators on X ([2, p. 165]). Let hX (x) denote the operator norm of
E1/x, i.e., hX (x) :=

∥∥E1/x

∥∥
B(X) .

The numbers αX and βX defined by

αX = sup
0<x<1

loghX (x)
logx

, βX = inf
1<x<∞

loghX (x)
logx

,

are called the lower and upper indices Boyd of X , respectively. It is known that [2, p.
149] the Boyd indices satisfy

0 � αX � βX � 1.

The Boyd indices are said to be nontrivial if 0 < αX � βX < 1.
Let Γ be a rectifiable Jordan curve in the complex plane C and let G := IntΓ ,

G− := ExtΓ . Without loss of generality we suppose that 0 ∈ G . Further, let

T := {w ∈ C : |w| = 1} , U := IntT, U
− := ExtT.

We denote by ϕ and ϕ1 the conformal mappings of G− and G onto U− normalized
by the conditions

ϕ (∞) = ∞, lim
z→∞

ϕ (z)
z

> 0

and
ϕ1 (0) = ∞, lim

z→0
zϕ1 (z) > 0,

respectively, and let ψ and ψ1 be the inverse mappings of ϕ and ϕ1 .
For z ∈ Γ and ε > 0, we denote by Γ(z,ε) the portion of Γ in the open disk of

radius ε centered at z , i. e.,

Γ(z,ε) := {t ∈ Γ : |t− z| < ε} .

Further, let |Γ(z,ε)| denotes the length of Γ(z,ε) .

DEFINITION 2. Γ is called a Carleson curve if the condition

sup
z∈Γ

sup
ε>0

1
ε
|Γ(z,ε)| < ∞

holds.
The class of Carleson curves is a wide class of curves. For example, analytic

curves, Lavrentiev curves and Dini-Smooth curves are Carleson curves.
We assume that the rectifiable Jordan curve Γ is equipped with the arclength mea-

sure and in this case we denote any rearrangement invariant space over Γ by X (Γ) .
For ς ∈ Γ we define three points ςθ ∈ Γ , ς1θ ∈ Γ and ς2θ ∈ Γ as

ςθ := ψ [ϕ (ς)eiθ ] , ς1θ := ψ1 [ϕ1 (ς)eiθ ] , ς2θ := ψ2 [ϕ2 (ς)eiθ ] ,

where θ ∈ [−π ,π ] and the function ϕ2 (ϕ2 (0) = 0) maps the domain G conformally
onto U.
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Let X (Γ) be a rearrangement invariant space over Γ. For f ∈ X (Γ) we define the
shifts Tθ , T1θ and T2θ as

Tθ f (ς) :=
f
(
ςθ

)
ϕ ′ (ςθ

)ϕ ′ (ς) , (4)

T1θ f (ς) :=
f
(
ς1θ

)
ϕ ′

1

(
ς1θ

)ϕ ′
1
(ς)e2iθ (5)

and

T2θ f (ς) :=
f
(
ς2θ

)
ϕ ′

2

(
ς2θ

)ϕ ′
2
(ς) (6)

for ς ∈ Γ.
For example, if Γ ≡T, then Tθ f (w) = f (weiθ ) , T1θ f (w) = f (we−iθ ) , T2θ f (w)

= f (weiθ ) and hence Tθ f (w) , T1θ f (w) , T2θ f (w) ∈ X (Γ) as soon as f ∈ X (Γ) and
X (Γ) has non-trivial Boyd indices. Moreover, if X (Γ) has non-trivial Boyd indices
and

0 < c1 �
∣∣ϕ ′ (z)

∣∣ � c2 < ∞,

0 < c3 �
∣∣ϕ ′

1
(z)

∣∣ � c4 < ∞

or
0 < c5 �

∣∣ϕ ′
2
(z)

