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CONSTRUCTION MODELS OF GAUSSIAN RANDOM PROCESSES

WITH A GIVEN ACCURACY AND RELIABILITY IN Lp(T ) , p � 1

NATALIYA TROSHKI

Abstract. The model of some Gaussian random process which approximates it with a given
accuracy and reliability in Lp(T ), p � 1 is constructed in this paper. The sub-Gaussian theory
of random variables is used for finding the model with given accuracy and reliability.

1. Introduction

Modelling of stochastic processes has been extensively studied in the recent years.
Ermakov and Mykhaylov considered the basic principles of the construction models
for Gaussian stochastic processes in the book [3]. Sabel’fel’d and Kurbanmuradov
studied some general methods of modelling the Gaussian but not only the stationary
stochastic processes in [9]. Issues of accuracy and reliability of modelling the stationary
Gaussian stochastic processes in Lp(T ) have been discussed in the papers by Antonini,
Kozachenko and Tegza [1] and Kozachenko and Rozora [8].

However, if the process is not stationary, the questions about the accuracy and
reliability of the constructed models has not yet been fully investigated. Recently, a
considerable attention was also given to wavelet series representations of stochastic
processes in Lp([0,T ]) , see, for example [7].

The main objective of the work is to construct the model of Gaussian stochastic
process which approximates it in Lp(T ) , p � 1 with a given accuracy and reliabil-
ity. We focus on the model for Gaussian real zero-mean stochastic process with the
following covariance function

R(t,s) =
∞∫

0

g(t,λ )g(s,λ )dF(λ ).

It was proved that the approximating process discussed in this paper is the process close
to Gaussian, namely sub-Gaussian stochastic process. Sub-Gaussian random variables
appeared in paper by Kahane [4]. More information on the theory of sub-Gaussian
random variables and stochastic processes can be found in the books [2, 8].

The organization of the article is the following. The model of Gaussian random
process is constructed in the Section 2. Our main result (Theorem 3.2) is proved in the
Section 3. Section 4 is devoted to conclusions.

Mathematics subject classification (2010): Primary 41A25; secondary 60F10.
Keywords and phrases: Gaussian random processes, accuracy and reliability, modelling, sub-Gaussian

random variables.

c© � � , Zagreb
Paper JCA-03-14

157

http://dx.doi.org/10.7153/jca-03-14


158 NATALIYA TROSHKI

2. Constructing a model of Gaussian random process

Let {Ω,B,P} be a usual, fixed probability space, T = [0,A] be a parametric set.
Let ξ = {ξ (t), t ∈ T} be a zero-mean real-valued Gaussian stochastic process. The
covariance function of the process is defined as

R(t,s) =
∞∫

0

g(t,λ )g(s,λ )dF(λ ),

where F(λ ) is a distribution function.
According to the Karhunen theorem [5], the process ξ can be represented as fol-

lows

ξ (t) =
∞∫

0

g(t,λ )dη(λ ),

where η(λ ) is a Gaussian process with independent increments, that is E(η(b) −
η(c))2 = F(b)−F(c) , b > c , and Eη(λ ) = 0.

Let the following condition hold for the function g(t,λ )

| g(t,λ )−g(t,u) |� S(| u−λ |) ·Z(t), (1)

where Z(t) is some continuous function and S(λ ),λ ∈ R monotone increases.
Let L > 0 be a given real number. We consider such partition Λ = {λ0, ...,λN}

of the set [0,∞] that λ0 = 0,λk < λk+1,λN−1 = L,λN = +∞ . For this partition we can
write

ξ (t) =
N−1

∑
k=0

λk+1∫
λk

g(t,λ )dη(λ ).

As a model for the process ξ we consider

ξΛ(t) =
N−1

∑
k=0

ηkg(t,ζk),

where ηk and ζk are independent random variables, ηk are such Gaussian random
variables that Eηk = 0, Eη2

k = F(λk+1)−F(λk) = b2
k ; ζk are random variables taking

values on the segments [λk,λk+1] and if b2
k > 0, then

Fk(λ ) = P{ζk < λ} =
F(λ )−F(λk)

F(λk+1)−F(λk)
.

