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GENERALIZED IDEAL CONVERGENCE

IN PROBABILISTIC NORMED SPACES

BIPAN HAZARIKA

Abstract. The aim of this paper is to introduce and study the notion of Iλ -convergence in prob-
abilistic normed space as a variant of the notion of ideal convergence. Also Iλ -limit point and
Iλ -cluster point hase been defined and the relation between them have been established. Finally,
we establish example which shows that our method of convergence on probabilistic normed
space is more general.

1. Introduction

The notion of statistical convergence for sequences of real numbers was introduced
by Steinhaus [30] and Fast [6] independently. Over the years and under different names
statistical convergence has been discussed in the theory of Fourier analysis, ergodic
theory and number theory. Later on it was further investigated from various points of
view. For example, statistical convergence has been investigated in summability theory
by (Connor [4], Fridy [7], Šalát [25]), number theory and mathematical analysis by
(Buck [2]), topological spaces (Di Maio and Kočinac [21]), function spaces (Caserta,
Di Maio and Kočinac [3]), locally convex spaces (Maddox [20]).

Menger [22] proposed the probabilistic concept of the distance by replacing the
number d(p,q) as the distance between points p,q by a probability distribution func-
tion Fp,q(x) . He interpreted Fp,q(x) as the probability that the distance between p
and q is less than x. This led to the development of the area now called probabilis-
tic metric space. Šerstnev [29] who first used this idea of Menger to introduce the
concept of a probabilistic normed space. In 1993, Alsina et al. [1] presented a new
definition of probabilistic normed space which includes the definition of Šerstnev as a
special case. For an extensive view on this subject, we refer to [8, 9, 11, 16, 27, 28].
Subsequently, Mursaleen and Mohiuddine [23] and Rahmat [24] studied the ideal con-
vergence in probabilistic normed spaces and Kumar and Kumar [15] studied I -Cauchy
and I∗ -Cauchy sequences probabilistic normed space.

The notion of statistical convergence depends on the density (asymptotic or natu-
ral) of subsets of N. A subset E of N is said to have natural density δ (E) if

δ (E) = lim
n→∞

1
n

n

∑
k=1

χE(k)

exists, where χE is the characteristic function of E .
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DEFINITION 1.1. A sequence x = (xk) is said to be statistically convergent to �
if for every ε > 0

δ ({k ∈ N : |xk − �|� ε}) = 0.

In this case, we write S− limx = � or xk → �(S).
The notion of I -convergence was initially introduced by Kostyrko et al., [13] as

a generalization of statistical convergence which is based on the structure of the ideal
I of subsets of natural numbers N. Kostyrko et al., [14] gave some of basic properties
of I -convergence and dealt with extremal I -limit points. For an extensive view on this
subject, we refer to [5, 10, 17, 26, 31], and reference therein.

Although an ideal is defined as a hereditary and additive family of subsets of a
non-empty arbitrary set X , here in our study it suffices to take I as a family of subsets
of N, positive integers, i.e. I ⊂ 2N, such that φ ∈ I, A∪B ∈ I for each A,B ∈ I, and
each subset of an element of I is an element of I. A non-empty family of sets F ⊂ 2N

is a filter on N if and only if φ /∈ F , A∩B ∈ F for each A,B ∈ F, and any superset of
an element of F is in F. An ideal I is called non-trivial if I �= φ and N /∈ I. Clearly I
is a non-trivial ideal if and only if F = F(I) = {N−A : A∈ I} is a filter in N, called the
filter associated with the ideal I. A non-trivial ideal I is called admissible if and only
if {{n} : n ∈ N} ⊂ I. A non-trivial ideal I is maximal if there cannot exists any non-
trivial ideal J �= I containing I as a subset. Recall from [13] that a sequence x = (xk)
of points in R is said to be I -convergent to a real number � if {k ∈ N : |xk− �|� ε} ∈ I
for every ε > 0. In this case we write I− limxk = �.

2. Basic definitions and notations

Now we recall some notations and basic definitions that we are going to use in this
paper.

DEFINITION 2.1. A distribution function (briefly a d.f.) F is a function from the
extended reals (−∞,+∞) into [0,1] such that

(a) it is non-decreasing ;

(b) it is left-continuous on (−∞,+∞) ;

(c) F(−∞) = 0 and F(+∞) = 1.