∣∣ � c6 < ∞,

for z ∈ Γ and with the constants c1 ,c2 ,c3 ,c4 ,c5 and c6 which are independent of z ,
then it easy to verify that the space X (Γ) is invariant with respect to the shifts Tθ f ,
T1θ f , T2θ f . Starting from this, we define the functions ω (2)

X (., f ), ω (2)
1X (., f ),ω (2)

2X (., f )
and Ω(2)

X (., f ) for δ � 0 as

ω (2)
X (δ , f ) := sup

|θ |�δ

∥∥Tθ f +T(−θ) f −2 f
∥∥

X(Γ)

ω (2)
1X (δ , f ) := sup

|θ |�δ

∥∥T1θ f +T1(−θ) f −2 f
∥∥

X(Γ)

ω (2)
2X (δ , f ) := sup

|θ |�δ

∥∥T2θ f +T2(−θ) f −2 f
∥∥

X(Γ)

Ω(2)
X (δ , f ) := ω (2)

X (δ , f )+ ω (2)
1X (δ , f ).

Let ω (δ ) be a non-negative, continuous, non-decreasing real function such that ω (0)=
0,ω (δ ) > 0 for δ > 0, and ω (nδ ) � c7nω (δ ) for every natural number n and with
some constant c7 > 0. Similarly, let another ω∗ (δ ) have all properties of ω (δ ) .

Let Lp (Γ) and Ep (G) (1 � p < ∞) be the Lebesgue space of measurable com-
plex valued functions on Γ and the Smirnov class of analytic functions in G,respectively.
Since Γ is rectifiable, we have ϕ ′ ∈ E1 (G−) , ϕ ′

1
∈ E1 (G) and ψ ′, ψ ′

1
∈ E1 (U−)

which imply that the functions ϕ ′ and ϕ ′
1

admit the nontangential limits a. e. on Γ
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belong to L1 (Γ) , and ψ ′ and ψ ′
1

admit the nontangential limits a. e. on T belong to
L1 (T) [9, pp. 419–453].

Now we denote by EX (G) the class of functions f ∈ E1 (G) for which the bound-
ary function f belongs to X (Γ) . Similarly, the class EX (G−) can be defined. Ob-
viously, the class EX (G) is wider than Smirnov classes Ep (G) and as well as the
Smirnov-Orlicz classes EM (G) given in [13] (see also [6], [7]).

We define the classes of functions Xω (Γ) ,Xω (Γ)∗ , Eω
X (G) and Eω

X (G−) as

Xω (Γ) :=
{

f ∈ X (Γ) : Ω(2)
X (δ , f ) � c8ω (δ )

}
,

Xω (Γ)∗ :=
{

f ∈ X (Γ) : ω (2)
X ( δ , f ) � c9ω (δ ) and ω (2)

2X (δ , f ) � c10ω∗ (δ )
}

,

Eω
X (G) :=

{
f ∈ EX (G) : ω (2)

X ( δ , f )∗ � c11ω (δ )
}

,

Eω
X

(
G−)

:=
{

f ∈ EX
(
G−)

: ω (2)
1X (δ , f ) � c12ω (δ )

}
,

where the constants c8 ,c9 ,c10 ,c11 , and c12 are independent of f and δ .
It is clear that if f ∈ Xω (Γ) , then Tθ f ∈ X (Γ) and T1θ f ∈ X (Γ) . If f ∈ Xω (Γ)∗ ,

then Tθ f ∈ X (Γ) and T2θ f ∈ X (Γ) . Similarly, if f ∈ Eω
X (G) , then Tθ f ∈ X (Γ) , and

T1θ f ∈ X (Γ) for f ∈ Eω
X (G−) .

For a > 0 and b > 0, we will use the expression a � b (order inequality) if a �
cb. The expression a  b means that a � b and b � a simultaneously. Through the
paper, ci , i = 1,2, ... will denote the positive constants which are not important for the
questions involve in the paper and can be different in each occurrence.

