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THE RESURGENCE PROPERTIES OF THE LARGE ORDER

ASYMPTOTICS OF THE ANGER––WEBER FUNCTION I

GERGŐ NEMES

Abstract. The aim of this paper is to derive new representations for the Anger–Weber function,
exploiting the reformulation of the method of steepest descents by C. J. Howls (Howls, Proc.
R. Soc. Lond. A 439 (1992) 373–396). Using these representations, we obtain a number of
properties of the large order asymptotic expansions of the Anger–Weber function, including
explicit and realistic error bounds, asymptotics for the late coefficients, exponentially improved
asymptotic expansions, and the smooth transition of the Stokes discontinuities.

1. Introduction and main results

In this paper, we investigate the large ν asymptotics of the Anger–Weber function
A−ν (νx) . The asymptotic expansion of this function has different forms according to
whether 0 < x < 1, x = 1 or x > 1 [12, p. 298] (see also Olver [11, p. 352]). We
shall consider the latter two cases. A brief discussion about the expansion for A−ν (νx)
with 0 < x < 1 is given in Section 6. Meijer [5] gave error bounds for the asymp-
totic expansion of A−ν (νx) when x > 1. Dingle [2] obtained exponentially improved
versions of the asymptotic series and asymptotic approximations for their late terms.
Nevertheless, the derivation of his results is based on interpretive, rather than rigorous,
methods. In an earlier paper [7], we proved resurgence-type formulas for the Hankel

function H(1)
ν (νx) when x = 1 and x > 1, respectively. The main aim of this paper

is to derive similar new representations for the Anger–Weber function A−ν (νx) . Our
derivation is based on the reformulation of the method of steepest descents by Howls
[3]. Using these representations, we obtain a number of properties of the large order
asymptotic expansions of the Anger–Weber function, including explicit and realistic
error bounds, asymptotics for the late coefficients, exponentially improved asymptotic
expansions, and the smooth transition of the Stokes discontinuities. Some of our error
bounds coincide with the ones given by Meijer while some others are simpler. Our
analysis also provides a rigorous treatment of Dingle’s formal expansions.

Our first theorem describes the resurgence properties of the asymptotic expansion
of A−ν (νx) for x > 1. We employ the substitution x = secβ with an appropriate
0 < β < π

2 . The notations follow the ones given in [12, p. 298]. Throughout this paper,
empty sums are taken to be zero.

Mathematics subject classification (2010): 41A60, 30E15, 34M40.
Keywords and phrases: asymptotic expansions, Anger–Weber function, error bounds, Stokes phe-
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2 G. NEMES

THEOREM 1.1. Let 0 < β < π
2 be a fixed acute angle, and let N be a non-negative

integer. Then we have

A−ν (ν secβ ) = − 1
π

N−1

∑
n=0

(2n)!an (−secβ )
ν2n+1 +RN (ν,β ) (1.1)

for − π
2 < argν < π

2 , with

an (−secβ) = − 1
(2n)!

[
d2n

dt2n

(
t

secβ sinht− t

)2n+1
]

t=0

=
(−1)n+1

(2n)!

∫ +∞

0
t2niH(1)

it (it secβ)dt (1.2)

and

RN (ν,β ) =
(−1)N

πν2N+1

∫ +∞

0

t2N

1+(t/ν)2 iH(1)
it (it secβ )dt. (1.3)

It was shown in [7], that for any fixed 0 < β < π
2 and non-negative integer M , the

Hankel function H(1)
ν (ν secβ) has the representation

H(1)
ν (ν secβ) =

eiν(tanβ−β)− π
4 i( 1

2νπ tanβ
) 1

2

(
M−1

∑
m=0

(−1)m Um (icotβ )
νm +R(H)

M (ν,β )

)
, (1.4)

for − π
2 < argν < 3π

2 with

Um (icotβ ) = (−1)m (icotβ )m

2mm!

⎡⎣ d2m

dt2m

(
1
2

t2

icotβ (t− sinht)+ cosht−1

)m+ 1
2

⎤⎦
t=0

=
im

2(2π cotβ )
1
2

∫ +∞

0
tm− 1

2 e−t(tanβ−β ) (1+ e−2πt) iH(1)
it (it secβ )dt.

(1.5)

The remainder term R(H)
M (ν,β ) can be expressed as

R(H)
M (ν,β ) =

1

2(2π cotβ )
1
2 (iν)M

∫ +∞

0

tM− 1
2 e−t(tanβ−β )

1+ it/ν
(
1+ e−2πt) iH(1)

it (it secβ )dt.

(1.6)
This representation of the Hankel function will play an important role in later sections
of this paper.

If Jν (z) denotes the Anger function, then J−ν (z) = Jν (−z) and

sin(πν)A−ν (ν secβ ) = J−ν (ν secβ )−J−ν (ν secβ )
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(see [12, p. 296]). From these and the continuation formulas for the Bessel and Hankel
functions (see [12, p. 222 and p. 226]), we find

sin(πν)A−ν
(
νe2π im secβ

)
= J−ν

(
νe2π im secβ

)−J−ν
(
νe2π im secβ

)
= sin(πν)A−ν (ν secβ )+

(
e−2π imν −1

)
J−ν (ν secβ )

= sin(πν)A−ν (ν secβ )− ie−π i(m−1)ν sin(πmν)H(1)
ν (ν secβ )

− ie−π i(m+1)ν sin(πmν)H(2)
ν (ν secβ )

for every integer m . From this expression and the resurgence formulas (1.1), (1.4), we
can derive analogous representations in sectors of the form(

2m− 1
2

)
π < argν <

(
2m+

1
2

)
π , m ∈ Z.

Similarly, applying the continuation formulas

− sin(πν)Aν

(
νe(2m+1)π i secβ

)
= Jν

(
νe(2m+1)π i secβ

)
−Jν

(
νe(2m+1)π i secβ

)
= sin(πν)A−ν (ν secβ )+ e(2m+1)π iνJν (ν secβ )− J−ν (ν secβ)

= sin(πν)A−ν (ν secβ )+ ieπ i(m+1)ν sin(πmν)H(1)
ν (ν secβ )

+ ieπ imν sin (π (m+1)ν)H(2)
ν (ν secβ )

and the representations (1.1), (1.4), we can obtain resurgence formulas in any sector of
the form (

2m+
1
2

)
π < argν <

(
2m+

3
2

)
π , m ∈ Z.

The lines argν =
(
2m± 1

2

)
π are the Stokes lines for the function A−ν (ν secβ ) .

When ν is an integer, the limiting values have to be taken in these continuation
formulas.

The second theorem provides a resurgence formula for A−ν (ν) .

THEOREM 1.2. For any non-negative integer N , we have

A−ν (ν) =
1
3π

N−1

∑
n=0

d2n
Γ
( 2n+1

3

)
ν

2n+1
3

+RN (ν) (1.7)

for − 3π
2 < argν < 3π

2 , with

d2n =
1

(2n)!