The set of all d.f.’s will be denoted by Δ. The subset of Δ consisting of proper
d.f’s, namely of those elements F such that �+F(−∞) = F(−∞) = 0 and �−F(+∞) =
F(+∞) = 1 will be denoted by D. A distance distribution function (briefly, d.d.f.)
is a d.f. F such that F(0) = 0. The set of all d.d.f’s will be denoted by Δ+, while
D+ := D∩Δ+ will denote the set of proper d.d.f.’s.

DEFINITION 2.2. [12] A triangular norm or, briefly, a t-norm is a binary opera-
tion T : [0,1]× [0,1]→ [0,1] that satisfies the following conditions:

(T1) T is commutative, i.e.,T (s,t) = T (t,s) for all s and t in [0,1];

(T2) T is associative, i.e., T (T (s,t),u) = T (s,T (t,u)) for all s,t and u in [0,1];
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(T3) T is nondecreasing, i.e., T (s,t) � T (s′,t) for all t ∈ [0,1] whenever s � s′;

(T4) T satisfies the boundary condition T (1,t) = t for every t ∈ [0,1].

T ∗ is a continuous t-conorm, namely, a continuous binary operation on [0,1] that
is related to a continuous t -norm through T ∗(s,t) = 1− T (1− s,1− t). Notice that
by virtue of its commutativity, any t -norm T is nondecreasing in each place. Some
examples of t -norms T and its t -conorms T ∗ are: M(x,y) = min{x,y} , Π(x,y) = x.y
and M∗(x,y) = max{x,y} , Π∗(x,y) = x+ y− x.y.

Using the definitions just given above Šerstnev [29] defined a probabilistic normed
space as follows:

DEFINITION 2.3.. A triplet (X ,ν,T ) is called a probabilistic normed space (in
short PNS) if X is a real vector space, ν is a mapping from X into D and for x ∈ X ,
the d.f. ν(x) is denoted by νx , νx(t) is the value of νx at t ∈ R and T is a t-norm. ν
satisfies the following conditions:

(i) νx(0) = 0;

(ii) νx(t) = 1 for all t > 0 if and only if x = 0;

(iii) νax(t) = νx

(
t
|a|

)
for all a ∈ R�{0};

(iv) νx+y(s+ t) � T (νx(s),νy(t)) for all x,y ∈ X and s,t ∈ R+
0 .

Let (X , ||.||) be a normed space and μ ∈ D with μ(0) = 0 and μ �= ε0, where

ε0(t) =
{

0, if t � 0
1, if t > 0

For x ∈ X , t ∈ R, if we define

νx(t) = μ
(

t
||x||

)
, x �= 0,

then in [18], it is proved that (X ,ν,T ) is a probabilistic normed space in the sense of
Definition 2.3.

DEFINITION 2.4. Let (X ,ν,T ) be a PNS and x = (xk) be a sequence in X . We
say that (xk) is convergent to � ∈ X with respect to the probabilistic norm ν if for
each ε > 0 and α ∈ (0,1) there exists a positive integer m such that νxk−�(ε) > 1−α
whenever k � m. The element � is called the ordinary limit of the sequence (xk) and

we shall write ν − limxk = � or xk
ν→ � as k → ∞.

DEFINITION 2.5. Let (X ,ν,T ) be a PNS. A sequence (xk) in X is said to be
Cauchy with respect to the probabilistic norm ν if for each ε > 0 and α ∈ (0,1) there
exist a positive integer M = M(ε,α) such that νxk−xp(ε) > 1−α whenever k, p � M.

DEFINITION 2.6. Let (X ,ν,T ) be a PNS, and let r ∈ (0,1) and x ∈ X . The set

B(x,r;t) =
{
y ∈ X : νy−x(t) > 1− r

}



180 BIPAN HAZARIKA

is called open ball with center x and radius r with respect to t .

DEFINITION 2.7. [19] Let λ = (λn) be a non-decreasing sequence of positive
numbers tending to infinity such that λn+1 � λn + 1, λ1 = 1. The generalized de la
Vallée-Poussin mean of a sequence (xk) is defined by

σn (x) =
1
λn

∑
k∈In

xk

where Jn = [n−λn +1,n].
A sequence x = (xk) is said to be (V,λ )-summable to number L, if σn (x) → L

as n → ∞. In this case L is called λ -limit of x. If λn = n, then (V,λ )-summability
reduces to (C,1)-summability.