Our main results are given in the following theorems.

THEOREM 1. Let Γ be a Carleson curve, X (Γ) be a rearrangement invariant
space with non-trivial Boyd indices, and f ∈ Xω (Γ) . Then, for each natural number
n, there exists a rational function Rn (z, f ) such that

‖ f −Rn (., f )‖X(Γ) � c13ω (1/n) , (7)

with a constant c13 , which is independent of n .

COROLLARY 1. If f ∈ Eω
X (G) , then for each natural number n, there exists an

algebraic polynomial Pn (z, f ) of degree � n such that

‖ f −Pn (., f )‖X(Γ) � c14ω (1/n) (8)

holds with a constant c14 , which is independent of n.

COROLLARY 2. If f ∈ Eω
X (G−) , then for each natural number n, there exists a

polynomial Q̃n (1/z, f ) of 1/z such that∥∥ f − Q̃n (., f )
∥∥

X(Γ) � c15ω (1/n) (9)

holds with a constant c15 , which is independent of n.

Similar results were obtained in [8].
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THEOREM 2. Let Γ be a Carleson curve and f ∈ Xω (Γ)∗ and

f̃ (z) :=
1
π i

∫
Γ

f (ς)
ς − z

dς .

Then the following properties are satisfied for the function

FAB (z) := A f (z)+B f̃ (z) .

(1) If A =B, then for each natural number n, there exists an algebraic polynomial
Pn (z, f ) of degree � n such that

‖FAB−Pn (., f )‖X(Γ) � c16 [2A]ω (1/n) .

(2) If A �= B, then for each natural number n, there exists a rational polynomial
Rn (z, f ) of degree � n such that

‖FAB−Rn (., f )‖X(Γ) � c17 [(A+B)ω (1/n)+ (B−A)ω∗ (1/n)] .

The analogue of Theorem 2 was proved in [11] for Orlicz spaces LM (Γ) .

2. Auxiliary results

Let Γ be a rectifiable Jordan curve and f ∈ L1 (Γ) . Then the functions f + and
f− defined by

f + (z) :=
1

2π i

∫
Γ

f (ς)
ς − z

dς , z ∈ G (10)

and

f− (z) :=
1

2π i

∫
Γ

f (ς)
ς − z

dς , z ∈ G− (11)

are analytic in G and G−, respectively, and f− (∞) = 0.
The Cauchy singular integral of f ∈ L1 (Γ) at z ∈ Γ is defined by

SΓ f (z) := lim
ε→0+

1
2π i

∫
Γ\Γ(z,ε)

f (ς)
ς − z

dς .

It is known that this limit exists for almost every z ∈ Γ ([3, pp. 117–144]).
The functions f + and f− have nontangential limits a.e. on Γ , and the formulae

f + (z) = SΓ f (z)+
1
2

f (z) , f− (z) = SΓ f (z)− 1
2

f (z) (12)

holds a.e. on Γ ([9, p. 431]) , and hence

f = f − f− (13)

a.e. on Γ.
For f ∈ L1 (Γ) , we associate the function SΓ f taking the value SΓ f (z) exists a.e.

on Γ. The linear operator SΓ defined in such way is called the Cauchy singular operator.
A necessary and sufficient condition for the boundedness of Cauchy singular op-

erator in rearrangement invariant spaces was given in [12].
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THEOREM 3. Let Γ be a rectifiable Jordan curve and X (Γ) be a rearrangement
invariant space with non-trivial Boyd indices. Then the inequality

‖SΓ ( f )‖X(Γ) � c18 ‖ f‖X(Γ) , f ∈ X (Γ) (14)

holds if and only if Γ is a Carleson curve.

