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THE NUMBER OF ZEROS OF A POLYNOMIAL IN A DISK

ROBERT GARDNER AND BRETT SHIELDS

Abstract. In this paper, we put restrictions on the coefficients of polynomials and give bounds
concerning the number of zeros in a specific region. Our results generalize a number of previ-
ously known theorems, as well as implying a number of new corollaries with hypotheses con-
cerning monotonicity of the real and imaginary parts of the coefficients.

1. Introduction

There is a large body of research on the location in the complex plane of some
or all of the zeros of a polynomial in terms of the coefficients of the polynomial. For
a survey, see Part II of Rahman and Schmeisser’s Analytic Theory of Polynomials [9].
The famous Eneström-Kakeya Theorem states that for polynomial p(z) = ∑n

j=0 a jz j ,
if the coefficients satisfy 0 � a0 � a1 � · · · � an , then all the zeros of p lie in |z| � 1
(see section 8.3 of [9]). In connection with the location of zeros of an analytic function
f (z) = ∑∞

j=0 a jz j , where Re(a j) = α j and Im(a j) = β j , Aziz and Mohammad imposed

the condition 0 < α0 � tα1 � · · · � tkαk � tk+1αk+1 � · · · (and a similar condition
on the β j s) [1]. These types of conditions have also been put on the coefficients of
polynomials in order to get a restriction on the location of zeros [4]. In this paper, we
impose these types of restrictions on the coefficients of polynomials in order to count
the number of zeros in a certain region.

In Titchmarsh’s classic The Theory of Functions, he states and proves the follow-
ing (see page 171 of the second edition) [10].

THEOREM A. Let F(z) be analytic in |z| � R. Let |F(z)| � M in the disk |z| � R
and suppose F(0) �= 0 . Then for 0 < δ < 1 the number of zeros of F(z) in the disk
|z| � δR is less than

1
log1/δ

log
M

|F(0)| .

By putting a restriction on the coefficients of a polynomial similar to that of the
Eneström-Kakeya Theorem, Mohammad used a special case of Theorem A to prove the
following [7].
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THEOREM B. Let p(z) =
n

∑
j=0

a jz
j be such that 0 < a0 � a1 � a2 � · · · � an−1 �

an . Then the number of zeros in |z| � 1
2 does not exceed

1+
1

log2
log

(
an

a0

)
.

In her dissertation work, Dewan weakens the hypotheses of Theorem B and proves
the following two results for polynomials with complex coefficients [2, 6].

THEOREM C. Let p(z) =
n

∑
j=0

a jz
j be such that |arg(a j)−β | � α � π/2 for all

1 � j � n and some real α and β , and 0 < |a0| � |a1| � |a2| � · · · � |an−1| � |an| .
Then the number of zeros of p in |z| � 1/2 does not exceed

1
log2

log
|an|(cosα + sinα +1)+2sinα ∑n−1

j=0 |a j|
|a0| .

THEOREM D. Let p(z) =
n

∑
j=0

a jz
j where Re(a j) = α j and Im(a j) = β j for all j

and 0 < α0 � α1 � α2 � · · · � αn−1 � αn, then the number of zeros of p in |z| � 1/2
does not exceed

1+
1

log2
log

αn + ∑n
j=0 |β j|

|α0| .

Pukhta generalized Theorems C and D by finding the number of zeros in |z| � δ
for 0 < δ < 1 [8]. The next theorem deals with a monotonicity condition on the moduli
of the coefficients.

THEOREM E. Let p(z) =
n

∑
j=0

a jz
j be such that |arg(a j)−β | � α � π/2 for all

1 � j � n and some real α and β , and 0 < |a0| � |a1| � |a2| � · · · � |an−1| � |an| .
Then the number of zeros of p in |z| � δ , 0 < δ < 1 , does not exceed

1
log1/δ

log
|an|(cosα + sinα +1)+2sinα ∑n−1

j=0 |a j|
|a0| .

Pukhta also gave a result which involved a monotonicity condition on the real part
of the coefficients [8]. Though the proof presented by Pukhta is correct, there was a
slight typographical error in the statement of the result as it appeared in print. The
correct statement of the theorem is as follows.