Throughout the paper, we assume I is an admissible ideal of subsets of N .

3. Main results

In this section we introduced the notions of λ -convergence and Iλ -convergence
and proved some new results related to these notions.

DEFINITION 3.1. Let (X ,ν,T ) be a PNS. A sequence x = (xk) in X is λ -
convergent to L ∈ X with respect to the probabilistic norm ν if, for α ∈ (0,1) and
every ε > 0, there exists no ∈ N such that

νσn(x)−L(ε) > 1−α

for all n � no, where

σn(x) =
1
λn

∑
k∈Jn

xk.

In this case, we write νλ − limx = L.

DEFINITION 3.2. Let I ⊂ 2N and (X ,ν,T ) be a PNS. A sequence x = (xk) in X
is said to be Iλ -convergent to L ∈ X with respect to the probabilistic norm ν if, for
every ε > 0 and α ∈ (0,1) the set

{
n ∈ N : νσn(x)−L(ε) � 1−α

} ∈ I.

L is called the Iλ -limit of the sequence x = (xk) in X , and we write Iν
λ − limx = L.

EXAMPLE 3.1. Let (R, |.|) denote the space of all real numbers with the usual
norm, and let T (a,b) = ab for all a,b ∈ [0,1] . For all x ∈ R and every t > 0, consider
νx(t) = t

t+|x| . Then (R,ν,T ) is a PNS. If we take I = {A ⊂ N : δ (A) = 0} , where

δ (A) denotes the natural density of the set A, then I is a non-trivial admissible ideal.
Define a sequence x = (xk) as follows:

xk =
{

1, if k = i2, i ∈ N

0, otherwise.
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Then for every α ∈ (0,1) and for any ε > 0, the set

K =
{
n ∈ N : νσn(x)(ε) � 1−α

}
is finite. Hence δ (K) = 0 and consequently K ∈ I, i.e., Iν

λ − limx = 0.

LEMMA 3.1. Let (X ,ν,T ) be a PNS and x = (xk) be a sequence in X . Then, for
every ε > 0 and α ∈ (0,1) the following statements are equivalent:

(i) Iν
λ − limx = L,

(ii)
{
n ∈ N : νσn(x)−L(ε) � 1−α

} ∈ I

(iii) Iλ − limνxk−L(ε) = 1.

THEOREM 3.1. Let (X ,ν,T ) be a PNS and if a sequence x = (xk) in X is Iλ -
convergent to L∈ X with respect to the probabilistic norm ν, then Iν

λ − limx is unique.

Proof. Suppose that Iν
λ − limx = L1 and Iν

λ − limx = L2 (L1 �= L2) . Given α > 0
and choose β ∈ (0,1) such that

T (1−β ,1−β ) > 1−α. (3.1)

Then for ε > 0, define the following sets:

K1 =
{

n ∈ N : νσn(x)−L1

(ε
2

)
� 1−β

}
,

K2 =
{

n ∈ N : νσn(x)−L2

(ε
2

)
� 1−β

}
,

Since Iν
λ − limx = L1 , using Lemma 2.1, we have K1 ∈ I. Also, using Iν

λ − limx = L2,
we get K2 ∈ I. Now let

K = K1∪K2.

Then K ∈ I. This implies that its complement Kc is a non-empty set in F(I) . Now if
n ∈ Kc = Kc

1 ∩Kc
2 , we have

νσn(x)−L1

(ε
2

)
> 1−β and νσn(x)−L2

(ε
2

)
> 1−β .

Now, we choose a s ∈ N such that

νxs−L1

(ε
2

)
> νσn(x)−L1

(ε
2

)
> 1−β

and
νxs−L2

(ε
2

)
> νσn(x)−L2

(ε
2

)
> 1−β

Then from (2.1), we have

νL1−L2(ε) � T
(

νxs−L1

(ε
2

)
, νxs−L2

(ε
2

))
> T (1−β ,1−β )> 1−α.