Let k be a nonnegative integer. Then the function ϕ ′ (z)ϕk (z) has a pole of order k
at ∞. Hence there exists a polynomial Bk (z) of degree k and a function Ek (z) analytic
in G− such that Ek (∞) = 0 and

ϕk (z)ϕ ′ (z) = Bk (z)+Ek (z)

holds for every z ∈ G−.
The polynomials Bk (z) (k = 0,1,2, ...) are called the Faber polynomals of the

second kind for G and satisfy the expansion

1
ψ (w)− z

=
∞

∑
k=0

Bk (z)
wk+1 (15)

for z ∈ G and w ∈ U− [16, p. 95].
Now let’s consider the function [ϕ1 (z)]k−2 ϕ ′

1
(z) . This function is analytic in G\

{0} and has a pole of order k at the point 0 . If we denote its principal part at 0 by
B̃k (1/z) , then there exists an analytic function Ẽk (z) in G such that

[ϕ1 (z)]k−2 ϕ ′
1
(z) = B̃k (1/z)+ Ẽk (z)

holds for every z ∈ G\ {0} and for the principal parts B̃k (1/z) the expansion

w−2

ψ1 (w)− z
=

∞

∑
k=0

− B̃k (1/z)
wk+1 , z ∈ G, w ∈ U

− (16)

holds ([4]).

3. Proofs of main results

Let f ∈ X (Γ) . Since X (Γ) ⊂ L1 (Γ) , we get f ∈ L1 (Γ) . Hence the functions

f0 (w) := f (ψ (w))ψ ′ (w)

and
f1 (w) := f (ψ1 (w))ψ ′

1
(w)w2

are integrable on T . We can associate the series

f0 (w) ∼
∞

∑
k=−∞

akw
k (17)
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and

f1 (w) ∼
∞

∑
k=−∞

ãkw
k (18)

for w ∈ T.
Let

Kn (θ ) =
n

∑
m=−n

λ (n)
m eimθ

be an even, nonnegative trigonometric polynomial satisfying the conditions

1
2π

∫ π

−π
Kn (θ )dθ = 1, (19)

∫ π

0
θKn (θ )dθ � c9/n, (20)

for every natural number n and with a constant c9 > 0. In special case, the Jackson
kernel

Jn (θ ) =
3sin4 (nθ/2)

n(2n2 +1)sin4 (θ/2)
satisfies these conditions ([5, p. 203]).

Let us consider the integral

I (θ ,z) :=
1

2π i

∫
Γ

[
f
(
ς−θ

)
ϕ ′ (ς−θ

) +
f
(
ςθ

)
ϕ ′ (ςθ

)
]

ϕ ′ (ς)
ς − z

dς , z ∈ G.

Using the change of variables ς = ψ
(
eit

)
, we obtain

I (θ ,z) =
1
2π

∫ π

−π

[
f0

(
ei(t−θ)

)
+ f0

(
ei(t+θ)

)] eit

ψ (eit)− z
dς .

Since by (17)

f0
(
eit) ∼ ∞

∑
k=−∞

ake
ikt

and by (15)
eit

ψ (eit)− z
∼

∞

∑
k=0

Bk (z)
eikt

we can associate to I (θ ,z) the series expansion

I (θ ,z) ∼
∞

∑
k=0

akBk (z)
[
e−ikθ + eikθ

]
, z ∈ G ([1, pp. 74–75]).

Since I (θ ,z) ∈ L1 ([−π ,π ]) and Kn (θ ) is of bounded variation, by the generalized
Parseval identity [1, pp. 225–228] and (19), we get

1
2π

∫ π

−π
Kn (θ ) I (θ ,z)dθ =

n

∑
k=0

(
μ (n)

k
+ λ (n)

k

)
akBk (z) .
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By definition of I (θ ,z) we obtain

1
4π2i

∫ π

−π
Kn (θ )

⎧⎨
⎩

∫
Γ

[
f
(
ς−θ

)
ϕ ′ (ς−θ

) +
f
(
ςθ

)
ϕ ′ (ςθ

)
]

