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THE NUMBER OF ZEROS OF A POLYNOMIAL IN A DISK

ROBERT GARDNER AND BRETT SHIELDS

Abstract. In this paper, we put restrictions on the coefficients of polynomials and give bounds
concerning the number of zeros in a specific region. Our results generalize a number of previ-
ously known theorems, as well as implying a number of new corollaries with hypotheses con-
cerning monotonicity of the real and imaginary parts of the coefficients.

1. Introduction

There is a large body of research on the location in the complex plane of some
or all of the zeros of a polynomial in terms of the coefficients of the polynomial. For
a survey, see Part II of Rahman and Schmeisser’s Analytic Theory of Polynomials [9].
The famous Enestrom-Kakeya Theorem states that for polynomial p(z) = 3/}_ya 7,
if the coefficients satisfy 0 < ap < a; < -+ < ay, then all the zeros of p lie in |z] < 1
(see section 8.3 of [9]). In connection with the location of zeros of an analytic function
f(z) =7 ga;z/, where Re(a;) = a; and Im(a;) = B;, Aziz and Mohammad imposed
the condition 0 < oy <rtoy < -+ < tk(xk > tk“akH > --- (and a similar condition
on the f;s) [1]. These types of conditions have also been put on the coefficients of
polynomials in order to get a restriction on the location of zeros [4]. In this paper, we
impose these types of restrictions on the coefficients of polynomials in order to count
the number of zeros in a certain region.

In Titchmarsh’s classic The Theory of Functions, he states and proves the follow-
ing (see page 171 of the second edition) [10].

THEOREM A. Let F(z) be analyticin |z| < R. Let |F(z)| < M inthe disk |z) <R
and suppose F(0) # 0. Then for 0 < & < 1 the number of zeros of F(z) in the disk
|z| <8R is less than

1 M

log1/6 "2 TF(0)]

By putting a restriction on the coefficients of a polynomial similar to that of the
Enestrom-Kakeya Theorem, Mohammad used a special case of Theorem A to prove the
following [7].
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THEOREM B. Let p(z 2 a z’ be suchthat 0 <ap< a1 <ay < <a, 1<
j=0
ay. Then the number of zeros in |z| < % does not exceed
1 a
I+ ——=log| —|.
log2 © <a0>

In her dissertation work, Dewan weakens the hypotheses of Theorem B and proves
the following two results for polynomials with complex coefficients [2, 6].

THEOREM C. Let p(z Z a;z’ be such that |arg(a;) — B| < o < 7 /2 for all

j=0
1 < j < nandsome real o and B, and 0 < |ag| < |a1| < |az| < -+ < Jan—1] < |ay|.
Then the number of zeros of p in

1 los |an|(cos o +sino+ 1) +2sina 31~ |aj|.

log2 |aol

THEOREM D. Let p(z) = Y, a;z’ where Re(aj) = o and Im(a;) = B; for all j
j=0
and 0 < op < oy <0 < -+ < 0| < Oy, then the number of zeros of p in |z] < 1/2
does not exceed

1 O+ 30| B
N 0 21_0|ﬁ/|.
log?2 oo

Pukhta generalized Theorems C and D by finding the number of zeros in |z| < &
for 0 < § < 1 [8]. The next theorem deals with a monotonicity condition on the moduli
of the coefficients.

THEOREM E. Let p(z Z a;z’ be such that |arg(a;) — B| < o < /2 for all

Jj=0
1 < j < nandsome real o and B, and 0 < |ag| < |ai| < |az| < -+ < Jan—1] < |ay|.
Then the number of zeros of p in

1 log lay|(cosor+sino+ 1) +2sina2?;é laj|
log1/6 |ao| '

Pukhta also gave a result which involved a monotonicity condition on the real part
of the coefficients [8]. Though the proof presented by Pukhta is correct, there was a
slight typographical error in the statement of the result as it appeared in print. The
correct statement of the theorem is as follows.

THEOREM F. Let p(z Za,z’ be such that |arg(aj) — B| < o0 < /2 for all
Jj=0
1 <j<nandsomereal oo and B, and 0 < op < o) < 0 < -+ < 01 < 0. Then

N
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the number of zeros of p in |z| < 8, 0< & < 1, does not exceed

L 2(e 3 lB)
log1/5 % ao] '

In this paper, we further weaken the hypotheses of the above results and prove the
following.