THEOREM F. Let p(z) =
n

∑
j=0

a jz
j be such that |arg(a j)−β | � α � π/2 for all

1 � j � n and some real α and β , and 0 < α0 � α1 � α2 � · · · � αn−1 � αn . Then



THE NUMBER OF ZEROS OF A POLYNOMIAL IN A DISK 169

the number of zeros of p in |z| � δ , 0 < δ < 1 , does not exceed

1
log1/δ

log
2
(

αn + ∑n
j=0 |β j|

)
|a0| .

In this paper, we further weaken the hypotheses of the above results and prove the
following.

THEOREM 1. Let P(z) =
n

∑
j=0

a jz
j where for some t > 0 and some 0 � k � n,

0 < |a0| � t|a1| � t2|a2| � · · · � tk−1|ak−1| � tk|ak|
� tk+1|ak+1| � · · · � tn−1|an−1| � tn|an|

and |arga j − β | � α � π/2 for 1 � j � n and for some real α and β . Then for
0 < δ < 1 the number of zeros of P(z) in the disk |z| � δ t is less than

1
log1/δ

log
M
|a0|

where M = |a0|t(1− cosα − sinα) + 2|ak|tk+1 cosα + |an|tn+1(1 + sinα − cosα) +
2sinα ∑n−1

j=0 |a j|t j+1.

Notice that when t = 1 in Theorem 1, we get the following.

COROLLARY 1. Let P(z) =
n

∑
j=0

a jz
j where for some t > 0 and some 0 � k � n,

0 < |a0| � |a1| � |a2| � · · · � |ak−1| � |ak| � |ak+1| � · · · � |an−1| � |an|
and |arga j − β | � α � π/2 for 1 � j � n and for some real α and β . Then for
0 < δ < 1 the number of zeros of P(z) in the disk |z| � δ is less than

1
log1/δ

log
M
|a0|

where M = |a0|(1−cosα−sinα)+2|ak|cosα+|an|(1+sinα−cosα)+2sinα ∑n−1
j=0 |a j|.

With k = n in Corollary 1, the hypothesis becomes 0< |a0|� |a1|� · · ·� |an| , and
the value of M becomes |a0|(1−cosα−sinα)+|an|(1+sinα+cosα)+2sinα ∑n−1

j=0 |a j|.
Since 0 � α � π/2, we have 1− cosα − sinα � 0. So the value of M given by The-
orem 1 is less than or equal to |an|(1+ sinα + cosα)+2sinα ∑n−1

j=0 |a j| , and Theorem
1 implies Theorem E.

THEOREM 2. Let P(z) =
n

∑
j=0

a jz
j where Rea j = α j and Ima j = β j for 0 � j � n.

Suppose that for some t > 0 and some 0 � k � n we have

0 �= α0 � tα1 � t2α2 � · · · � tk−1αk−1 � tkαk � tk+1αk+1 � · · · � tn−1αn−1 � tnαn.
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Then for 0 < δ < 1 the number of zeros of P(z) in the disk |z| � δ t is less than

1
log1/δ

log
M
|a0| ,

where M = (|α0|−α0)t +2αktk+1 +(|αn|−αn)tn+1 +2∑n
j=0 |β j|t j+1 .

Notice that with t = 1 in Theorem 2, we get the following.

COROLLARY 2. Let P(z) =
n

∑
j=0

a jz
j where Rea j = α j and Ima j = β j for 0 �

j � n. Suppose we have

0 �= α0 � α1 � α2 � · · · � αk−1 � αk � αk+1 � · · · � αn−1 � αn.

Then for 0 < δ < 1 the number of zeros of P(z) in the disk |z| � δ is less than

1
log1/δ

log
(|α0|−α0)+2αk +(|αn|−αn)+2∑n

j=0 |β j|
|a0| .

With k = n and 0 < α0 in Corollary 2, the hypothesis becomes 0 < α0 � α1 �
· · · � αn and the value of M becomes 2(αn + ∑n

j=0 β j) ; therefore Theorem F follows
from Corollary 2. With β j = 0 for 1 � j � n and δ = 1/2, Corollary 2 reduces to a
result of Dewan and Bidkham [3].

