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MAJORIZATION RESULTS FOR SOME

CLASSES OF MULTIVALENT FUNCTIONS

A. O. MOSTAFA AND M. K. AOUF

Abstract. In this paper we obtain some majorization results for some classes of multivalent func-
tions defined by certain differential operator.

1. Introduction

Let A(p, j) be the class of functions which are analytic and p-valent in the unit
disc U = {z ∈ C : |z| < 1} of the form:

f (z) = zp +
∞

∑
k=p+ j

akz
k (p, j ∈ N = {1,2, ...}). (1.1)

For g ∈ A(p, j) , given by g(z) = zp +
∞
∑

k=p+ j
bkzk, the Hadamard product (or con-

volution) of f and g is defined by

( f ∗ g)(z) = zp +
∞

∑
k=p+ j

akbkz
k = (g ∗ f )(z). (1.2)

For f ∈ A(p, j), we have (see [7])

f (q)(z) = δ (p,q)zp−q +
∞

∑
k=p+ j

δ (k,q)akz
k−q (q ∈ N0 = N∪{0}; p > q), (1.3)

where

δ (x,y) =
x!

(x− y)!
=
{

1 (y = 0)
x(x−1)...(x− y+1) (y �= 0).

For f ∈ A(p, j), Aouf ([4] and [5]) defined the operator Dn
p f (q) as follows:

D0
p f (q)(z) = f (q)(z);

D1
p f (q)(z) = Dp f (q)(z) =

z
(p−q)

( f (q)(z))′ =
z

(p−q)
f (q+1)(z)
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and (in general):

Dn
p f (q)(z) = Dp(D

(n−1)
p f (q)(z))

= δ (p,q)zp−q +
∞

∑
k=p+ j

δ (k,q)
(

k−q
p−q

)n

akz
k−q

(p, j ∈ N; q,n ∈ N0; p > q). (1.4)

We note that, for q = 0, Dn
p f (0)(z) = Dn

p f (z) , where the operator Dn
p was intro-

duced and studied by Kamali and Orhan [11] and Aouf and Mostafa [6] which reduces
to the Salagean operator Dn for p = 1 (see [17]).

From (1.4), one can easily verify that

z
(
Dn

p f (q)(z)
)′

= (p−q)Dn+1
p f (q)(z). (1.5)

For two analytic functions f , g ∈ A(p, j) , we say that f is subordinate to g , writ-
ten f (z) ≺ g(z) if there exists a Schwarz function w , which (by definition) is analytic
in U with w(0) = 0 and |w(z)|< 1 for all z∈U, such that f (z) = g(w(z)), z∈U. Fur-
thermore, if the function g is univalent in U, then we have the following equivalence
(see [13]):

f (z) ≺ g(z) ⇔ f (0) = g(0) and f (U) ⊂ g(U).

If f and g are analytic functions in U , then f majorized by g in U and written

f (z) << g(z), (1.6)

if there exists a function φ , analytic in U , such that (see [12]):

|φ(z)| � 1 and f (z) = φ(z)g(z) (z ∈U). (1.7)

It is noted that the notation of majorization is closely related to the concept of
quasi-subordination between analytic functions.

DEFINITION 1. For γ ∈ C
∗ = C\{0} , −1 � B < A � 1, p ∈ N , n,q ∈ N0 , p > q

and |γ(A−B)+B(p−q)| � p− q, a function f ∈ A(p, j) is said to be in the class
Sn

p,q(γ,A,B) of p -valently functions in U , if and only if

1+
1
γ

⎛
⎜⎝ z
(
Dn

p f (q)(z)
)′

Dn
p f (q)(z)

− p+q

⎞
⎟⎠≺ 1+Az

1+Bz
, (1.8)

where Dn
p f (q) is given by (1.4).

Specializing the parameters n, p,q,A,B and γ , we have the following classes:

i) Sn
p,0(γ,A,B)= Sn

p(γ,A,B)=

{
f ∈ A(p, j) : 1+ 1

γ

(
z
(
Dn

p f (z)
)′

Dn
p f (z)

− p

)
≺ 1+Az

1+Bz

}
;
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ii) Sn
p,q(γ,1,−1)= Sn

p,q(γ)=
{

f ∈ A(p, j) : Re

[
1+ 1

γ

(
z(Dn

p f (q)(z))′

Dn
p f (q)(z)

−p+q

)]
> 0

}
;

iii) S0
p,0((p−α)cosλe−iλ ,1,−1) = Sλ

p (α)

=
{

f ∈ A(p, j) : Re

(
eiλ z f ′(z)

f (z)

)
> α cosλ (|λ | < π

2 ;0 � α < p)
}

(see Srivastava et al. [18]);

iv) S1
p,0((p−α)cosλe−iλ ,1,−1) = Cλ

p (α)