⎡⎣ d2n

dt2n

(
t3

sinh t− t

) 2n+1
3

⎤⎦
t=0

=
(−1)n

Γ
(

2n+1
3

) ∫ +∞

0
t

2n−2
3 e−2πt iH(1)

it (it)dt

(1.8)
and

RN (ν) =
(−1)N

3πν
2N+1

3

∫ +∞

0

t
2N−2

3 e−2πt

1+(t/ν)
2
3

iH(1)
it (it)dt. (1.9)
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The cube roots are defined to be positive on the positive real line and are defined by
analytic continuation elsewhere.

In the previous paper [7], we proved a similar representation for the Hankel func-

tion H(1)
ν (ν) , in particular for any non-negative integer N , we have

H(1)
ν (ν) = − 2

3π

N−1

∑
n=0

d2ne
2(2n+1)πi

3 sin

(
(2n+1)π

3

)
Γ
(

2n+1
3

)
ν

2n+1
3

+R(H)
N (ν) (1.10)

with − π
2 < argν < 3π

2 . The remainder term R(H)
N (ν) has the integral representation

R(H)
N (ν) =

(−1)N

3πν
2N+1

3

∫ +∞

0
t

2N−2
3 e−2πt

(
e

(2N+1)πi
3

1+(t/ν)
2
3 e

2πi
3

+
1

1+(t/ν)
2
3

)
H(1)

it (it)dt.

(1.11)
The cube roots are defined to be positive on the positive real line and are defined by
analytic continuation elsewhere. This result will be important for us in later sections of
the paper.

Again, the formula (1.7) can be extended to other sectors of the complex plane.
(One has to replace the factor secβ by 1 in the continuation formulas given earlier.)

If we neglect the remainder terms and extend the sums to N = ∞ in Theorems 1.1
and 1.2, we recover the known asymptotic series of the Anger–Weber function. Some
other formulas for the coefficients an (−secβ ) can be found in Appendix A. For the
computation of the d2n , see [7, Appendix A].

In the following two theorems, we give exponentially improved asymptotic ex-
pansions for the function A−ν (νx) when x > 1 and x = 1, respectively. These new
expansions can be viewed as the mathematically rigorous forms of the terminated series
of Dingle [2, pp. 485]. We express these expansions in terms of the Terminant function
T̂p (w) whose definition and basic properties are given in Section 5. In Theorem 1.3,
RN (ν,β ) is defined by (1.1) and it is extended to the sector |argν| � 3π

2 via analytic
continuation. Throughout this paper, we use subscripts in the O notations to indicate
the dependence of the implied constant on certain parameters.

THEOREM 1.3. Suppose that |argν|� 3π
2 , |ν| is large and N = 1

2 |ν| (tanβ −β)+
ρ is a positive integer with ρ being bounded. Then

RN (ν,β ) = i
eiν(tanβ−β )− π

4 i(1
2 νπ tanβ

) 1
2

M−1

∑
m=0

(−1)m Um (icotβ )
νm T̂2N−m+ 1

2
(iν (tanβ −β))

− i
e−iν(tanβ−β)+ π

4 i(
1
2νπ tanβ

) 1
2

M−1

∑
m=0

Um (icotβ )
νm T̂2N−m+ 1

2
(−iν (tanβ −β))+RN,M (ν,β )

with M being an arbitrary fixed non-negative integer, and

RN,M (ν,β ) = OM,ρ

⎛⎝ e−|ν|(tanβ−β )( 1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

⎞⎠
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for |argν| � π
2 ;

RN,M (ν,β ) = OM,ρ

⎛⎝ e∓ℑ(ν)(tanβ−β )( 1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

⎞⎠
for π

2 � ±argν � 3π
2 .

THEOREM 1.4. Define RN,M,K (ν) by

A−ν (ν) =
1

3πν
1
3

N−1

∑
n=0

d6n
Γ
(
2n+ 1

3

)
ν2n +

1
3πν

M−1

∑
m=0

d6m+2
Γ(2m+1)

ν2m

+
1

3πν
5
3

K−1

∑
k=0

d6k+4
Γ
(
2k+ 5

3

)
ν2k +RN,M,K (ν) ,

where

N = π |ν|+ ρ , M = π |ν|+ σ and K = π |ν|+ η ,

|ν| being large, ρ , σ and η being bounded quantities such that N,M,K � 1 . Then

RN,M,K (ν) = i
e−2π iν

3
2
3π

J−1

∑
j=0

d2 j sin

(
(2 j +1)π

3

) Γ
(

2 j+1
3

)
ν

2 j+1
3

T̂2N− 2 j
3

(−2π iν)

− ie
π
3 i e

2π iν

3
2
3π

J−1

∑
j=0

d2 je
2(2 j+1)πi

3 sin

(
(2 j +1)π

3

) Γ
(

2 j+1
3

)
ν

2 j+1
3

T̂2N− 2 j
3

(2π iν)

+ i
e−2π iν

3
2
3π

L−1

∑
�=0

d2� sin

(
(2�+1)π

3

)
Γ
(

2�+1
3

)
ν

2�+1
3

T̂2M− 2�−2
3

(−2π iν)

+ i
e2π iν

3
2
3π

L−1

∑
�=0

d2�e
2(2�+1)πi

3 sin

(
(2�+1)π

3

)
Γ
(

2�+1
3

)
ν

2�+1
3

T̂2M− 2�−2
3

(2π iν)

+ i
e−2π iν

3
2
3π

Q−1

∑
q=0

d2q sin

(
(2q+1)π

3

) Γ
(

2q+1
3

)
ν

2q+1
3

T̂2K− 2q−4
3

(−2π iν)

− ie−
π
3 i e

2π iν

3
2
3π

Q−1

∑
q=0

d2qe
2(2q+1)πi

3 sin

(
(2q+1)π

3

) Γ
(

2q+1
3

)
ν

2q+1
3

T̂2K− 2q−4
3

(2π iν)

+RJ,L,Q
N,M,K (ν) ,

(1.12)

where J , L and Q are arbitrary fixed non-negative integers satisfying J,L,Q ≡ 0



6 G. NEMES

mod 3 , and

RJ,L,Q
N,M,K (ν) = OJ,ρ

(
e−2π |ν| |d2J|

Γ
(

2J+1
3

)
|ν| 2J+1

3

)
+OL,σ

(
e−2π |ν| |d2L|

Γ
(

2L+1
3

)
|ν| 2L+1

3

)

+OQ,η

⎛⎝e−2π |ν| |d2Q|
Γ
(

2Q+1
3

)
|ν| 2Q+1

3

⎞⎠
(1.13)

for − π
2 � argν � π

2 ;