As an example, consider the polynomial p(z) = (z+0.1)2(z+10)2 = 1+20.2z+
104.01z2 + 20.2z3 + z4 . With α0 = α4 = 1, α1 = α3 = 20.2, α2 = 104.01, and each
β j = 0, we see that Corollary 2 applies to p with k = 2, however none of Theorems
B through F apply to p . With δ = 0.1, Corollary 2 implies that the number of zeros
in |z| � δ = 0.1 is less than 1

log(1/0.1) log 2(104.01)
1 ≈ 2.318, which implies that p has

at most two zeros in |z| � 0.1, and of course p has exactly two zeros in this region.
We also observe that Theorem A applies to p , but requires that we find a bound for
|p(z)| for |z| = R = 1; this fact makes it harder to determine the bound given by the
conclusion of Theorem A, as opposed to the other results mentioned above which give
bounds in terms of the coefficients of p . Since all the coefficients of p in this example
are positive, it is quite easy to find this maximum, and Theorem A also implies that p
has at most two zeros in |z| � δ = 0.1.

THEOREM 3. Let P(z) =
n

∑
j=0

a jz
j where Rea j = α j and Ima j = β j for 0 � j � n.

Suppose that for some t > 0 , for some 0 � k � n we have

0 �= α0 � tα1 � t2α2 � · · · � tk−1αk−1 � tkαk � tk+1αk+1 � · · · � tn−1αn−1 � tnαn,

and for some 0 � � � n we have

β0 � tβ1 � t2β2 � · · · � t�−1β�−1 � t�β� � t�+1β�+1 � · · · � tn−1βn−1 � tnβn.
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Then for 0 < δ < 1 the number of zeros of P(z) in the disk |z| � δ t is less than

1
log1/δ

log
M
|a0| ,

where M = (|α0|−α0)t +2αktk+1 +(|αn|−αn)tn+1 +(|β0|−β0)t +2β�t�+1 +(|βn|−
βn)tn+1.

Theorem 3 gives several corollaries with hypotheses concerning monotonicity of
the real and imaginary parts. For example, with t = 1 and k = � = n we have the
hypotheses that 0 �= α0 � α1 � · · · � αn and β0 � β1 � · · · � βn , resulting in the
following.

COROLLARY 3. Let P(z) =
n

∑
j=0

a jz
j where Rea j = α j and Ima j = β j for 0 �

j � n. Suppose that we have

0 �= α0 � α1 � α2 � · · · � αn−1 � αn and β0 � β1 � β2 � · · · � βn−1 � βn.

Then for 0 < δ < 1 the number of zeros of P(z) in the disk |z| � δ is less than

1
log1/δ

log
(|α0|−α0)+ (|αn|+ αn)+ (|β0|−β0)+ (|βn|+ βn)

|a0| .

With t = 1 and k = � = 0, Theorem 3 gives the following.

COROLLARY 4. Let P(z) =
n

∑
j=0

a jz
j where Rea j = α j and Ima j = β j for 0 �

j � n. Suppose that we have

0 �= α0 � α1 � α2 � · · · � αn−1 � αn and β0 � β1 � β2 � · · · � βn−1 � βn.

Then for 0 < δ < 1 the number of zeros of P(z) in the disk |z| � δ is less than

1
log1/δ

log
(|α0|+ α0)+ (|αn|−αn)+ (|β0|+ β0)+ (|βn|−βn)

|a0| .

With t = 1, we can let k = n and � = 0 (or k = 0 and � = n ), Theorem 3 gives
the next two results.

COROLLARY 5. Let P(z) =
n

∑
j=0

a jz
j where Rea j = α j and Ima j = β j for 0 �

j � n. Suppose that we have

0 �= α0 � α1 � α2 � · · · � αn−1 � αn and β0 � β1 � β2 � · · · � βn−1 � βn.

Then for 0 < δ < 1 the number of zeros of P(z) in the disk |z| � δ is less than

1
log1/δ

log
(|α0|−α0)+ (|αn|+ αn)+ (|β0|+ β0)+ (|βn|−βn)

|a0| .
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COROLLARY 6. Let P(z) =
n

∑
j=0

a jz
j where Rea j = α j and Ima j = β j for 0 �

j � n. Suppose that we have

0 �= α0 � α1 � α2 � · · · � αn−1 � αn and β0 � β1 � β2 � · · · � βn−1 � βn.

Then for 0 < δ < 1 the number of zeros of P(z) in the disk |z| � δ is less than

1
log1/δ

log
(|α0|+ α0)+ (|αn|−αn)+ (|β0|−β0)+ (|βn|+ βn)

|a0| .

2. Proofs of the Theorems

The following is due to Govil and Rahman and appears in [5].

LEMMA 1. Let z,z′ ∈ C with |z| � |z′| . Suppose |argz∗ − β | � α � π/2 for
z∗ ∈ {z,z′} and for some real α and β . Then

|z− z′| � (|z|− |z′|)cosα +(|z|+ |z′|)sinα.