Since α > 0 is arbitrary, we have νL1−L2(ε) = 1 for all ε > 0, which implies that
L1 = L2. Therefore, we conclude that Iν

λ − limx is unique. �
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THEOREM 3.2. Let (X ,ν,T ) be a PNS and let x = (xk) be a sequence in X . If
νλ − limx = L, then Iν

λ − limx = L.

Proof. Let νλ − limx = L, then for every ε > 0 and given α ∈ (0,1) , there exists
n0 ∈ N such that

νσn(x)−L(ε) > 1−α

for all n � n0. Therefore the set

B =
{
n ∈ N : νσn(x)−L(ε) � 1−α

}⊆ {1,2, ...,n0−1} .

But, with I being admissible, we have B ∈ I. Hence Iν
λ − limx = L. �

COROLLARY 3.3. Let (X ,ν,T ) be a PNS and let x = (xk) be a sequence in X .
If x = (xk) is λ -convergent with respect to the probabilistic norm ν, then νλ − limx
is unique.

Proof. Suppose that νλ − limx = L1 and νλ − limx = L2 (L1 �= L2) . Given α ∈
(0,1) and choose β ∈ (0,1) such that T (1−β ,1−β ) > 1−α. Then for any ε > 0,
there exists n1 ∈ N such that

νσn(x)−L1
(ε) > 1−α

for all n � n1. Also, there exists n2 ∈ N such that

νσn(x)−L2
(ε) > 1−α

for all n � n2. Now, consider no = max{n1,n2} . Then for n � no , we will get a s ∈ N

such that
νxs−L1

(ε
2

)
> νσn(x)−L1

(ε
2

)
> 1−β

and
νxs−L2

(ε
2

)
> νσn(x)−L2

(ε
2

)
> 1−β .

Then, we have

νL1−L2(ε) � T
(

νxs−L1

(ε
2

)
, νxs−L2

(ε
2

))
> T (1−β ,1−β ) > 1−α.

Since α > 0 is arbitrary, we have νL1−L2(ε) = 1 for all ε > 0, which implies that
L1 = L2. �

A method G is called regular if every convergent sequence x = (xn) is G-con-
vergent with G(x) = limx. A method is called subsequential if whenever x is G-
convergent with G(x) = � , then there is a subsequence (xnk) of x with limk xnk = �.
Since the ordinary convergence implies ideal convergence, so I is a regular sequential
method.

THEOREM 3.4. Sequential method Iλ is regular, i.e. If νλ − limx = L, then Iν
λ −

limx = L.

Proof. The proof follows from the fact that I is admissible and Theorem 3.2. �
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THEOREM 3.5. Let (X ,ν,T ) be a PNS and let x = (xk) be sequence in X . If
νλ − limx = L, then there exists a subsequence

(
xmk

)
of x = (xk) such that ν −

limxmk = L.

Proof. Let νλ − limx = L. Then, for every ε > 0 and given α ∈ (0,1) , there
exists n0 ∈ N such that

νσn(x)−L(ε) > 1−α

for all n � n0. Clearly, for each n � n0, we can select an mk ∈ Jn such that

νxmk−L(ε) > νσn(x)−L(ε) > 1−α.

It follows that ν − limxmk = L. �

DEFINITION 3.3. Let (X ,ν,T ) be a PNS and let x = (xk) be a sequence in X .
Then,

(1) An element L ∈ X is said to be Iλ -limit point of x = (xk) if there is a set M =
{m1 < m2 < ... < mk < ...} ⊂ N such that the set Mı = {n ∈ N : mk ∈ Jn} /∈ I
and νλ − limxmk = L.

(2) An element L ∈ X is said to be Iλ -cluster point of x = (xk) if for every ε > 0
and α ∈ (0,1) , the set

{
n ∈ N : νσn(x)−L(ε) > 1−α

}
/∈ I.

Let ΛIλ
ν (x) denote the set of all Iλ -limit points and ΓIλ

ν (x) denote the set of all
Iλ -cluster points in X , respectively.

THEOREM 3.6. Let (X ,ν,T ) be a PNS. For each sequence x = (xk) in X , then
ΛIλ

ν (x) ⊂ ΓIλ
ν (x) .