If b2
k = 0, then ζk = 0 with probability one. For the sake of simplicity we assume that

b2
k > 0, k = 0,1, ...,N .

This model is a zero-mean process

EξΛ(t) = E

N−1

∑
k=0

ηkg(t,ζk) =
N−1

∑
k=0

EηkEg(t,ζk) = 0.
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The covariance function of the process ξΛ(t) coincides with covariance function of
ξ (t)

EξΛ(t)ξΛ(s) = E

(
N−1

∑
k=0

ηkg(t,ζk)

)(
N−1

∑
k=0

ηkg(s,ζk)

)
=

N−1

∑
k=0

Eη2
k ·Eg(t,ζk)g(s,ζk)

=
N−1

∑
k=0

b2
k

λk+1∫
λk

g(t,λ )g(s,λ )dFk(λ ) =
∞∫

0

g(t,λ )g(s,λ )dF(λ ).

Putting ηk =
λk+1∫
λk

dη(λ ) we consider the following difference

ξ (t)− ξΛ(t) =
N−1
∑

k=0

λk+1∫
λk

g(t,λ )dη(λ )−
N−1
∑

k=0

λk+1∫
λk

g(t,ζk)dη(λ )

=
N−1
∑

k=0

λk+1∫
λk

(g(t,λ )−g(t,ζk))dη(λ ).
(2)

LEMMA 2.1. Let condition (1) holds for a function g(t,λ ) . The we have

E

⎛
⎝ λk+1∫

λk

(g(t,λ )−g(t,ζk))dη(λ )

⎞
⎠

2m+1

= 0,

E

⎛
⎝ λk+1∫

λk

(g(t,λ )−g(t,ζk))dη(λ )

⎞
⎠

2m

� (2m)!
2m ·m!

Z2m(t)E

⎛
⎝ λk+1∫

λk

S2(| λ − ζk |)dF(λ )

⎞
⎠

m

.

Proof. Since for a zero-mean Gaussian random variable ξ it is Eξ = 0, Eξ 2k+1 =
0, Eξ 2k = (2k)!

2k·k! σ2k and the random variables ζk are independent of η(λ ) , then by the
Fubini’s theorem (Eζk

is a conditional expectation with respect to ζk ):

E

⎛
⎝ λk+1∫

λk

(g(t,λ )−g(t,ζk))dη(λ )

⎞
⎠

2m

= EEζk

⎛
⎝ λk+1∫

λk

(g(t,λ )−g(t,ζk))dη(λ )

⎞
⎠

2m

=
(2m)!
2m ·m!

E

⎛
⎝ λk+1∫

λk

| g(t,λ )−g(t,ζk) |2 dF(λ )

⎞
⎠

m

� (2m)!
2m ·m!

E

⎛
⎝ λk+1∫

λk

S2(| λ−ζk |)Z2(t)dF(λ )

⎞
⎠

m

=
(2m)!
2m ·m!

Z2m(t)E

⎛
⎝ λk+1∫

λk

S2(| λ−ζk |)dF(λ )

⎞
⎠

m

,

which finishes the proof. �
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DEFINITION 2.1. [2] A random variable ξ is sub-Gaussian if there exists a � 0,
such that the inequality

Eexp{λ ξ} � exp

{
a2λ 2

2

}
holds for all λ ∈ R .

The space of all sub-Gaussian random variables defined on a common probabil-
ity space {Ω,B,P} we denote Sub(Ω) . The space Sub(Ω) is a Banach space with
respect to the norm

τ(ξ ) = sup
λ �=0

[
2lnEexp{λ ξ}

λ 2

] 1
2

.

DEFINITION 2.2. [2] Let T be a parametric set. A stochastic process X = {X(t),
t ∈ T} is called sub-Gaussian if for all t ∈ T , X(t) ∈ Sub(Ω) and sup

t∈T
τ(X(t)) < ∞.