ϕ ′ (ς)
ς − z

dς

⎫⎬
⎭dθ =

n

∑
k=0

(
μ (n)

k + λ (n)
k

)
akBk (z)

for z ∈ G.
Hence, we conclude that

Pn (z, f ) :=
1

4π2i

∫ π

0
Kn (θ )

⎧⎨
⎩

∫
Γ

[
f
(
ς−θ

)
ϕ ′ (ς−θ

) +
f
(
ςθ

)
ϕ ′ (ςθ

)
]

ϕ ′ (ς)
ς − z

dς

⎫⎬
⎭dθ , z ∈ G

is an algebraic polynomial of degree n .
Now, we consider the integral

I1 (θ ,z) :=
1

2π i

∫
Γ

[
f
(
ς−1θ

)
e−2iθ

ϕ ′
1

(
ς−1θ

) +
f
(
ς1θ

)
e2iθ

ϕ ′
1

(
ς1θ

)
]

ϕ ′
1
(ς)

ς − z
dς , z ∈ G−.

Substituting ς = ψ1

(
eit

)
here, we obtain

I1 (θ ,z) =
1
2π

∫ π

−π

[
f1

(
ei(t−θ)

)
+ f1

(
ei(t+θ)

)] e−it

ψ1 (eit)− z
dt.

Then, (16) and (18), the function I1 (θ ,z) has [1, pp. 74–75] Fourier expansion

I1 (θ ,z) ∼−
∞

∑
k=0

ãk B̃k (1/z)
[
e−ikθ + eikθ

]
, z ∈ G−.

Since I1 (θ ,z) is integrable and the kernel Kn (θ ) is of bounded variation, generalized
Parseval identity ([1, pp. 225–228]) yields

1
2π

∫ π

−π
Kn (θ ) I1 (θ ,z)dθ = −

n

∑
k=0

(
μ̃ (n)

k + λ̃ (n)
k

)
ãk B̃k (1/z) ,z ∈ G−,

for z ∈ G−. Taking into account definition of I1 (θ ,z) , for z ∈ G− is seen that

Qn (1/z, f ) :=
1

4π2i

π∫
0

Kn (θ )

⎧⎨
⎩

∫
Γ

[
f
(
ς−1θ

)
e−2iθ

ϕ ′
1

(
ς−1θ

) +
f
(
ς1θ

)
e2iθ

ϕ ′
1

(
ς1θ

)
]

ϕ ′
1
(ς)

ς − z
dς

⎫⎬
⎭dθ

a polynomial of degree n of 1/z.
On the other hand, by (4) and (5), we obtain

Pn (z, f ) =
1

4π2i

∫ π

0
Kn (θ )

⎧⎨
⎩

∫
Γ

Fθ (ς)dς
ς − z

⎫⎬
⎭dθ , z ∈ G
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and

Qn (1/z, f ) =
1

4π2i

∫ π

0
Kn (θ )

⎧⎨
⎩

∫
Γ

F1θ (ς)dς
ς − z

⎫⎬
⎭dθ , z ∈ G−,

where
Fθ (ς) := T(−θ) f (ς)+Tθ f (ς)

and
F1θ (ς) := T1(−θ) f (ς)+T1θ f (ς) .

Taking into account (10) and (11), we get

Pn (z, f ) =
1
2π

∫ π

0
Kn (θ )(Fθ )+ (z)dθ , z ∈ G (21)

and

Qn (1/z, f ) =
1
2π

∫ π

0
Kn (θ ) (F1θ )− (z)dθ , z ∈ G−. (22)

Proof of Theorem 1. Let f ∈ Xω (Γ) . Let us take z′ ∈ G. By (19) we have

f + (
z′
)

=
1
2π

∫ π

−π
f + (

z′
)
Kn (θ )dθ =

1
2π

∫ π

0
2 f + (

z′
)
Kn (θ )dθ ,

which together with (21) implies that

f + (
z′
)−Pn

(
z′, f

)
=

1
2π

∫ π

0
Kn (θ )

{
2 f + (

z′
)− (Fθ )+

(
z′
)}

dθ .

