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SOME INEQUALITIES FOR THE GENERALIZED

SINE AND THE GENERALIZED HYPERBOLIC SINE

LI YIN AND LI-GUO HUANG

Abstract. In this paper, the authors establish some new inequalities for the generalized sine and
the generalized hyperbolic sine.

1. Introduction

During the last years, many authors have studied the generalized trigonometric
functions introduced by D. Lindqvist in a highly cited papers [9]. Let 1 < p < ∞ , we
can define the function as follows:

arcsinp(x) =
∫ x

0

1

(1− t p)1/p
dt, 0 � x � 1, (1.1)

and
πp

2
= arcsinp(1) =

∫ 1

0

1

(1− t p)1/p
dt. (1.2)

The inverse of arcsinp on [0,πp/2] is called the generalized sine function and denoted
sinp . By standard extension procedure as the sine function, we get a differentiable
function on the whole of (−∞,+∞). It is easy to see that the function sinp is strictly
increasing and concave on [0,πp/2] . In the same way, we can define the generalized
cosine function, the generalized tangent function and their inverses, and also the corre-
sponding hyperbolic functions.

The generalized cosine function cosp is defined as

cosp(x) =
d
dx

sinp(x), x ∈ [0,πp/2]. (1.3)

It is easy to see that

cosp(x) = (1− (sinp(x))p)1/p, x ∈ [0,πp/2] (1.4)

and
d
dx

cosp(x) = −(cosp(x))2−p(sinp(x))p−1, x ∈ [0,πp/2]. (1.5)
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The generalized tangent function tanp is defined as

tanp(x) =
sinp(x)
cosp(x)

, x ∈ R\{kπp + πp
2 : k ∈ Z}. (1.6)

Similarly, the generalized inverse hyperbolic sine function

arcsinhp(x) =

⎧⎨
⎩

∫ x

0

1

(1+ t p)1/p
dt , x � 0,

−arcsinhp(−x) , x < 0.

(1.7)

The inverse of arcsinp is called the generalized hyperbolic sine function and denoted
sinhp . The generalized hyperbolic cosine function is defined as

coshp(x) =
d
dx

sinhp(x). (1.8)

For above definition, we easily obtain

(coshp(x))p − ∣∣sinhp(x)
∣∣p = 1 , x ∈ R, (1.9)

and
d
dx

coshp(x) = (coshp(x))2−p(sinhp(x))p−1 , x � 0. (1.10)

For more, the reader may see the references [4], [5], [6], [7], [8].

2. Lemmas

LEMMA 2.1. Let the nonempty number set D ⊆ (0,∞) , the mapping f : D −→
J ⊆ (0,∞) is a bijective function. Assume that function f (x)

xk (x ∈ D, k > 0) is strictly
increasing. Then

(1) If f (x) � y for all x ∈ D, then xky � f (x)( f−1(y))k where f−1 : J −→ D
denotes the inverse function of f ;

(2) If f (x) � y for all x ∈ D, then xky � f (x)( f−1(y))k .

Proof. First of all, we prove the first part of Lemma. Since the function f (x)
xk

is strictly increasing, the function f (x) must be strictly increasing, too. (In fact, if

x1 < x2 , then f (x1)
xk
1

< f (x2)
xk
2

, so f (x1) <
xk
1

xk
2
f (x2) < f (x2) .) Thus, f−1(x) is also strictly

increasing.
Taking t = f−1(y) , monotonicity property of f−1(x) implies t � x . So f (t)

tk
�

f (x)
xk , i.e. xky � f (x)( f−1(y))k .

The proof of second part of Lemma is similar to (1). The proof is complete. �

REMARK 2.1. If k = 1, we obtain Theorem 2.1 of [11].
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LEMMA 2.2. [4, Lemma 2.2.] For p > 1 and x ∈ (0,1) , we have

(1)
(
1+ xp

p(1+p)

)
x < arcsinp(x) <

πp
2 x;

(2) z
(
1+ log(1+xp)

1+p

)
< arcsinhp(x) < z

(
1+ 1

p log(1+ xp)
)

, z =
(

xp

1+xp

)1/p
.