THEOREM 1. Let P(z Z ajzf where for some t > 0 and some 0 <k < n,
j=0
0 <lag| <tlay| <t |a2\ <tk_1|ak,1\ <tk\ak|

> | > -

Y, //\

" a,_ 1| = 1"|ay|

and largaj— B| < a < /2 for 1 < j < n and for some real o and . Then for
0 < 8 <1 the number ofzeros of P(2) in the disk |z| < 0t is less than

1 o M
log1/5 % ao]

where M = |aglt(1 — cos o — sin o) + 2[ar|t* ! cos o + |a, "+ (1 4 sina — cos &) +
Zsinazsf;(l) laj|t/ .
Notice that when r = 1 in Theorem 1, we get the following.

n
COROLLARY 1. Let P(z Z ajz/ where for some t > 0 and some 0 < k < n,
J=0

0 <lag| < lai] < |aa] <+ <l | < ak] = |ags1| = -+ = |an—1] = |an]

and |arga;j — B| < a < /2 for 1 < j < n and for some real o and . Then for
0< 8 <1 the number ofzeros of P(z ) in the disk |z| < & is less than

b e M
log1/5 % a]

where M = |ao|(1— cos o.— sin &) +2|ag| cos ot+]|ay,| (14 sin oc— cos o) +2 sinaZ’};é laj].

With k= n in Corollary 1, the hypothesis becomes 0 < |ag| < |a1| <+ < |ay|, and
the value of M becomes |ap|(1—cos ot—sin o )+|ay|(1+ sin o+ cos oc)—l—2sin062”_l lajl.
Since 0 < o < /2, we have 1 —coso —sino < 0. So the value of M given by The-
orem 1 is less than or equal to |a,|(1+ sinc+cosar) + 2sm0627=1 |a;|, and Theorem
1 implies Theorem E.

THEOREM 2. Let P(z Z a;z’ where Reaj = aj and Ima; = B; for 0< j < n.
Jj=0
Suppose that for some t > 0 and some 0 < k < n we have

0F£ay<toy <tPon < <t o <o =" oy = > o > 1" a
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Then for 0 < 8 < 1 the number of zeros of P(z) in the disk |z| < 8t is less than

1 o M
log1/8 % fay|”

where M = (|ato| — 00)t + 204" + (|0t — 06,)8" 1+ 2371 | B[/

Notice that with # = 1 in Theorem 2, we get the following.

COROLLARY 2. Let P(z Ea,z’ where Reaj = o and Imaj = B; for 0 <
j=0
Jj < n. Suppose we have

OFop<oy <o < S0y OG> 0gqy =201 = 0.
Then for 0 < 8 < 1 the number of zeros of P(z) in the disk |z| < & is less than

1 (ool = 00) +204 + (Joul — o) +2 5o B,
log1/5 ¢ 0] '

With £k =n and 0 < ¢ in Corollary 2, the hypothesis becomes 0 < oy < o1 <

- < o, and the value of M becomes 2(ay, + X ;) ; therefore Theorem F follows

from Corollary 2. With ; =0 for 1 < j <n and 6 = 1/2, Corollary 2 reduces to a
result of Dewan and Bidkham [3].

As an example, consider the polynomial p(z) = (z+0.1)?(z+10)? = 1420.2z +

104.0122 420223 +2*. With op = o = 1, 0oy = o3 = 20.2, 0p = 104.01, and each

Bj =0, we see that Corollary 2 applies to p with k = 2, however none of Theorems

B through F apply to p. With § = 0.1, Corollary 2 implies that the number of zeros

in [z < 8=0.1is less than oy log 215 &~ 2,318, which implies that p has

at most two zeros in |z| < 0.1, and of course p has exactly two zeros in this region.
We also observe that Theorem A applies to p, but requires that we find a bound for
|p(z)| for |z] = R = 1; this fact makes it harder to determine the bound given by the
conclusion of Theorem A, as opposed to the other results mentioned above which give
bounds in terms of the coefficients of p. Since all the coefficients of p in this example
are positive, it is quite easy to find this maximum, and Theorem A also implies that p
has at most two zeros in |z < 8 =0.1.