Limiting z′ → z ∈ Γ, along all nontangential paths inside Γ , by (12) we have

f + (z)−Pn (z, f ) =
1
4π

∫ π

0
Kn (θ ) [(2 f −Fθ) (z)]dθ (23)

+
1
2π

∫ π

0
Kn (θ ) [SΓ (2 f −Fθ )(z)]dθ

for almost all z ∈ Γ.
Taking the supremum over all functions g ∈ X ′ (Γ) with ‖g‖X ′(Γ) � 1 in the rela-

tion (23), we get

∥∥ f + −Pn (., f )
∥∥

X(Γ) = sup
∫

Γ

∣∣ f + (z)−Pn (z, f )
∣∣ |g(z)| |dz|

� sup
∫

Γ

∣∣∣∣ 1
4π

∫ π

0
Kn (θ ) [(2 f −Fθ )(z)]dθ

∣∣∣∣ |g(z)| |dz|

+sup
∫

Γ

∣∣∣∣ 1
2π

∫ π

0
Kn (θ ) [SΓ (2 f −Fθ )(z)]dθ

∣∣∣∣ |g(z)| |dz|

� sup
∫

Γ

{
1
4π

∫ π

0
Kn (θ ) |(2 f −Fθ) (z)|dθ

}
|g(z)| |dz|

+sup
∫

Γ

{
1
2π

∫ π

0
Kn (θ ) |SΓ (2 f −Fθ) (z)|dθ

}
|g(z)| |dz| .
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By Fubini theorem and (14) we obtain

∥∥ f +−Pn (., f )
∥∥

X(Γ) � 1
4π

∫ π

0
Kn (θ )

{
sup

∫
Γ
|(2 f −Fθ ) (z)| |g(z)| |dz|

}
dθ

+
1
2π

∫ π

0
Kn (θ )

{
sup

∫
Γ
|SΓ (2 f −Fθ )(z)| |g(z)| |dz|

}
dθ

� 1
4π

∫ π

0
Kn (θ )

[
‖2 f −Fθ‖X(Γ)

]
dθ

+
1
2π

∫ π

0
Kn (θ )

[
‖SΓ (2 f −Fθ )‖X(Γ)

]
dθ

� c19

∫ π

0
Kn (θ )

[
‖Fθ −2 f ‖X(Γ) +‖Fθ −2 f ‖X(Γ)

]
dθ

and then by definition of ω (2)
X (., f ) we have

∥∥ f +−Pn (., f )
∥∥

X(Γ) � c20

∫ π

0
Kn (θ )ω (2)

X (θ , f )dθ . (24)

Similarly, for z′ ∈ G− we obtain

f − (
z′
)−Qn

(
1/z′, f

)
=

1
2π

∫ π

0
Kn (θ )

{
2 f − (

z′
)− (F1θ )−

(
z′
)}

dθ

Here letting z′ → z ∈ Γ, along all nontangential paths outside Γ by (12) we get

f − (z)−Qn (1/z, f ) =
1
2π

∫ π

0
Kn (θ ) [SΓ (2 f −F1θ) (z)]dθ

+
1
4π

∫ π

0
Kn (θ ) [(F1θ −2 f )(z)]dθ

for almost all z ∈ Γ. Therefore,

∥∥ f−−Qn (., f )
∥∥

X(Γ) � c21

∫ π

0
Kn (θ )

[
‖Fθ −2 f‖X(Γ)

]
dθ

and by definition of ω (2)
1X (., f ) we obtain

∥∥ f−−Qn (., f )
∥∥

X(Γ) � c22

∫ π

0
Kn (θ )ω (2)

1X (θ , f )dθ . (25)