RJ,L,Q
N,M,K (ν) = OJ,ρ

(
e∓2πℑ(ν) |d2J|

Γ
( 2J+1

3

)
|ν| 2J+1

3

)
+OL,σ

(
e∓2πℑ(ν) |d2L|

Γ
( 2L+1

3

)
|ν| 2L+1

3

)

+OQ,η

⎛⎝e∓2πℑ(ν) |d2Q|
Γ
(

2Q+1
3

)
|ν| 2Q+1

3

⎞⎠
(1.14)

for π
2 � ±argν � 3π

2 ;

RJ,L,Q
N,M,K (ν) = OJ,ρ

(
cosh(2πℑ(ν)) |d2J|

Γ
(

2J+1
3

)
|ν| 2J+1

3

)

+OL,σ

(
cosh(2πℑ(ν)) |d2L|

Γ
(

2L+1
3

)
|ν| 2L+1

3

)

+OQ,η

⎛⎝cosh(2πℑ(ν)) |d2Q|
Γ
(

2Q+1
3

)
|ν| 2Q+1

3

⎞⎠+OJ,L,Q

(
|ν|− 1

3

)
for 3π

2 � ±argν � 5π
2 . Moreover, if J = L = Q, then the bound (1.13) remains valid

in the larger sector − 3π
2 � argν � 3π

2 , and the estimate (1.14) holds in the sectors
3π
2 � ∓argν � 5π

2 .

The assumption that J,L,Q ≡ 0 mod 3 is only for simplicity. Estimations for
RJ,L,Q

N,M,K (ν) when J , L or Q may not be divisible by 3 can be obtained similarly.
We remark that Dingle writes Aν (z) in place of A−ν (z) ; and Olver’s definition

for A−ν (z) omits the factor 1
π in (2.1) below.

The rest of the paper is organized as follows. In Section 2, we prove the resurgence
formulas stated in Theorems 1.1 and 1.2. In Section 3, we give explicit and realistic er-
ror bounds for the asymptotic expansions of A−ν (νx) when x � 1 using the results of
Section 2. In Section 4, asymptotic approximations for an (−secβ ) as n → +∞ are
given. In Section 5, we prove the exponentially improved expansions presented in The-
orems 1.3 and 1.4, and provide a detailed discussion of the Stokes phenomenon related
to the expansions of A−ν (νx) . The paper concludes with a discussion in Section 6.
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2. Proofs of the resurgence formulas

Our analysis is based on the integral definition of the Anger–Weber function

A−ν (z) =
1
π

∫ +∞

0
eνt−zsinh tdt |argz| < π

2
. (2.1)

If z = νx , where x is a positive constant, then

A−ν (νx) =
1
π

∫ +∞

0
e−ν(xsinht−t)dt |argν| < π

2
. (2.2)

The analysis is significantly different according to whether x > 1 or x = 1. The saddle
points of the integrand are the roots of the equation xcosh t = 1. Hence, the saddle

points are given by t(k)± = ±sech−1x + 2π ik where k is an arbitrary integer. When

x = 1, we shall use the simpler notation t(k) = 2π ik . We denote by C
(k)
± (θ ) the portion

of the steepest paths that pass through the saddle point t(k)± . Here, and subsequently, we
write θ = argν . Similarly, C (k) (θ ) denotes the steepest paths through the saddle point
t(k) . As for the path of integration P (θ ) in (2.2), we take that connected component
of {

t ∈ C : arg
[
eiθ (xsinh t− t)

]
= 0, ℜ(t) > 0, |ℑ(t)| < 2π

}
∪{0}, (2.3)

which contains the origin. We remark that P (0) is the positive real axis. If x = 1, the
path P (θ ) is part of the contour C (0) (θ ) .

2.1. Case (i): x > 1

Let 0 < β < π
2 be defined by secβ = x . For simplicity, we assume that θ = 0. In

due course, we shall appeal to an analytic continuation argument to extend our results
to complex ν . Let f (t,β) = secβ sinh t− t . If

τ = f (t,β ) , (2.4)

then τ is real on the curve P (0) , and, as t travels along this curve from 0 to +∞ , τ
increases from 0 to +∞ . Therefore, corresponding to each positive value of τ , there is
a value of t , say t (τ) , satisfying (2.4) with t (τ) > 0. In terms of τ , we have

A−ν (ν secβ) =
1
π

∫ +∞

0
e−ντ dt (τ)

dτ
dτ =

1
π

∫ +∞

0
e−ντ 1

secβ cosht (τ)−1
dτ.

Following Howls, we express the function involving t (τ) as a contour integral using
the residue theorem, to find

A−ν (ν secβ ) =
1
π

∫ +∞

0
e−ντ 1

2π i

∮
Γ

f−1 (u,β )
1− τ2 f−2 (u,β)

dudτ

where the contour Γ encircles the path P (0) in the positive direction and does not

enclose any of the saddle points t(k)± (see Figure 1).
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Γ

P(0)

Figure 1: The contour Γ encircling the path P (0) .

Now, we employ the well-known expression for non-negative integer N

1
1− z

=
N−1

∑
n=0

zn +
zN

1− z
, z �= 1, (2.5)

to expand the function under the contour integral in powers of τ2 f−2 (u,β ) . The result
is

A−ν (ν secβ ) = − 1
π

N−1

∑
n=0

∫ +∞

0
τ2ne−ντ −1

2π i

∮
Γ

du
f 2n+1 (u,β)

dτ +RN (ν,β ) ,

where

RN (ν,β ) =
1
π

∫ +∞

0
τ2Ne−ντ 1

2π i

∮
Γ

f−2N−1 (u,β)
1− τ2 f−2 (u,β )

dudτ. (2.6)

The path Γ in the sum can be shrunk into a small circle around 0, and we arrive at

A−ν (ν secβ ) = − 1
π

N−1

∑
n=0

(2n)!an (−secβ)
ν2n+1 +RN (ν,β ) , (2.7)

where

an (−secβ ) =
−1
2π i

∮
(0+)

du
f 2n+1 (u,β)

= − 1
(2n)!

[
d2n

dt2n

(
t

secβ sinht − t

)2n+1
]

t=0

.