THEOREM 3. Let P(z Zajzf where Reaj = o and Imaj= B for 0< j <n.
J=0
Suppose that for some t > 0, for some 0 < k < n we have
0£0g<toy <tPon <<t log  <Fop =gy = =" oy =10,

and for some 0 < £ < n we have

Bo<tPi <t*Ba<-- <tBy < B =t By > "By = 1" B,
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Then for 0 < 8 < 1 the number of zeros of P(z) in the disk |z| < 8t is less than

b e M
log1/5 ¢ Jao|’

where M = (|a| — 00)1 + 204" + (|0 | — 05)r" 1+ (o] — Bo)t +2Ber !+ (|Bu] —
ﬁn)thrl'

Theorem 3 gives several corollaries with hypotheses concerning monotonicity of
the real and imaginary parts. For example, with # =1 and k = ¢ = n we have the
hypotheses that 0 # o < o) < -+ < o, and By < By < -+- < By, resulting in the
following.

n
COROLLARY 3. Ler P(z Za,z’ where Reaj = oj and Imaj = B; for 0 <
j=0
Jj < n. Suppose that we have

0OFomp<o << <o SoandPo <P <Po<- <ot < B
Then for 0 < 8 < 1 the number of zeros of P(z) in the disk |z| < & is less than

L g ool =)+ (u+ o) + (ol o) + 18]+ Bo)
logl/d |ao| .

With t =1 and k = ¢ =0, Theorem 3 gives the following.

COROLLARY 4. Let P(z Ea,z/ where Reaj = o and Imaj = B; for 0 <
j=0
Jj < n. Suppose that we have

OFfwzo >0z 201 =0andPo=Pi == =Pt =P
Then for 0 < 8 < 1 the number of zeros of P(z) in the disk |z| < & is less than

L og (low| + ) + (10| — @) + (1Bol + Bo) + (1Bal = Bn)
logl/o |aol .

With t =1,wecanlet k=n and £ =0 (or k=0 and ¢ =n), Theorem 3 gives
the next two results.

COROLLARY 5. Let P(z Zajzj where Rea; = aj and Ima; = ﬁj for 0 <

Jj < n. Suppose that we have

OFomp<o << <01 <0 andBo=> P =B > =Bt = P
Then for 0 < & < 1 the number of zeros of P(z) in the disk |z| < & is less than
Lo Gl = on) - (l+ o) + (ol + o) + 15— )

log1/é ol
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n
COROLLARY 6. Let P(z Ea,z’ where Reaj = o and Imaj = B; for 0 <
Jj=0
Jj < n. Suppose that we have

0OFmzo 202201 20andPo <P <Po< - < Put < P
Then for 0 < 8 < 1 the number of zeros of P(z) in the disk |z| < & is less than

1 log (lowo| + 00) + (|0m| — o) + (IBol — Bo) + (IBul + Bn)
logl/d |ao| .

2. Proofs of the Theorems

The following is due to Govil and Rahman and appears in [5].

LEMMA 1. Let z,7 € C with |z] > |Z|. Suppose |argz* — B| < o0 < /2 for

7 € {z,7} and for some real o and B. Then
lz— 7| < (|lz] = |Z|) cos o+ (|2 + |]) sin cx.

We now give proofs of our results.

Proof of Theorem 1. Consider

n

F(z) = (t —2)P( (t—z Z i}(ajtzj —a;7 ™
- =

n

aot + Zajtz/ = aj 12 —an !
: Pt

j=1
n .
= aopf + Z(ajt—aj,l)z/ —anZn+1~

For |z] =t we have

n
|F(z)|] < |aolt + Z lajt —aj_ |t/ + \an\t"H
i=1

k n
= laolt + Y ajt —aj1l/ + ¥ laj-1 —ajlt +|an|""!
j=1 J=k+1

k
< aolt+ Y, {(lajlt — |aj-1])cos a+ (|aj—1] +|aj|t) sina } /
+ ) {(|a~,;1\—\aj|t)cosot+(\aj|t—|—|a~,;1|)sinoz}t~"+\a,,\t’”rl

j=k+1
by Lemma 1 with z =a;t and 7/ = a;_; when 1 < j <k,
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and with z=a;j_j and 2 = ajt whenk+1< j<n
k k k
= laolt+ Y |aj|t/ ! cos o — Y laj-1lt/ cosa+ Y |aj_1|t/ sinox
=1 =1 =1
k . n . n .
+ 3 lajltsina+ Y, fajoq|t/cosa— Y, |ajlt’ T cosa
= j=kt1 j=kt1