=
{

f ∈ A(p, j) : Re

{
eiλ (1+

z f ′′(z)
f ′(z)

)
}

> α cosλ (|λ | < π
2 ;0 � α < p)

}
(see Srivastava et al. [18]);

v) Sn
p,q((p−q−α)cosλe−iλ ,1,−1) = Sn,λ

p,q(α)

=

⎧⎪⎨
⎪⎩ f ∈ A(p, j) : Re

⎛
⎜⎝eiλ

z
(
Dn

p f (q)(z)
)′

Dn
p f (q)(z)

⎞
⎟⎠> α cosλ (|λ | < π

2 ;0 � α < p−q)

⎫⎪⎬
⎪⎭ ;

vi) S0
p,q(γ,1,−1) = Sp,q(γ) (see Altintas and Srivastava [2]);

vii) Sn
p,0(γ,1,−1) = Sn(p,γ) (see Akbulut et al. [3]);

viii) S0
1,0(γ,1,−1) = S(γ) (see Nasr and Aouf [14]);

ix) S1
1,0(γ,1,−1) = C(γ) (see Nasr and Aouf [14] and Wiatrowski [19]);

x) S0
1,0(1−α,1,−1) = S∗(α) (0 � α < 1) (see Robertson [16]).

Majorization problems for the class S∗ = S∗(0) had been investigated by MacGre-
ogor [12]. Recently Altintas et al. [1] investigated a majorization problem for the class
S(γ). Very recently Goyal and Goswami [10] generalized these results for the fractional
operator (see also, Goswami and Aouf [8]). In this paper we investigated majorization
problems for the class Sn

p,q(γ,A,B) and some of its subclasses.

2. Main results

Unless otherwise mentioned, we assume that γ ∈ C
∗ , −1 � B < A � 1, p ∈ N ,

n,q ∈ N0 and p > q .

THEOREM 1. Let the function f ∈ A(p, j) and g ∈ Sn
p,q(γ,A,B). If Dn

p f (q) is

majorized by Dn
pg

(q) , then

∣∣∣Dn+1
p f (q)(z)

∣∣∣� ∣∣∣Dn+1
p g(q)(z)

∣∣∣ (|z| � r0), (2.1)

where r0 = r0(p,q,γ,A,B) is the smallest positive root of the equation

|γ(A−B)+B(p−q)|r3− (2 |B|+ p−q)r2− [2+ |γ(A−B)+B(p−q)|]r+ p−q = 0.
(2.2)
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Proof. Since g ∈ Sn
p,q(γ,A,B), then it follows from (1.8) that

1+
1
γ

⎛
⎜⎝ z
(
Dn

pg
(q)(z)

)′
Dn

pg(q)(z)
− p+q

⎞
⎟⎠=

1+Aw(z)
1+Bw(z)

, (2.3)

where w(z) = c1z + c2z2 + ... ∈ P and P denotes the well known class of bounded
analytic functions in U which satisfy w(0) = 0 and |w(z)| � 1.

From (2.3), we have:

z
(
Dn

pg
(q)(z)

)′
Dn

pg(q)(z)
=

p−q+[γ(A−B)+B(p−q)]w(z)
(1+Bw(z))

. (2.4)

Also from (1.5) and (2.4), we have

∣∣∣Dn
pg

(q)(z)
∣∣∣� (p−q)(1+ |B| |z|)

p−q−|γ(A−B)+B(p−q)||z|
∣∣∣Dn+1

p g(q)(z)
∣∣∣ . (2.5)

Since, Dn
p f (q) is majorized by Dn

pg
(q) , then we have

Dn
p f (q)(z) = φ(z)Dn

pg
(q)(z). (2.6)

Differentiating (2.6) with respect to z and then multiplying by z , we get

z
(
Dn

p f (q)(z)
)′

= zφ ′(z)Dn
pg

(q)(z)+ φ(z)z
(
Dn

pg
(q)(z)

)′
. (2.7)

Noting that the Schwarz function φ satisfies (see [15])

∣∣φ ′(z)
∣∣� 1−|φ(z)|2

1−|z|2 , (2.8)

and using (1.5) , (2.5) and (2.8) in (2.7), we have

∣∣∣Dn+1
p f (q)(z)

∣∣∣�
{
|φ(z)|+ |z|(1−|φ(z)|2)

1−|z|2
(1+B|z|)

p−q−|γ(A−B)+B(p−q)||z|

}∣∣∣Dn+1
p g(q)(z)

∣∣∣ .
(2.9)

Setting |z| = r and |φ(z)| = ρ (0 � ρ � 1), (2.9) reduces to

∣∣∣Dn+1
p f (q)(z)