Performing the change of variable ντ = s in (2.6) yields

RN (ν,β ) =
1

πν2N+1

∫ +∞

0
s2Ne−s 1

2π i

∮
Γ

f−2N−1 (u,β)

1− (s/ν)2 f−2 (u,β )
duds. (2.8)

This representation of RN (ν,β ) and the formula (2.7) can be continued analytically if
we choose Γ = Γ(θ ) to be an infinite contour that surrounds the path P (θ ) in the

anti-clockwise direction and that does not encircle any of the saddle points t(k)± . This
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continuation argument works until the path P (θ ) runs into a saddle point. In the
terminology of Howls, such saddle points are called adjacent to the endpoint 0 . As∣∣∣arg( f (0,β )− f

(
t(k)± ,β

))∣∣∣= π
2

for any saddle point t(k)± , we infer that (2.8) is valid as long as − π
2 < θ < π

2 with a
contour Γ(θ ) specified above. When θ = − π

2 , the path P (θ ) connects to the saddle

point t(0)
+ = iβ . Similarly, when θ = π

2 , the path P (θ ) connects to the saddle point

t(0)
− = −iβ . These are the adjacent saddles. The set

Δ =
{

u ∈ P (θ ) : −π
2

< θ <
π
2

}
forms a domain in the complex plane whose boundary contains portions of steepest

descent paths through the adjacent saddles (see Figure 2). These paths are C
(0)
+
(π

2

)
and

C
(0)
−
(− π

2

)
, and they are called the adjacent contours to the endpoint 0 . The function

under the contour integral in (2.8) is an analytic function of u in the domain Δ , therefore
we can deform Γ over the adjacent contours. We thus find that for − π

2 < θ < π
2 and

N � 0, (2.8) may be written

RN (ν,β ) =
1

πν2N+1

∫ +∞

0
s2Ne−s 1

2π i

∫
C

(0)
+ ( π

2 )
f−2N−1 (u,β)

1− (s/ν)2 f−2 (u,β )
duds

+
1

πν2N+1

∫ +∞

0
s2Ne−s 1

2π i

∫
C

(0)
− (− π

2 )
f−2N−1 (u,β )

1− (s/ν)2 f−2 (u,β )
duds.

(2.9)

Now we make the changes of variable

s = t
| f (iβ ,β )− f (0,β )|
f (iβ ,β )− f (0,β )

f (u,β) = −it f (u,β )

in the first, and

s = t
| f (−iβ ,β )− f (0,β )|
f (−iβ ,β )− f (0,β )

f (u,β ) = it f (u,β )

in the second double integral. Clearly, by the definition of the adjacent contours, t is
positive. The quantities f (iβ ,β )− f (0,β ) = i(tanβ −β) and f (−iβ ,β )− f (0,β ) =
−i(tanβ −β) were essentially called the “singulants” by Dingle [2, p. 147]. With
these changes of variable, the representation (2.9) for RN (ν,β ) becomes

RN (ν,β ) =
(−1)N

πν2N+1

∫ +∞

0

t2N

1+(t/ν)2

(
1
2π

∫
C

(0)
− (− π

2 )
e−it f (u,β )du

− 1
2π

∫
C

(0)
+ ( π

2 )
eit f (u,β )du

)
dt, (2.10)
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t(0)
+

t(0)
−

C
(0)
−
(− π

2

)

C
(0)
+
(π

2

)
(i)

(ii)
(iii)

(iv)
(v)

Figure 2: The path P (θ ) emanating from the origin when (i) θ = 0 , (ii) θ = − π
4 ,

(iii) θ = − 2π
5 , (iv) θ = π

4 , (v) θ = 2π
5 . The paths C

(0)
+
(π

2

)
and C

(0)
−
(− π

2

)
are the

adjacent contours to 0 . The domain Δ comprises all points between these two paths in
the right-half plane.

for − π
2 < θ < π

2 and N � 0. Finally, the contour integrals can themselves be repre-
sented in terms of the Hankel functions since

1
2π

∫
C

(0)
− (− π

2 )
e−it f (u,β )du = − i

2
H(2)
−it (−it secβ) =

i
2
H(1)

it (it secβ ) ,

and

− 1
2π

∫
C

(0)
+ ( π

2 )
eit f (u,β )du =

i
2
H(1)

it (it secβ ) .

Substituting these expressions into (2.10) gives (1.3). To prove the second representa-
tion in (1.2), we apply (1.3) for the right-hand side of

an (−secβ ) = π
ν2n+1

(2n)!
(Rn+1 (ν,β )−Rn (ν,β )) .

2.2. Case (ii): x = 1

We assume that θ = 0 and later we shall use an analytic continuation argument to
extend the results to complex ν . Let f (t) = sinht− t . If

τ = f (t) , (2.11)

then τ is real on the curve P (0) , and, as t travels along this curve from 0 to +∞ , τ
increases from 0 to +∞ . Therefore, corresponding to each positive value of τ , there is
a value of t , say t (τ) , satisfying (2.11) with t (τ) > 0. In terms of τ , we have

A−ν (ν) =
1
π

∫ +∞

0
e−ντ dt (τ)

dτ
dτ =

1
π

∫ +∞

0
e−ντ 1

cosht (τ)−1
dτ.



RESURGENCE OF THE ANGER–WEBER FUNCTION 11

As in the first case, we express the function involving t (τ) as a contour integral using
the residue theorem, to obtain

A−ν (ν) =
1
3π

∫ +∞

0
τ−

2
3 e−ντ 1

2π i

∮
Γ

f−
1
3 (u)

1− τ
2
3 f−

2
3 (u)

dudτ

where the contour Γ encircles the path P (0) in the positive direction and does not
enclose any of the saddle points t(k) �= t(0) (cf. Figure 1). The cube root is defined so

that f
1
3 (t) is positive on the path P (0) . Next we apply the expression (2.5) to expand

the function under the contour integral in powers of τ
2
3 f−

2
3 (u) . The result is

A−ν (ν) =
1
3π

N−1

∑
n=0

∫ +∞

0
τ

2n−2
3 e−ντ 1

2π i

∮
Γ

du

f
2n+1

3 (u)
dτ +RN (ν)

where

RN (ν) =
1
3π

∫ +∞

0
τ

2N−2
3 e−ντ 1

2π i

∮
Γ

f−
2N+1

3 (u)

1− τ
2
3 f−

2
3 (u)

dudτ. (2.12)

The path Γ in the sum can be shrunk into a small circle around t(0) = 0, and we arrive
at

A−ν (ν) =
1
3π

N−1

∑
n=0

d2n
Γ
(

2n+1
3

)
ν

2n+1
3

+RN (ν)

where

d2n =
1

2π i

∮
(0+)

du

f
2n+1

3 (u)
=

1
(2n)!

⎡⎣ d2n

dt2n

(
t3

sinh t− t

) 2n+1
3

⎤⎦
t=0

.