We now give proofs of our results.

Proof of Theorem 1. Consider

F(z) = (t − z)P(z) = (t − z)
n

∑
j=0

a jz
j =

n

∑
j=0

(a jtz
j −a jz

j+1)

= a0t +
n

∑
j=1

a jtz
j −

n

∑
j=1

a j−1z
j −anz

n+1

= a0t +
n

∑
j=1

(a jt−a j−1)z j −anz
n+1.

For |z| = t we have

|F(z)| � |a0|t +
n

∑
j=1

|a jt −a j−1|t j + |an|tn+1

= |a0|t +
k

∑
j=1

|a jt −a j−1|t j +
n

∑
j=k+1

|a j−1−a jt|t j + |an|tn+1

� |a0|t +
k

∑
j=1

{
(|a j|t−|a j−1|)cosα +(|a j−1|+ |a j|t)sinα

}
t j

+
n

∑
j=k+1

{
(|a j−1|− |a j|t)cosα +(|a j|t + |a j−1|)sinα

}
t j + |an|tn+1

by Lemma 1 with z = a jt and z′ = a j−1 when 1 � j � k,
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and with z = a j−1 and z′ = a jt when k+1 � j � n

= |a0|t +
k

∑
j=1

|a j|t j+1 cosα −
k

∑
j=1

|a j−1|t j cosα +
k

∑
j=1

|a j−1|t j sinα

+
k

∑
j=1

|a j|t j+1 sinα +
n

∑
j=k+1

|a j−1|t j cosα −
n

∑
j=k+1

|a j|t j+1 cosα

+
n

∑
j=k+1

|a j|t j+1 sinα +
n

∑
j=k+1

|a j−1|t j sinα + |an|tn+1

= |a0|t + |ak|tk+1 cosα +
k−1

∑
j=1

|a j|t j+1 cosα −|a0|t cosα −
k−1

∑
j=1

|a j|t j+1 cosα

+|a0|t sinα +
k−1

∑
j=1

|a j|t j+1 sinα + |ak|tk+1 sinα +
k−1

∑
j=1

|a j|t j+1 sinα

+|ak|tk+1 cosα +
n−1

∑
j=k+1

|a j|t j+1 cosα −|an|tn+1 cosα −
n−1

∑
j=k+1

|a j|t j+1 cosα

+|an|tn+1 sinα +
n−1

∑
j=k+1

|a j|t j+1 sinα + |ak|tk+1 sinα

+
n−1

∑
j=k+1

|a j|t j+1 sinα + |an|tn+1

= |a0|t + |ak|tk+1 cosα −|a0|t cosα + |a0|t sinα + |ak|tk+1 sinα

+2
k−1

∑
j=1

|a j|t j+1 sinα + |ak|tk+1 cosα −|an|tn+1 cosα

+|an|tn+1 sinα + |ak|tk+1 sinα +2
n−1

∑
j=k+1

|a j|t j+1 sinα + |an|tn+1

= |a0|t(1− cosα − sinα)+ |ak|(2tk+1 cosα +2tk+1 sinα)

+|an|tn+1(1+ sinα − cosα)+2
k−1

∑
j=0

|a j|t j+1 sinα +2
n−1

∑
j=k+1

|a j|t j+1 sinα

= |a0|t(1− cosα − sinα)+2|ak|tk+1 cosα + |an|tn+1(1+ sinα − cosα)

+2sinα
n−1

∑
j=0

|a j|t j+1

= M.

Now F(z) is analytic in |z| � t , and |F(z)| � M for |z| = t . So by Theorem A and the
Maximum Modulus Theorem, the number of zeros of F (and hence of P) in |z| � δ t
is less than or equal to

1
log1/δ

log
M
|a0| .
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The theorem follows. �

Proof of Theorem 2. As in the proof of Theorem 1,

F(z) = (t− z)P(z) = a0t +
n

∑
j=1

(a jt −a j−1)z j −anz
n+1,

and so

F(z) = (α0 + iβ0)t +
n

∑
j=1

((α j + iβ j)t− (α j−1 + iβ j−1))z j − (αn + iβn)zn+1

= (α0 + iβ0)t +
n

∑
j=1

(α jt−α j−1)z j + i
n

∑
j=1

(β jt−β j−1)z j − (αn + iβn)zn+1

For |z| = t we have

|F(z)| � (|α0|+ |β0|)t +
n

∑
j=1

|α jt −α j−1|t j +
n

∑
j=1

(|β j|t + |β j−1|)t j +(|αn|+ |βn|)tn+1

= (|α0|+ |β0|)t +
k

∑
j=1

(α jt −α j−1)t j +
n

∑
j=k+1

(α j−1 −α jt)t j +
n−1

∑
j=1

|β j|t j+1

+|βn|tn+1 + |β0|t +
n−1

∑
j=1

|β j|t j+1 +(|αn|+ |βn|)tn+1

= |α0|t +
k−1

∑
j=1

α jt
j+1 + αkt

k+1−α0t −
k−1

∑
j=1

α jt
j+1 + αkt

k+1

+
n−1

∑
j=k+1

α jt
j+1−αnt

n+1−
n−1

∑
j=k+1

α jt
j+1 +2

n

∑
j=0

|β j|t j+1 + |αn|tn+1

= (|α0|−α0)t +2αkt
k+1 +(|αn|−αn)tn+1 +2

n

∑
j=0

|β j|t j+1

= M.

The result now follows as in the proof of Theorem 1. �

Proof of Theorem 3. As in the proof of Theorem 2,

F(z) = (α0 + iβ0)t +
n

∑
j=1

(α jt−α j−1)z j + i
n

∑
j=1

(β jt−β j−1)z j − (αn + iβn)zn+1.

For |z| = t we have

|F(z)| � (|α0|+ |β0|)t +
n

∑
j=1

|α jt−α j−1|t j +
n

∑
j=1

|β jt−β j−1|t j +(|αn|+ |βn|)tn+1
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= (|α0|+ |β0|)t +
k

∑
j=1

|α jt−α j−1|t j +
n

∑
j=k+1

|α jt−α j−1|t j

+
�

∑
j=1

|β jt−β j−1|t j +
n

∑
j=�+1

|β jt −β j−1|t j +(|αn|+ |βn|)tn+1

= (|α0|+ |β0|)t +
k

∑
j=1

(α jt−α j−1)t j +
n

∑
j=k+1

(α j−1 −α jt)t j

+
�

∑
j=1

(β jt−β j−1)t j +
n

∑
j=�+1

(β j−1−β jt)t j +(|αn|+ |βn|)tn+1

= |α0|t +
k−1

∑
j=1

α jt
j+1 + αkt

k+1−α0t−
k−1

∑
j=1

α jt
j+1 + αkt

k+1 +
n−1

∑
j=k+1

α jt
j+1

−αnt
n+1−

n−1

∑
j=k+1

α jt
j+1 + |αn|tn+1 + |β0|t +

�−1

∑
j=1

β jt
j+1 + β�t

�+1

−β0t−
�−1

∑
j=1

β jt
j−1 + β�t

�+1 +
n−1

∑
j=�+1

β jt
j+1−βnt

n+1−
n−1

∑
j=�+1

β jt
j+1 + |βn|tn+1

= (|α0|−α0)t +2αkt
k+1 +(|αn|−αn)tn+1 +(|β0|−β0)t +2β�t

�+1

+(|βn|−βn)tn+1

= M.

The result now follows as in the proof of Theorem 1. �
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[6] G. V. MILOVANOVIĆ, D. S. MITRINOVIĆ, AND TH. M. RASSIAS,Topics in Polynomials: Extremal
Problems, Inequalities, Zeros, Singapore: World Scientific Publishing, 1994.

[7] Q. G. MOHAMMAD, On the Zeros of the Polynomials, American Mathematical Monthly, 72 (6)
(1965), 631–633.



176 R. GARDNER AND B. SHIELDS

[8] M. S. PUKHTA, On the Zeros of a Polynomial, Applied Mathematics, 2 (2011), 1356–1358.
[9] Q. I. RAHMAN AND G. SCHMEISSER, Analytic Theory of Polynomials, Oxford: Clarendon Press,

2002.
[10] E. C. TITCHMARSH, The Theory of Functions, 2nd Edition, Oxford University Press, London, 1939.

(Received November 15, 2013) Robert Gardner
Department of Mathematics and Statistics

East Tennessee State University
Johnson City, Tennessee 37614–0663

Brett Shields
Department of Mathematics and Statistics

East Tennessee State University
Johnson City, Tennessee 37614–0663

Journal of Classical Analysis
www.ele-math.com
jca@ele-math.com