∣∣∣� Ψ(r,ρ)
(1− r2) [p−q−|γ(A−B)+B(p−q)|r]

∣∣∣Dn+1
p g(q)(z)

∣∣∣ , (2.10)

where

Ψ(r,ρ) = ρ(1− r2) [p−q−|γ(A−B)+B(p−q)|r]+ r(1−ρ2)(1+ r |B|)
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takes its maximum value at ρ = 1 with r = r0(p,q,γ,A,B) given by (2.2). Further-
more, if 0 � σ � r0(p,q,γ,A,B), the the function Φ(ρ) defined by

Φ(ρ) = ρ(1−σ2) [p−q−|γ(A−B)+B(p−q)|σ ]+ σ(1−ρ2)(1+ σ |B|)
is an increasing function on 0 � ρ � 1, so that

Φ(ρ) � Φ(1) = (1−σ2) [p−q−|γ(A−B)+B(p−q)|σ ] ,
0 � ρ � 1;0 � σ � r0(p,q,γ,A,B).

Then, setting ρ = 1 in (2.10), we conclude that (2.1) holds true for |z|� r0(p,q,γ,A,B).
This completes the proof of Theorem 1. �

Putting q = 0 in Theorem 1, we have the following corollary:

COROLLARY 1. Let the function f ∈ A(p, j) and g ∈ Sn
p(γ,A,B). If Dn

p f is ma-
jorized by Dn

pg then ∣∣Dn+1
p f (z)

∣∣� ∣∣Dn+1
p g(z)

∣∣ (|z| � r1),

where r1 = r1(p,γ,A,B) is the smallest positive root of the equation:

|γ(A−B)+Bp|r3 − [2 |B|+ p]r2− [2+ |γ(A−B)+Bp|]r+ p = 0.

Putting A = 1 and B = −1 in Theorem 1, (2.2) becomes

|2γ +q− p|r3− (2+ p−q)r2− [2+ |2γ +q− p|]r+ p−q = 0, (2.11)

which has r = −1 one of its roots and the other two roots are given by

|2γ +q− p|r2 − [|2γ +q− p|+2+ p−q]r+ p−q= 0.

Since it may find the smallest postive root of (2.11) , we have the following corollary:

COROLLARY 2. Let the function f ∈ A(p, j) and g ∈ Sn
p,q(γ). If Dn

p f (q) is ma-

jorized by Dn
pg

(q) , then∣∣∣Dn+1
p f (q)(z)

∣∣∣� ∣∣∣Dn+1
p g(q)(z)

∣∣∣ (|z| � r2),

where r2 = r2(p,q,γ) is given by

r2 =
ξ −{ξ 2−4(p−q) |2γ +q− p|} 1

2

2 |2γ +q− p| ,

where ξ = |2γ +q− p|+2+ p−q.

REMARK 1. Putting n = q = 0 and p = 1 in Corollary 2, we obtain the result of
Goswami et al. [9, Corollary 2.3] which for γ = 1 reduces to the result of MacGregor
[12].

Putting q = 0, γ = (p−α)cosλe−iλ (|λ | < π
2 , 0 � α < p) in Corollary 2, we

have the following corollary:
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COROLLARY 3. Let the function f ∈ A(p, j) and g ∈ Sn,λ
p (α). If Dn

p f is ma-
jorized by Dn

pg, then

∣∣Dn+1
p f (z)

∣∣� ∣∣Dn+1
p g(z)

∣∣ (|z| � r3),

where r3 = r3(p,α,λ ) is given by

r3 =
β −{β 2−4p

∣∣2(p−α)cosλe−iλ − p
∣∣} 1

2

2
∣∣2(p−α)cosλe−iλ − p

∣∣ , (2.12)

where β =
∣∣2(p−α)cosλe−iλ − p

∣∣+2+ p.

Putting n = 0 in Corollary 3, we have the following

COROLLARY 4. Let the function f ∈ A(p, j) and g∈ Sλ
p (α). If f (z) is majorized

by g, then ∣∣ f ′(z)∣∣� ∣∣g′(z)∣∣ (|z| � r3),

where r3 is given by (2.12) .

REMARK 2. (i) Putting n = 0 in Theorem 1 we obtain the result obtained by
Altintas and Srivastava [2, Theorem 1];

(ii) Specializing the parameters n,q,A and B in Theorem 1, we obtain the ma-
jorization results for the corresponding classes defined in the introduction.
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[2] O. ALTINTAŞ AND H. M. SRIVASTAVA,Some majorization problems associated with p-valently star-
like and convex functions of complex order, East Asian Math. J., 17 (2001), no. 2, 207–218.
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