Applying the change of variable ντ = s in (2.12) gives

RN (ν) =
1

3πν
2N+1

3

∫ +∞

0
s

2N−2
3 e−s 1

2π i

∮
Γ

f−
2N+1

3 (u)

1− (s/ν)
2
3 f−

2
3 (u)

duds. (2.13)

As in the first case, we need to locate the adjacent saddle points. When θ = − 3π
2 , the

path P (θ ) connects to the saddle point t(1) = 2π i . Similarly, when θ = 3π
2 , the path

P (θ ) connects to the saddle point t(−1) = −2π i . Therefore, the adjacent saddles are
t(±1) . The set

Δ =
{

u ∈ P (θ ) : −3π
2

< θ <
3π
2

}
forms a domain in the complex plane whose boundary contains portions of steepest
descent paths through the adjacent saddles (see Figure 3). These paths are L (1) (− π

2

)
and P(−1) (π

2

)
, the adjacent contours to the saddle point t(0) (these paths are defined

in [7]). The function under the contour integral in (2.13) is an analytic function of u in
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L (1) (− π
2

)

P(−1) (π
2

)

(i)

(ii)

(iii)

(iv)

(v)

t(0)

t(−1)

t(1)

Figure 3: The path P (θ ) emanating from the saddle point t(0) when (i) θ = 0 , (ii)
θ =−π , (iii) θ =− 7π

5 , (iv) θ = π , (v) θ = 7π
5 . The paths L (1) (− π

2

)
and P(−1) (π

2

)
are the adjacent contours to t(0) . The domain Δ comprises all points between these two
paths in the right-half plane.

the domain Δ , therefore we can deform Γ over the adjacent contours. We thus find that
for − 3π

2 < θ < 3π
2 and N � 0, (2.13) may be written

RN (ν) =
1

3πν
2N+1

3

∫ +∞

0
s

2N−2
3 e−s 1

2π i

∫
L (1)(− π

2 )
f−

2N+1
3 (u)

1− (s/ν)
2
3 f−

2
3 (u)

duds

+
1

3πν
2N+1

3

∫ +∞

0
s

2N−2
3 e−s 1

2π i

∫
P(−1)( π

2 )
f−

2N+1
3 (u)

1− (s/ν)
2
3 f−

2
3 (u)

duds.

(2.14)

Now we perform the changes of variable

s = t
| f (2π i)− f (0)|
f (2π i)− f (0)

f (u) = it f (u)

in the first, and

s = t
| f (−2π i)− f (0)|
f (−2π i)− f (0)

f (u) = −it f (u)

in the second double integral. In this case, Dingle’s singulants are f (±2π i)− f (0) =
∓2π i . When using these changes of variable, we should take i

2
3 = −1 in the first,

and (−i)
2
3 = −1 in the second double integral. With these changes of variable, the
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representation (2.14) for RN (ν) becomes

RN(ν) =
(−1)N

3πν
2N+1

3

∫ +∞

0

t
2N−2

3

1+(t/ν)
2
3

(
1
2π

∫
P(−1)( π

2 )
eit f (u)du

− 1
2π

∫
L (1)(− π

2 )
e−it f (u)du

)
dt, (2.15)

for − 3π
2 < θ < 3π

2 and N � 0. Finally, the contour integrals can themselves be repre-
sented in terms of the Hankel functions since

1
2π

∫
P(−1)( π

2 )
eit f (u)du =

e−2πt

2
iH(1)

it (it) ,

and

− 1
2π

∫
L (1)(− π

2 )
e−it f (u)du = −e−2πt

2
iH(2)

−it (−it) =
e−2πt

2
iH(1)

it (it) .

Substituting these expressions into (2.15) gives (1.9). To prove the second representa-
tion in (1.8), we apply (1.9) for the right-hand side of

d2n = 3π
ν

2n+1
3

Γ
(

2n+1
3

) (Rn (ν)−Rn+1 (ν)) .

3. Error bounds

In this section we derive explicit and realistic error bounds for the large order
asymptotic series of the Anger–Weber function. The proofs are based on the resurgence
formulas given in Theorems 1.1 and 1.2.

We comment on the relation between Meijer’s work on the asymptotic expansion
of A−ν (ν secβ ) [5] and ours. Some of the estimates in [5] coincide with ours and
are valid in wider sectors of the complex ν -plane. However, it should be noted that
those bounds become less effective outside the sectors of validity of the representation
(1.3) due to the Stokes phenomenon. For those sectors we recommend the use of the
continuation formulas given in Section 1.

To estimate the remainder terms, we shall use the elementary result that

1
|1− reiϕ | �

{
|cscϕ | if 0 < |ϕ mod 2π |< π

2

1 if π
2 � |ϕ mod 2π |� π

(3.1)

holds for any r > 0. We will also need the fact that

iH(1)
it (itx) � 0 (3.2)

for any t > 0 and x � 1 (see [7]).
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3.1. Case (i): x > 1

As usual, let 0 < β < π
2 be defined by secβ = x . We observe that from (1.2) and

(3.2) it follows that

|an (−secβ )| = 1
(2n)!

∫ +∞

0
t2niH(1)

it (it secβ )dt.

Using this formula, together with the representation (1.3) and the estimate (3.1), we
obtain the error bound

|RN (ν,β )| � 1
π

(2N)! |aN (−secβ )|
|ν|2N+1

{
|csc(2θ )| if π

4 < |θ | < π
2

1 if |θ | � π
4 .

(3.3)

Here and throughout, θ = argν . When ν is real and positive, we can obtain more
precise estimates. Indeed, as 0 < 1

1+(t/ν)2
< 1 for t,ν > 0, from (1.3) and (1.2) we find

RN (ν,β ) = − 1
π

(2N)!aN (−secβ )
ν2N+1 Θ,

where 0 < Θ < 1 is an appropriate number depending on ν,β and N . In particular,
when N = 0, we have

0 < A−ν (ν secβ ) <
1

πν (secβ −1)
for ν > 0.

Therefore, the leading order asymptotic approximation for A−ν (ν secβ ) is always in
error by excess, for all positive values of ν (cf. [12, p. 298, formula 11.11.14]).

The error bound (3.3) becomes singular as θ → ± π
2 , and therefore unrealistic

near the Stokes lines. A better bound for RN (ν,β ) near these lines can be derived
as follows. Let 0 < ϕ < π

2 be an acute angle that may depend on N . Suppose that
π
4 + ϕ < θ � π

2 . An analytic continuation of the representation (1.1) to this sector can
be found by rotating the path of integration in (1.3) by ϕ :

RN (ν,β ) =
(−1)N

πν2N+1

∫ +∞eiϕ

0

t2N

1+(t/ν)2 iH(1)
it (it secβ )dt.

Substituting t = seiϕ

cosϕ and applying the estimation (3.1), we obtain

|RN (ν,β )| � csc(2(θ −ϕ))
π cos2N+1 ϕ |ν|2N+1

∫ +∞

0
s2N

∣∣∣∣∣H(1)
iseiϕ
cosϕ

(
iseiϕ

cosϕ
secβ

)∣∣∣∣∣ds.