LEMMA 2.2. [2] Let ξ be a zero-mean random variable such that Eξ 2k+1 = 0

and θ (ξ ) = sup
k�1

[
2kk!
(2k)! Eξ 2k

] 1
2k

< ∞ . Then ξ ∈ Sub(Ω) and τ(ξ ) � θ (ξ ) .

THEOREM 2.1. The stochastic process ξ (t)−ξΛ(t) is sub-Gaussian and the fol-
lowing inequality holds

τ(ξ (t)− ξΛ(t)) � Z(t)

[
N−1

∑
k=0

b2
k sup

m�1

(
ES2m(| ζk − ζ ∗

k |)) 1
m

] 1
2

,

where b2
k = F(λk+1)−F(λk) and ζ ∗

k are random variables independent of ζk but with
the same distribution as ζk.

Proof. Using the Lemma 2.1 we obtain

τ2

⎛
⎝ λk+1∫

λk

(g(t,λ )−g(t,ζk))dη(λ )

⎞
⎠

� θ 2

⎛
⎝ λk+1∫

λk

(g(t,λ )−g(t,ζk))dη(λ )

⎞
⎠

� sup
m�1

b2
kZ

2(t)

⎛
⎜⎝E

⎛
⎝ λk+1∫

λk

S2(| λ − ζk |)dFk(λ )

⎞
⎠

m⎞⎟⎠
1
m

= sup
m�1

b2
kZ

2(t)

⎛
⎜⎝

λk+1∫
λk

⎛
⎝ λk+1∫

λk

S2(| λ −u |)dFk(λ )

⎞
⎠

m

dFk(u)

⎞
⎟⎠

1
m

,
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Lemma 2.2 implies that
λk+1∫
λk

(g(t,λ )− g(t,ζk))dη(λ ) are sub-Gaussian random vari-

ables.
Since the terms in the sum (2) for different k are independent, so from the last

equality we have

τ2(ξ (t)− ξΛ(t)) � Z2(t)
N−1

∑
k=0

b2
k sup

m�1

⎛
⎜⎝

λk+1∫
λk

⎛
⎝ λk+1∫

λk

S2(| λ −u |)dFk(λ )

⎞
⎠

m

dFk(u)

⎞
⎟⎠

1
m

.

Then, from the Fubini’s theorem and the Lyapunov inequality we obtain

τ(ξ (t)− ξΛ(t)) � Z(t)

⎡
⎢⎢⎣N−1

∑
k=0

sup
m�1

b2
k

⎛
⎜⎝

λk+1∫
λk

⎛
⎝ λk+1∫

λk

S2(|λ −u|)dFk(λ )

⎞
⎠

m

dFk(u)

⎞
⎟⎠

1
m
⎤
⎥⎥⎦

1
2

= Z(t)

[
N−1

∑
k=0

sup
m�1

b2
k

(
Eζ ∗

k

(
Eζk

S2(|ζk − ζ ∗
k |)
)m) 1

m

] 1
2

� Z(t)

[
N−1

∑
k=0

sup
m�1

b2
k

(
Eζ ∗

k
Eζk

S2m(|ζk − ζ ∗
k |)
) 1

m

] 1
2

� Z(t)

[
N−1

∑
k=0

b2
k sup

m�1

(
ES2m(|ζk − ζ ∗

k |)
) 1

m

] 1
2

,

which is the desired statement. �

COROLLARY 2.1. If for all λ ,u∈ R+ there exists an absolute constant C > 0 so,
that

| g(t,λ )−g(t,u) |� C

then we have

τ(ξ (t)− ξΛ(t)) � Z(t)

[
N−2

∑
k=0

b2
k sup

m�1

(
ES2m(| ζk − ζ ∗

k |)) 1
m +C2(F(+∞)−F(Λ))

] 1
2

,

where bk,ζ ∗
k remain the same as in the previous Theorem 2.1.