Proof. Let L ∈ ΛIλ
ν (x) . Then there exists a set M ⊂N such that Mı /∈ I, where M

and Mı are as in Definition 3.3., satisfies νλ − limxmk = L. Thus, for every ε > 0 and
α ∈ (0,1) , there exists n0 ∈ N such that

νσ ′
n(x)−L(ε) > 1−α

for all n � n0, where σ ′
n(x) = 1

λn
∑k∈Jn xmk . Therefore,

B =
{
n ∈ N : νσ ′

n(x)−L(ε) > 1−α
}⊇ Mı \{

m1,m2, ...,mn0

}
.

Now, with I being admissible, we must have Mı \{
m1,m2, ...,mk0

}
/∈ I and as such

B /∈ I. Hence L ∈ ΓIλ
ν (x) . �
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THEOREM 3.7. Let (X ,ν,T ) be a PNS. For each sequence x = (xk) in X , the set

ΓIλ
ν (x) is closed set in X with respect to the usual topology induced by the probabilistic

norm νλ .

Proof. Let y∈ΓIλ
ν (x). Take ε > 0 and α ∈ (0,1) . Then there exists L0 ∈ΓIλ

ν (x)∩
B(y,α,ε) . Choose δ > 0 such that B(L0,δ ,ε) ⊂ B(y,α,ε) . We have

G =
{
n ∈ N : νσn(x)−y(ε) > 1−α

}
⊇ {

n ∈ N : νσn(x)−L0
(ε) > 1− δ

}
= H.

Thus H /∈ I and so G /∈ I. Hence y ∈ ΓIλ
ν (x) . �

THEOREM 3.8. Let (X ,ν,T ) be a PNS and let x = (xk) in X . Then the following
statements are equivalent:

(1) L is a Iλ -limit point of x,

(2) There exist two sequences y and z in X such that x = y+ z and νλ − limy = L
and {n ∈ N : k ∈ Jn, zk �= θ} ∈ I, where θ is the zero element of X .

Proof. Suppose that (1) holds. Then there exist sets M and Mı as in Definition
3.3. such that Mı /∈ I and νλ − limxmk = L. Define the sequences y and z as follows:

yk =
{

xk, if k ∈ Jn; n ∈ Mı,
L, otherwise.

and

zk =
{

θ , if k ∈ Jn; n ∈ Mı,
xk −L, otherwise.

It sufficies to consider the case k ∈ Jn such that n ∈ N�Mı. Then for each α ∈
(0,1) and ε > 0, we have νyk−L(ε) = 1 > 1−α. Thus, in this case,

νσn(y)−L(ε) = 1 > 1−α.

Hence νλ − limy = L.
Now {n ∈ N : k ∈ Jn, zk �= θ} ⊂ N�Mı and so {n ∈ N : k ∈ Jn, zk �= θ} ∈ I.
Now, suppose that (2) holds. Let Mı = {n ∈ N : k ∈ Jn, zk = θ} . Then, clearly

Mı ∈F (I) and so it is an infinite set. Construct the set M = {m1 < m2 < ... < mk < ...}
⊂ N such that mk ∈ Jn and zmk = θ . Since xmk = ymk and νλ − limy = L we obtain
νλ − limxmk = L. This completes the proof. �

THEOREM 3.9. Let (X ,ν,T ) be a PNS and x = (xk) be a sequence in X. Let I be
a non-trivial ideal in N. If there is a Iν

λ -convergent sequence y = (yk) in X such that
{k ∈ N : yk �= xk} ∈ I then x is also Iν

λ -convergent.

Proof. Suppose that {k ∈ N : yk �= xk} ∈ I and Iν
λ − limy = L. Then for every

α ∈ (0,1) and ε > 0, the set{
n ∈ N : νσn(y)−L(ε) � 1−α

}∈ I.
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For every 0 < α < 1 and ε > 0, we have

{
n ∈ N : νσn(x)−L(ε) � 1−α

}
(3.2)

⊆ {k ∈ N : yk �= xk}∪
{
n ∈ N : νσn(y)−L(ε) � 1−α

}
.

As both the sets of right-hand side of (3.2) are in I, we have that

{
n ∈ N : νσn(x)−L(ε) � 1−α

} ∈ I.

This completes the proof of the theorem. �
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