n n
+ Y ajlt T sina+ Y |aj [t/ sina + |a, [T

j=k+1 Jj=k+1
k=1 ' k=1 '
= |ap|t + |ag|t”" " cosa + aj|t’" coso — |ap|tcos o — a;|t’" coso
k41 i j+l1 ; J+1
=1 j=1
k=1 ' k=1 '
Haoltsinar+ Y Jaj|t! ! sino+ |ag|* sino+ Y a;lt sine
j=1 =1
n—1 ) n—1 )
+ax|t" cos o+ ajlt’ " cosa — |ay|t" " cos o — a;lt’ cosa
k+1 i Jj+1 n+1 ; Jj+1
J=k+1 J=k+1
n—1 )
+ag|" T sina+ Y |aj|t ! sin o+ |ag £ sin o
j=k+1
n—1 )
+ Y aj|t! sinoc+ [a|e !
j=k+1
= |aolt + |a|t*™ cos o — |ag|t cos ot +- |ao|t sin o + |ay |t sin o
k=1
+2°Y Jaj|t/ ! sina+ |ag [ cos o — |an |t cos
j=1
n—1 )
+]an e sin o 4 agF T sin o+ 2 D |aj|t/ ! sin o + [y
J=k+1
= |aolt(1 —cosor —sinar) + |az| (27" cos o + 2¢F L sin o)
k=1 n—1
Han " (1 +sina —cosa) +2 Y |aj[t/ T sina+2 Y, Ja;lt/ sine
j=0 Jj=k+1
= |ao|t(1 — cos o — sin o) + 2|ag|t* ! cos o + |a,|t" T (1 + sino — cos o)

n—1
+2sinor Y [aj|t/H!
=0
=M.

Now F(z) is analytic in |z| <t, and |F(z)| <M for |z| =¢. So by Theorem A and the
Maximum Modulus Theorem, the number of zeros of F (and hence of P) in |z| < 67

is less than or equal to
1 M

—log —.
log1/5 " Ja]
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The theorem follows. [
Proof of Theorem 2. As in the proof of Theorem 1,

F(z)=(t—2)P(z) = aot + Z (ajt —aj_1)z) — an?™t1,
Jj=1
and so

n

F(2) = (a0 +iPo)r + Y (0 +iBy)t — (o1 +iBj-1))z! — (0w +iBy)2"™*!

J

= (a0 +ifo)t + Z(aﬂ—% DY (Bt~ By — (@t B

Jj=1 Jj=1

I
—

=

For |z] =t we have

F)] < (ool +1Bol) + 3 lest — o1l + 3 (1Bl + B + (lea] + Bl

j=1 j=1
k
= (Jawo| + |Bol)t Za,t—a, Dt 4 Z (atj—1 — at) t1+2|[3|t1+1
j=1 Jj=k+1
n—1 )
Bl - [Bole + X 1Bl + (low| + [ Bal)e™!
j=1
=1 k=1
= loolt+ Y, ot/ + opt T —apr — Y ot + oyt
j=1 j=1
n—1
+ 2 ajtj+1_antn+l Z a tj+1+22 ‘ﬁ ‘tj+1+|a ‘tn+l
J=k+1 Jj=k+1 j=0

n
= (loo| — ao)t + 200 + (Jotu| — o)™ +2 Y | Bl !
=0

=M.

The result now follows as in the proof of Theorem 1. [l
Proof of Theorem 3. As in the proof of Theorem 2,
F&) = (oa+ o)+ 3 (et = oy-1)e! +i X, (Bt = By-)2 = (e + i)
j=1 j=1

For |z] =t we have

n

[F(2)| < (Jaol+ |Bol)t + ., oyt — ot 1\t’+2\ﬁ,f-ﬁ, 1+ (Jow| + |Bal )+
J=1 Jj=
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k n
= (loo| +Bol)t + Y lajt — o[t/ + Y, |ogjt — oty |t/

Jj=1 Jj=k+1
+Z|ﬁ;f—ﬁ; 1 + Z 1Bjt — Bj1[t’ + (|| + | B )"+
Jj=l+1
k ) n )
= (ao| +|Bol)1 2 (ot — o)t/ + Y (atj—y — ot )t
=1 j=kt1
+Z (Bjt = Bj-1) tj+ Z (Bj—1—Bjt )tj+(|an|+|ﬁn|) s
Jj={+1
k=1 . _ . n—l1 .
= |aolt+ Y, ot/ + oyt T — ot — Z ot gt 4 Y o/
j=1 j=1 j=k+1

ot n+1 z oct/+1+|an\t”+l+|ﬂo\t+2ﬁ, j+l_|_Bﬂ(+l
j=k+1 j=1

n—1
_ﬁot_ZBtJ 1_|_Bt(+1_|_ 2 ﬁt1+l BtrHrl 2 ﬂjt1+1+|ﬁn‘tn+l
Jj=t+1 Jj=l+1
= (low| - Ofo)H-ZOCkfk+1 + ([0t] = 00)r" ! 4 (| Bo| — Bo)t + 2B+

+(|Bal = B!
=M.

The result now follows as in the proof of Theorem 1. [l
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