3. Main results

THEOREM 3.1. For p > 1 , k � 1 and x ∈ (0,1) , then

x
arcsinp(x)

>

(
sinp

(πpx
2

))k

πp
2 xk

. (3.1)

Proof. Let D = (0,1) and f (x) = arcsinp(x) . Direct computation yields

(
f (x)
xk

)′
=

1
x2k

(
xk

(1− xp)1/p
− arcsinp(x)kxk−1

)
=

1
xk+1 g(x) (3.2)

where g(x) = x
(1−xp)1/p − k arcsinp(x) and g(0) = 0. For k � 1,

g′(x) =
1− k+ xp(1− xp)−1

(1− xp)1/p
> 0 (3.3)

implies g(x) > g(0) = 0, and hence f (x)
xk is strictly increasing.

Taking y = πpx
2 , we have

xk πpx

2
> arcsinp(x)

(
sinp

(πpx

2

))k
(3.4)

which implies inequality (3.1) by using (1) of Lemma 2.1 and (1) of Lemma 2.2. �

THEOREM 3.2. If f (x) � y for all p > 1 , k � 1
2 and x ∈ (0,1) , y ∈ (0,πp/2) ,

then
xky � arcsinhp(x)(sinhp (y))k . (3.5)

Proof. By differentiation and easy computation, we have

(
arcsinhp(x)

x

)′
=

1
xk+1

(
x

(1+ xp)1/p
− karcsinhp(x)

)
=

1
xk+1 h(x) (3.6)

and

h′(x) =
1

(1+ xp)1/p

(
1− k− xp

1+ xp

)
(3.7)

where h(x) = x
(1+xp)1/p − karcsinhp(x) and h(0) = 0.
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Putting

λ (x) = 1− k− xp

1+ xp , (3.8)

we have

λ ′(x) =
−pxp−1

(1+ xp)2/p
< 0 (3.9)

which implies λ (x) > λ (1) = 1
2 − k � 0, and hence arcsinhp(x)

xk is strictly increasing.
Using Lemma 2.1, we easily obtain inequality (3.5). �

REMARK 3.1. By Lemma 2.2, we have

arcsinhp(x) <

(
xp

1+ xp

)1/p (
1+

1
p

log(1+ xp)
)

< x

(
1+

1
p

log(1+ xp)
)

< x

(
1+

log2
p

)
= y.

So, (3.5) of Theorem 3.2 becomes

xk+1
(

1+
log2

p

)
> arcsinhp(x)

(
sinhp

(
x

(
1+

log2
p

)))k

(3.10)

or

x
arcsinhp(x)

>

(
sinhp

(
x
(
1+ log2

p

)))k

(
1+ log2

p

)
xk

. (3.11)

THEOREM 3.3. Let p > 1 , q > 1 satisfy 1/p+1/q= 1 . For any x ∈ (0,1) , then

x
2p

Bx2p

(
1
2p

,1− 1
p

)
� arcsinp(x)arcsinhp(x) < x1+1/q(− ln(1− x))1/p (3.12)

where Bx2p

(
1
2p ,1− 1

p

)
is incomplete beta function.

Proof. For the first inequality, it is easy to see that the function 1
(1−t p)1/p is strictly

increasing and 1
(1+t p)1/p is strictly decreasing on t ∈ (0,1) . Using integral expression

of arcsinp(x),arcsinhp(x) and Tchebychef’s inequality, we have

arcsinp(x)arcsinhp(x) =
∫ x

0

1

(1− t p)1/p
dt

∫ x

0

1

(1+ t p)1/p
dt

� 1
x

∫ x

0

1

(1− t2p)1/p
dt

t2p=u= x
2p

∫ x2p

0
(1−u)−1/pu(1/2p)−1du

=
x
2p

Bx2p

(
1
2p

,1− 1
p

)
.
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For the second inequality, using Hölder’s inequality, we have

arcsinp(x)arcsinhp(x) =
∫ x

0

1

(1− t p)1/p
dt

∫ x

0

1

(1+ t p)1/p
dt

�
(∫ x

0

1
1− t p dt

)1/p (∫ x

0
1qdt

)1/q (∫ x

0

1
1+ t p dt

)1/p (∫ x

0
1qdt

)1/q

= x2/q
(∫ x

0

1
1− t p dt

∫ x

0

1
1+ t p dt

)1/p

< x2/q
(∫ x

0

1
1− t

dt
∫ x

0
1dt

)1/p

= x1+1/q(− ln(1− x))1/p. �

Finally, we pose an open problem.

OPEN PROBLEM 3.1. For all p ∈ (1,2] and x ∈ (0,πp/2) , then

ln(1− sinp(x))
lncosp(x)

<
x+ p

x
. (3.13)
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