In [7], it was shown that∣∣∣∣∣H(1)
iseiϕ
cosϕ

(
iseiϕ

cosϕ
secβ

)∣∣∣∣∣� 1√
cosϕ

∣∣∣H(1)
is (issecβ)

∣∣∣= 1√
cosϕ

iH(1)
is (issecβ ) (3.4)
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for any s > 0 and 0 < ϕ < π
2 . It follows that

|RN (ν,β )| � csc(2(θ −ϕ))

π cos2N+ 3
2 ϕ |ν|2N+1

∫ +∞

0
s2NiH(1)

is (issecβ )ds

=
csc(2(θ −ϕ))

cos2N+ 3
2 ϕ

1
π

(2N)! |aN (−secβ )|
|ν|2N+1 .

(3.5)

The angle ϕ = arctan

((
4N+5

2

)− 1
2

)
minimizes the function csc

(
2
(π

2 −ϕ
))

cos−2N− 3
2 ϕ ,

and

csc

(
2

(
θ − arctan

((
4N+5

2

)− 1
2

)))
cos2N+ 3

2

(
arctan

(( 4N+5
2

)− 1
2

)) �
csc

(
2

(
π
2 − arctan

((
4N+5

2

)− 1
2

)))
cos2N+ 3

2

(
arctan

(( 4N+5
2

)− 1
2

))

=
1√
2

(
1+

2
4N +5

)N+ 7
4
√

N +
5
4

�
√

e
2

(
N +

3
2

)

for all π
4 +ϕ = π

4 + arctan

((
4N+5

2

)− 1
2

)
< θ � π

2 with N � 0. Applying this result in

(3.5) yields the upper bound

|RN (ν,β )| �
√

e
2

(
N +

3
2

)
1
π

(2N)! |aN (−secβ )|
|ν|2N+1 , (3.6)

which is valid for π
4 + ϕ = π

4 + arctan

((
4N+5

2

)− 1
2

)
< θ � π

2 with N � 0. Since∣∣RN
(
ν,β
)∣∣= ∣∣∣RN (ν,β )

∣∣∣= |RN (ν,β )| , this bound also holds when − π
2 � θ < − π

4 −

arctan

(( 4N+5
2

)− 1
2

)
. In the ranges π

4 < |θ |� π
4 +arctan

(√
2

3

)
it holds that |csc(2θ)|�√

e
2

(
1+ 3

2

)
, whence the estimate (3.6) is valid in the wider sectors π

4 < |θ |� π
2 as long

as N � 1.

3.2. Case (ii): x = 1

We note that from (1.8) and (3.2) it follows that

|d2n| = 1

Γ
( 2n+1

3

) ∫ +∞

0
t

2n−2
3 e−2πt iH(1)

it (it)dt.

Applying this formula together with the representation (1.9) and the inequality (3.1)
yields the error bound

|RN (ν)| � 1
3π

|d2N |
Γ
( 2N+1

3

)
|ν| 2N+1

3

{∣∣csc( 2
3 θ
)∣∣ if 3π

4 < |θ | < 3π
2

1 if |θ | � 3π
4 .
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Again, when ν is real and positive, we can deduce better estimates. Indeed, as 0 <
1

1+(t/ν)
2
3

< 1 for t,ν > 0, from (1.9) and (1.8) we find

RN (ν) =
1
3π

d2N
Γ
(

2N+1
3

)
ν

2N+1
3

Ξ,

where 0 < Ξ < 1 is a suitable number depending on ν and N . In particular, when
N = 0, we have

0 < A−ν (ν) <
1
3π

d0
Γ
( 1

3

)
ν

1
3

=
2

4
3

3
7
6 Γ
(

2
3

)
ν

1
3

for ν > 0.

Hence, the leading order asymptotic approximation for A−ν (ν) is always in error by
excess, for all positive values of ν (cf. [12, p. 298, formula 11.11.16]).

Our bound for RN (ν) is unrealistic near the Stokes lines θ = ± 3π
2 due to the

presence of the factor csc
(

2
3 θ
)
. We shall derive better bounds for RN (ν) near these

lines using the method we applied in the previous case. Let 0 < ϕ < π
2 be an acute

angle that may depend on N and suppose that 3π
4 +ϕ < θ � 3π

2 . We rotate the path of
integration in (1.9) by ϕ , and apply the inequality (3.1) to obtain

|RN (ν)| � csc
(

2
3 (θ −ϕ)

)
3π cos

2N+1
3 ϕ |ν| 2N+1

3

∫ +∞

0
s

2N−2
3 e−2πs

∣∣∣∣∣H(1)
iseiϕ
cosϕ

(
iseiϕ

cosϕ

)∣∣∣∣∣ds

for 3π
4 +ϕ < θ � 3π

2 and N � 0. Using a continuity argument for the inequality (3.4),
yields ∣∣∣∣∣H(1)

iseiϕ
cosϕ

(
iseiϕ

cosϕ

)∣∣∣∣∣� 1√
cosϕ

iH(1)
is (is) � 1

cos
2
3 ϕ

iH(1)
is (is)

for s > 0 and 0 < ϕ < π
2 . It follows that

|RN (ν)| � csc
( 2

3 (θ −ϕ)
)

3π cos
2N+1

3 ϕ |ν| 2N+1
3

∫ +∞

0
s

2N−2
3 e−2πsiH(1)

is (is)ds

=
csc
( 2

3 (θ −ϕ)
)

cos
2N+3

3 ϕ
1
3π

|d2N |
Γ
( 2N+1

3

)
|ν| 2N+1

3

. (3.7)

There is no simple way to minimize csc
(

2
3

(
3π
2 −ϕ

))
cos−

2N+3
3 ϕ in ϕ . Nevertheless,

an approximate minimizer is given by ϕ = arctan

(( 2N+2
3

)− 1
2

)
. It is elementary to

show that

csc

(
2
3

(
θ − arctan

((
2N+2

3

)− 1
2

)))
cos

2N+3
3

(
arctan

(( 2N+2
3

)− 1
2

)) �
csc

(
2
3

(
3π
2 − arctan

((
2N+2

3

)− 1
2

)))
cos

2N+3
3

(
arctan

(( 2N+2
3

)− 1
2

))
�
√

3e
2

(N +2)



RESURGENCE OF THE ANGER–WEBER FUNCTION 17

for 3π
4 +ϕ = 3π

4 +arctan

((
2N+2

3

)− 1
2

)
< θ � 3π

2 and N � 0. Employing this estimate

in (3.7) gives the upper bound

|RN (ν)| �
√

3e
2

(N +2)
1
3π

|d2N |
Γ
( 2N+1

3

)
|ν| 2N+1

3

, (3.8)

valid when 3π
4 + ϕ = 3π

4 + arctan

((
2N+2

3

)− 1
2

)
< θ � 3π

2 and N � 0. A similar argu-

ment shows that this bound also holds in the sector − 3π
2 � θ <− 3π

4 −arctan

((
2N+2

3

)− 1
2

)
.