If we set

Rn (z, f ) := Pn (z, f )−Qn (1/z, f ) ,
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then by (13), (24), (25) and by definition of Ω(2)
X (., f ) we get

‖ f −Rn (., f )‖X(Γ) �
∥∥ f + −Pn (., f )

∥∥
X(Γ) +

∥∥ f−−Qn (., f )
∥∥

X(Γ)

� c23

∫ π

0
Kn (θ )Ω(2)

X (θ , f )dθ

� c24

∫ π

0
Kn (θ )ω (θ )dθ

= c24

∫ π

0
Kn (θ )ω (nθ/n)dθ

� c25ω (1/n)
∫ π

0
Kn (θ )(nθ +1)dθ .

This relation, (19) and (20) give (7). �

Proof of Corollary 1. Let f ∈Eω
X (G) . Let’s take z′ ∈G−. Since then f ∈EX (G)⊂

E1 (G) we have by the Cauchy theorem

f−
(
z′
)

=
1

2π i

∫
Γ

f (ς)
ς − z

dς = 0.

Thus f − (z′) = 0 for almost all z ∈ Γ and hence f = f + a.e. on Γ. Now, by (24),

by the definition of ω (2)

X
(., f ), and by properties (19) and (20) of the kernel Kn (θ ) , we

have

‖ f −Pn (., f )‖LM(Γ) � c26

∫ π

0
Kn (θ )ω (2)

X (θ , f )dθ � c27

∫ π

0
Kn (θ )ω (θ )dθ

� c28ω (1/n) ,

and hence (8) is proved. �

Proof of Corollary 2. Let f ∈ Eω
X (G−) and z′ ∈ G. Then by the Cauchy formula

we have

f + (
z′
)

=
1

2π i

∫
Γ

f (ς)
ς − z

dς = f (∞) .

Hence f + (z′) = f (∞) a.e. on Γ and by (12) we have f = f (∞)− f−a.e. on Γ. Now,
setting

Q̃n (1/z, f ) := f (∞)−Qn (1/z, f )

and applying the relation (25) we conclude that

∥∥ f − Q̃n (., f )
∥∥

X(Γ) � c29

∫ π

0
Kn (θ )ω (2)

1X (θ , f )dθ � c30

∫ π

0
Kn (θ )ω (θ )dθ

� c31ω (1/n) ,

and the proof is completed. �
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Proof of Theorem 2. Let Γ be a Carleson curve and f ∈Xω (Γ)∗ . Since Xω (Γ)∗ ⊂
X (Γ) ⊂ L1 (Γ) ([12]) we obtain f ∈ L1 (Γ) . Cauchy’s singular integral SΓ f (z) exists
a.e. on Γ . Hence, by Privalov’s theorem Cauchy type integrals f + and f− (z) have
non-tangential limits a.e. on Γ([9, p. 431]).

Therefore, we have

FAB (t) = A f (t)+B f̃ (t) = A
[
f + (t)− f− (t)

]
+B

[
f + (t)+ f− (t)

]
= (A+B) f + (t)+ (B−A) f− (t) (26)

a.e. on Γ. By this relation, for the approximation of the function FAB (t) , it is sufficient
to approximate the functions f + and f− which are analytic inside and outside of the
curve Γ , respectively.

From the property of the kernel Kn (θ ) , the function f + can be written as

f + (t) =
1
π

∫ π

0
Kn (θ )SΓ (t)dθ +

1
4π

∫ π

0
Kn (θ ) f (t)dθ .

By Corollary 1, we get ∥∥ f + −Pn (., f )
∥∥

X(Γ) � c32ω (1/n) .

Then we obtain

‖(A+B) f − (A+B)Pn (., f )‖X(Γ) � c33 (A+B)ω (1/n) . (27)

To complete the proof, we investigate the approximation of the function f− (z) .
We denote by Γ′ the image of Γ under the transformation z → 1

z′ and set f1 (z′) =
f
(

1
z′
)
.