EXAMPLE 2.1. Let covariance function of stochastic process ξ have the follow-
ing form

R(t,s) =
∞∫

0

cos(tλ )cos(sλ )dF(λ ),
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i.e. g(t,λ ) = cos(tλ ) . Then ξ (t) =
∞∫
0

cos(tλ )dη(λ ) is a zero-mean real-valued Gaus-

sian stochastic process, where η(λ ) is a Gaussian process with independent incre-
ments, E(η(b)−η(c))2 = F(b)−F(c),b > c .

Consider the following straightforward estimate:

cos(tλ )− cos(tu)|2 = |2sin
t(λ −u)

2
sin

t(λ +u)
2

|2

� |2sin
t(u−λ )

2
|2 � 22(1−α)t2α |u−λ |2α, 0 < α � 1 ,

By virtue of Theorem 2.1. and 2.1 and taking into account that the functions Z(t) =
2(1−α)tα , S(λ ) = λ α , while C = 2 we obtain the following inequality

τ2(ξ (t)− ξΛ(t)) � 22(1−α)t2α
N−2
∑

k=0
b2

k | λk+1−λk |2α +4(F(+∞)−F(Λ)).

EXAMPLE 2.2. Consider the covariance function of stochastic process ξ which
have the following form

R(t,s) = Eξ (t)ξ (s) =
∞∫

0

Jl(t,λ )Jl(s,λ )dF(λ ),

i.e. g(t,λ ) = Jl(t,λ ) , where Jl(t,λ ) = 1
π

π∫
0

cos(lϕ − tλ sinϕ)dϕ .

Then ξ (t) =
∞∫
0

Jl(t,λ )dη(λ ) is a zero-mean real-valued Gaussian stochastic pro-

cess, where η(λ ) is a Gaussian process with independent increments, E(η(b)−η(c))2

= F(b)−F(c) , b > c , Eη(λ ) = 0.

Let us find the estimate for the squared difference ΔJ(λ ,u) = |Jl(t,λ )− Jl(t,u)|2 .
By direct calculations we get

ΔJ(λ ,u) =
1

π2

∣∣∣∣∣∣
π∫

0

2sin

(
2lϕ − t(λ +u)sinϕ

2

)
sin

(
t(u−λ )sinϕ

2

)
dϕ

∣∣∣∣∣∣
2

� 1
π2

π∫
0

|2sin
t(u−λ )sinϕ

2
|2dϕ � 1

π2

π∫
0

t2|u−λ |2 sin2 ϕdϕ =
t2

π
|u−λ |2.

Applying Theorem 2.1 and Corollary 2.1 and having in mind that Z(t) = t/
√

π , S(λ ) =
λ and C = 1, we arrive at the following inequality

τ2(ξ (t)− ξΛ(t)) � t2

π
N−2
∑

k=0
b2

k |λk+1−λk|2 +(F(+∞)−F(Λ)).
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3. Accuracy and reliability the model for Gaussian stochastic process in space
Lp(T ) , p � 1 .

DEFINITION 3.1. [8] A stochastic process ξΛ(t) approximates the process ξ (t)
with accuracy ε > 0 and reliability (1− δ ) , 0 < δ < 1 in Lp(T ) , if the partition Λ is
such, that the following inequality holds

P

⎧⎪⎨
⎪⎩
⎛
⎝∫

T

| ξ (t)− ξΛ(t) |p dt

⎞
⎠

1
p

> ε

⎫⎪⎬
⎪⎭� δ .

THEOREM 3.1. [6] Suppose that ξ = {ξ (t),t ∈ T} is a sub-Gaussian stochastic
process, Eξ (t) = 0 , τ2(t) = τ2(ξ (t)) = E(ξ (t))2 . Suppose there exists an integral∫
T

(
E(ξ (t))2

) p
2 dt < ∞, p � 1 . Then the integral

∫
T
| ξ (t) |p dt < ∞, exists with proba-

bility 1 and for all ε satisfying ε > c1/p
p

√
p, where cp =

∫
T

(τ(t))p dt , we have

P
{‖ ξ (t) ‖Lp> ε

}
� 2exp

{
− ε2

2c2/p
p

}
.