In the ranges 3π
4 < |θ |� 3π

4 +arctan

((
2
3

)− 1
2

)
it holds that

∣∣csc( 2
3θ
)∣∣�√3e

2 (0+2)=
√

3e , therefore, the estimate (3.8) remains valid in the wider sectors 3π
4 < |θ |� 3π

2 for
any N � 0.

4. Asymptotics for the late coefficients

In this section, we investigate the asymptotic nature of the coefficients an (−secβ )
as n→+∞ . The asymptotic behaviour of the coefficients d2n is discussed in the earlier
paper [7]. For our purposes, the most appropriate representation of the coefficients
an (−secβ ) is the second integral formula in (1.2). From (1.4), it follows that for any
t > 0 and 0 < β < π

2 , it holds that

iH(1)
it (it secβ ) =

e−t(tanβ−β )(
1
2 tπ tanβ

) 1
2

(
M−1

∑
m=0

imUm (icotβ )
tm

+R(H)
M (it,β )

)
. (4.1)

In [7], it was proved that the remainder R(H)
M (it,β) satisfies∣∣∣R(H)

M (it,β)
∣∣∣� |UM (icotβ)|

tM
. (4.2)

Substituting the formula (4.1) into (1.2) gives the expansion

−(2n)!an (−secβ ) =
(

2cotβ
π (tanβ −β)

) 1
2 (−1)n Γ

(
2n+ 1

2

)
(tanβ −β)2n ×

×
(

M−1

∑
m=0

(i(tanβ −β))mUm (icotβ )
Γ
(
2n−m+ 1

2

)
Γ
(
2n+ 1

2

) +AM (n,β)

)
,

(4.3)

for any fixed 0 � M � 2n , provided that n � 1. The remainder term AM (n,β) is given
by the integral formula

AM (n,β) =
(tanβ −β)2n+ 1

2

Γ
(
2n+ 1

2

) ∫ +∞

0
t2n− 1

2 e−t(tanβ−β)R(H)
M (it,β)dt.
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To bound this error term, we apply the estimate (4.2) to find

|AM (n,β)| � (tanβ −β)M |UM (icotβ )| Γ
(
2n−M+ 1

2

)
Γ
(
2n+ 1

2

) . (4.4)

Expansions of type (4.3) are called inverse factorial series in the literature. Numeri-
cally, their character is similar to the character of asymptotic power series, because the
consecutive Gamma functions decrease asymptotically by a factor 2n .

From the asymptotic behaviour of the coefficients Um (icotβ ) (see [7]), we infer
that for large n , the least value of the bound (4.4) occurs when M ≈ 4n

3 . With this

choice of M , the error bound is O
(
n

1
2 9−n
)

. This is the best accuracy we can achieve

using the expansion (4.3).
By extending the sum in (4.3) to infinity, we arrive at the formal series

− (2n)!an (−secβ ) ≈
(

2cotβ
π (tanβ −β)

) 1
2 (−1)n Γ

(
2n+ 1

2

)
(tanβ −β)2n ×

×
(

1− (tanβ −β)cotβ
(
5cot2 β +3

)
24
(
2n− 1

2

)
+

(tanβ −β)2 cot2 β
(
385cot4 β +462cot2 β +81

)
1152

(
2n− 1

2

)(
2n− 3

2

) + · · ·
)

.

This is exactly Dingle’s expansion for the late coefficients in the asymptotic series of
A−ν (ν secβ ) [2, p. 202]. The mathematically rigorous form of Dingle’s series is
therefore the formula (4.3).

Numerical examples illustrating the efficacy of the expansion (4.3), truncated op-
timally, are given in Table 1.

More accurate approximations could be derived for the coefficients an (−secβ )
by estimating the remainder AM (n,β ) rather than bounding it, but we do not discuss
the details here.

5. Exponentially improved asymptotic expansions

We shall find it convenient to express our exponentially improved expansions in
terms of the (scaled) Terminant function, which is defined by

T̂p (w) =
eπ ipw1−pe−w

2π i

∫ +∞

0

t p−1e−t

w+ t
dt for p > 0 and |argw| < π ,

and by analytic continuation elsewhere. Olver [10] showed that when p ∼ |w| and
w → ∞ , we have

ie−π ipT̂p (w) =

{
O
(
e−w−|w|) if |argw| � π

O (1) if −3π < argw � −π .
(5.1)
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values of β and M β = π
6 , M = 33

exact numerical value of a25 (−secβ) 0.19289505370609710328176787542524 × 1064

approximation (4.3) to a25 (−secβ) 0.19289505370609710328176788499115 × 1064

error −0.956591× 1038

error bound using (4.4) 0.1871709× 1039

values of β and M β = π
3 , M = 33

exact numerical value of a25 (−secβ) 0.17129537192362280172104021636215 × 108

approximation (4.3) to a25 (−secβ) 0.17129537192362280172104022485431 × 108

error −0.849216× 10−18

error bound using (4.4) 0.1661627× 10−17

values of β and M β = 6π
13 , M = 33

exact numerical value of a25 (−secβ) 0.39520964363504437817499204430357 × 10−43

approximation (4.3) to a25 (−secβ) 0.39520964363504437817499206387318 × 10−43

error −0.1956961× 10−68

error bound using (4.4) 0.3829199× 10−68

values of β and M β = 7π
15 , M = 33

exact numerical value of a25 (−secβ) 0.66560453043764058337583145493270 × 10−47

approximation (4.3) to a25 (−secβ) 0.66560453043764058337583148788914 × 10−47

error −0.3295644× 10−72

error bound using (4.4) 0.6448607× 10−72

Table 1: Approximations for a25 (−secβ ) with various β , using (4.3).

Concerning the smooth transition of the Stokes discontinuities, we will use the more
precise asymptotics

T̂p (w) =
1
2

+
1
2

erf

(
c(ϕ)

√
1
2
|w|
)

+O

(
e−

1
2 |w|c2(ϕ)

|w| 1
2

)
(5.2)

for −π + δ � argw � 3π − δ , 0 < δ � 2π ; and

e−2π ipT̂p (w) = −1
2

+
1
2

erf

(
−c(−ϕ)

√
1
2
|w|
)

+O

(
e−

1
2 |w|c2(−ϕ)

|w| 1
2

)
(5.3)

for −3π + δ � argw � π − δ , 0 < δ � 2π . Here ϕ = argw and erf denotes the Error
function. The quantity c(ϕ) is defined implicitly by the equation

1
2
c2 (ϕ) = 1+ i(ϕ −π)− ei(ϕ−π),
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and corresponds to the branch of c(ϕ) which has the following expansion in the neigh-
bourhood of ϕ = π :

c(ϕ) = (ϕ −π)+
i
6

(ϕ −π)2− 1
36

(ϕ −π)3− i
270

(ϕ −π)4 + · · · . (5.4)

For complete asymptotic expansions, see Olver [9]. We remark that Olver uses the
different notation Fp (w)= ie−π ipT̂p (w) for the Terminant function and the other branch
of the function c(ϕ) . For further properties of the Terminant function, see, for example,
Paris and Kaminski [13, Chapter 6].