We have f− (z) = f +
1 (z) where the function f +

1 is analytic in IntΓ′. Then by the
relation (24), there exist an algebraic polynomial P̃n (z′, f1 ) such that

∥∥ f +
1

(
z′
)− P̃n

(
z′, f1

)∥∥
X(Γ) � c34

∫ π

0
Kn (θ )ω (2)

X (θ , f1)dθ .

By the definition of ω (2)
X (θ , f1) , (19) and (20) we get

∥∥ f +
1

(
z′
)− P̃n

(
z′, f1

)∥∥
X(Γ) � c35

∫ π

0
Kn (θ )ω (2)

X (θ , f1)dθ � c37ω (2)
X (1/n, f1). (28)

Further, since f +
1 (t ′) = f− (t) and the point z = 0 is in IntΓ , we obtain∥∥ f +

1

(
t ′
)− P̃n

(
t ′, f1

)∥∥
X(Γ′) 

∥∥ f− (t)− P̃n (1/t, f )
∥∥

X(Γ) . (29)

Using the same method in Teorem of [15] we can prove that

ω (2)
X (1/n, f1)  ω (2)

2X (1/n, f ). (30)
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Since (26), (29) and (30) we obtain∥∥ f− (t)− P̃n (1/t, f )
∥∥

X(Γ) � c38ω (2)
2X (1/n, f ). (31)

Then, by (31) we can write∥∥(B−A) f− (t)− (B−A) P̃n (1/t, f )
∥∥

X(Γ) � c39 (B−A)ω (2)
2X (1/n, f ) (32)

� c40 (B−A)ω∗(1/n). (33)

Hence from relation (13), by virtue of (27) and (32), we get∥∥FAB (t)− [
(A+B)Pn (t, f )+ (B−A)P̃n (1/t, f )

]∥∥
X(Γ)

�
∥∥(A+B) f + (t)− (A+B)Pn (t, f )

∥∥
X(Γ)

+
∥∥(B−A) f− (t)− (B−A)P̃n (1/t, f )

∥∥
X(Γ)

� c41 (A+B)ω (1/n)+ c15 (B−A)ω∗ (1/n) .

Setting
Rn (t, f ) = (A+B)Pn (t, f )+ (B−A)P̃n (1/t, f ) ,

we have

‖FAB (t)−Rn (t, f )‖X(Γ) � c42 (A+B)ω (1/n)+ c15 (B−A)ω∗ (1/n) .

Now we study the following cases:
1. Let A = B; then

‖ FAB (t)−2APn (t, f )‖X(Γ) � c43 [2A]ω (1/n) .

and in this case we have polynomial approximation of the function FAB (t) . In special
case, if A = 1

2 , B = 1
2 we find

FAB (t) =
1
2

f (t)+
1
2

f̃ (t) = f + (t)

and thus we have ∥∥ f + −Pn (t, f )
∥∥

X(Γ) � c44ω (1/n) .

2. Let A �= B; then

‖FAB (z)−Rn (z, f )‖X(Γ) � c45 (A+B)ω (1/n)+ c46 (B−A)ω∗ (1/n) .

If A = 1, B = 0 we get

FAB (z) = f (z) , Rn (z, f ) = Pn (z, f )+ P̃n (1/z, f ) = Rn1 (z, f ) . (34)

By (34) we obtain

‖ f (z)−Rn1 (z, f )‖X(Γ) � c47ω (1/n)+ c48ω∗ (1/n) .
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Let A = − 1
2 , B = 1

2 . Thus

FAB (t) = −1
2

f (t)+
1
2

f̃ (t) = f− (t) (35)

and by (35) we have ∥∥ f + −Rn2 (z, f )
∥∥

X(Γ) � c49ω∗ (1/n) .

where
Rn2 (z, f ) = P̃n (1/z, f ) .

Thus the proof of Theorem 2 is completed. �
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