THEOREM 3.2. Suppose that the partition Λ in the model ξΛ(t) is such, that∫
T

(τ(ξ (t)− ξΛ(t)))p dt � ε p

max
(

pp/2,
(
2ln 2

δ
)p/2

) .

Then this model approximates the Gaussian process ξ (t) with accuracy ε > 0 and
reliability 1− δ , 0 < δ < 1 in the space Lp(T ) , p � 1 .

Proof. If ε >
√

pc1/p
p , then according to Theorem 3.1 and Definition 3.1 we have

P
{‖ ξ (t)− ξΛ(t) ‖Lp> ε

}
� 2exp

{
− ε2

2c2/p
p

}
� δ .

Accordingly, the last estimate is valid when∫
T

(τ(ξ (t)− ξΛ(t)))p dt � ε p(
2ln 2

δ
) p

2
.

The proof is completed. �

EXAMPLE 3.1. Let F(λ ) in Example 2.1 be such that F(+∞) = 1, F(+∞)−
F(L) � L−α , 0 � α � 1, L > 1. With the aid of the Corollary 2.1 we get

τ2(ξ (t)− ξΛ(t)) � 22(1−α)t2α
N−2

∑
k=0

b2
k | λk+1−λk |2α +4(F(+∞)−F(L)).
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Letting |λk+1−λk| = L/N we conclude

τ2(ξ (t)− ξΛ(t)) � 22(1−α)t2αF(L)
(

L
N

)2α
+4(F(+∞)−F(L)) � 4

(
tL
2N

)2α
+

4
Lα ,

hence

τ(ξ (t)− ξΛ(t)) � 2

[(
tL
2N

)2α
+

1
Lα

] 1
2

.

Next, minimize y1(L) = 2
[(

tL
2N

)2α + 1
Lα

]1/2
with respect to L ; it follows that

y(L0) = min, L0 =
1

41/(6α)

(
2N
t

)2/3

.

Then

τ(ξ (t)− ξΛ(t)) � 2

[( t
2N

)2α 1
3
√

4

(
2N
t

) 4α
3

+ 3
√

2
( t

2N

) 2α
3

] 1
2

=
2
√

3
3
√

2

( t
2N

) α
3
.

Hence

∫
T

(τ(ξ (t)− ξΛ(t)))pdt �
(

2
√

3
3
√

2

)p(
1

2N

) α p
3
∫
T

t
α p
3 dt

=

(
2
√

3
3
√

2

)p(
1

2N

) α p
3 A

α p
3 +1

α p
3 +1

=: y2(α).

In turn, minimizing y2(α) in α , we deduce

y2(α0), α0 =
3(1− ln A

2N )

p ln A
2N

.

Thus

∫
T

(τ(ξ (t)− ξΛ(t)))pdt �
(

2
√

3
3
√

2

)p(
A
2N

) 1
ln A

2N 2N ln
A
2N

= 2

(
2
√

3
3
√

2

)p(
eln A

2N

) 1
ln A

2N N ln
A
2N

= 2

(
2
√

3
3
√

2

)p

eN ln
A
2N

.

Hence, by Theorem 3.2, the inequality

∫
T

(τ(ξ (t)− ξΛ(t)))p dt � ε p

max
(

p
p
2 ,
(
2ln 2

δ
) p

2
) ,
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follows, when N satisfies

N ln
A
2N

� ε p

2
(

2
√

3
3√2

)p · e ·max
(

p
p
2 ,
(
2ln 2

δ
) p

2
) . (3)

Thus the model ξΛ(t) approximate process ξ (t) with accuracy ε > 0 and reliability
1− δ ,0 < δ < 1 in the space Lp(T ) under condition (3).

4. Conclusion

In this paper we constructed the model of Gaussian stochastic process by a new
approach which generalizes the spectral simulation method. We also found conditions
under which this model approximates the process with a given accuracy and reliability
in the space Lp(T ) , p � 1.
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