5.1. Proof of the exponentially improved expansions for A−ν (νx)

5.1.1. Case (i): x > 1

First, we suppose that |argν| < π
2 . Our starting point is the representation (1.3),

written in the form

RN (ν,β ) =
(−1)N

2πν2N+1

∫ +∞

0

t2N

1− it/ν
iH(1)

it (it secβ )dt

+
(−1)N

2πν2N+1

∫ +∞

0

t2N

1+ it/ν
iH(1)

it (it secβ )dt. (5.5)

Let 0 � M < 2N be a fixed integer. We use (1.4) to expand the function H(1)
it (it secβ )

under the integrals in (5.5), to obtain

RN (ν,β ) = i
e−

π
4 i( 1

2 νπ tanβ
) 1

2

M−1

∑
m=0

(−1)m Um (icotβ)
νm (−1)m (iν)m−2N− 1

2

2π
×

×
∫ +∞

0

t2N−m− 1
2 e−t(tanβ−β )

1− it/ν
dt

− i
e

π
4 i(1

2νπ tanβ
) 1

2

M−1

∑
m=0

Um (icotβ)
νm (−1)m (−iν)m−2N− 1

2

2π
×

×
∫ +∞

0

t2N−m− 1
2 e−t(tanβ−β )

1+ it/ν
dt

+RN,M (ν,β ) , (5.6)

with

RN,M (ν,β ) =− 1(
1
2 π tanβ

) 1
2 (iν)2N+1

1
2π i

∫ +∞

0

t2N− 1
2 e−t(tanβ−β)

1− it/ν
R(H)

M (it,β)dt

− 1(
1
2 π tanβ

) 1
2 (iν)2N+1

1
2π i

∫ +∞

0

t2N− 1
2 e−t(tanβ−β)

1+ it/ν
R(H)

M (it,β)dt.

(5.7)
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The integrals in (5.6) can be identified in terms of the Terminant function since

(−1)m (iν)m−2N− 1
2

2π

∫ +∞

0

t2N−m− 1
2 e−t(tanβ−β )

1− it/ν
dt = eiν(tanβ−β)T̂2N−m+ 1

2
(iν (tanβ −β))

and

(−1)m (−iν)m−2N− 1
2

2π

∫ +∞

0

t2N−m− 1
2 e−t(tanβ−β)

1+ it/ν
dt

= e−iν(tanβ−β )T̂2N−m+ 1
2
(−iν (tanβ −β)) .

Therefore, we have the following expansion

RN (ν,β ) = i
eiν(tanβ−β )− π

4 i(1
2 νπ tanβ

) 1
2

M−1

∑
m=0

(−1)m Um (icotβ )
νm T̂2N−m+ 1

2
(iν (tanβ −β))

− i
e−iν(tanβ−β)+ π

4 i( 1
2νπ tanβ

) 1
2

M−1

∑
m=0

Um (icotβ )
νm T̂2N−m+ 1

2
(−iν (tanβ −β))+RN,M (ν,β ) .

Taking ν = reiθ , the representation (5.7) takes the form

RN,M (ν,β ) =− 1( 1
2 rπ tanβ

) 1
2 (ieiθ )2N+1

1
2π i

∫ +∞

0

τ2N− 1
2 e−rτ(tanβ−β)

1− iτe−iθ R(H)
M (irτ,β )dτ

− 1( 1
2 rπ tanβ

) 1
2 (ieiθ )2N+1

1
2π i

∫ +∞

0

τ2N− 1
2 e−rτ(tanβ−β)

1+ iτe−iθ R(H)
M (irτ,β )dτ.

(5.8)

Using the integral formula (1.6), R(H)
M (irτ,β ) can be written as

R(H)
M (irτ,β )

=
(−1)M

2(2π cotβ )
1
2 (rτ)M

(∫ +∞

0

sM− 1
2 e−s(tanβ−β)

1+ s/r

(
1+ e−2πs) iH(1)

is (issecβ )ds

+ (τ −1)
∫ +∞

0

sM− 1
2 e−s(tanβ−β)

(1+ rτ/s)(1+ s/r)
(
1+ e−2πs) iH(1)

is (issecβ )ds

)
.

Noting that

0 <
1

1+ s/r
,

1
(1+ rτ/s)(1+ s/r)

< 1
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for positive r , τ and s , substitution into (5.8) yields the upper bound

|RN,M (ν,β ) | � 1(
1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

∣∣∣∣∣ 1
2π

∫ +∞

0

τ2N−M− 1
2 e−rτ(tanβ−β)

1− iτe−iθ dτ

∣∣∣∣∣
+

1(
1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

1
2π

∫ +∞

0
τ2N−M− 1

2 e−rτ(tanβ−β)
∣∣∣∣ τ −1
τ + ieiθ

∣∣∣∣dτ

+
1(

1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

∣∣∣∣∣ 1
2π

∫ +∞

0

τ2N−M− 1
2 e−rτ(tanβ−β)

1+ iτe−iθ dτ

∣∣∣∣∣
+

1(
1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

1
2π

∫ +∞

0
τ2N−M− 1

2 e−rτ(tanβ−β)
∣∣∣∣ τ −1
τ − ieiθ

∣∣∣∣dτ.

Since
∣∣(τ −1)/

(
τ ± ieiθ)∣∣� 1, we find that

|RN,M (ν,β ) | � 1( 1
2 |ν|π tanβ

) 1
2

|UM (icotβ)|
|ν|M

∣∣∣eiν(tanβ−β )T̂2N−M+ 1
2
(iν (tanβ −β))

∣∣∣
+

1( 1
2 |ν|π tanβ

) 1
2

|UM (icotβ)|
|ν|M

∣∣∣e−iν(tanβ−β)T̂2N−M+ 1
2
(−iν (tanβ −β))

∣∣∣
+

1( 1
2 π tanβ

) 1
2

|UM (icotβ )|Γ(2N−M + 1
2

)
π (tanβ −β)2N−M+ 1

2 |ν|2N+1
.

By continuity, this bound holds in the closed sector |argν| � π
2 . Assume that N =

1
2 |ν|(tanβ −β)+ ρ where ρ is bounded. Employing Stirling’s formula, we find that

1(
1
2π tanβ

) 1
2

|UM (icotβ )|Γ(2N−M + 1
2

)
π (tanβ −β)2N−M+ 1

2 |ν|2N+1

= OM,ρ

⎛⎝ 1

(|ν| (tanβ −β))
1
2

e−|ν|(tanβ−β)(
1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

⎞⎠
as ν → ∞ . Olver’s estimation (5.1) shows that∣∣∣e±iν(tanβ−β)T̂2N−M+ 1

2
(±iν (tanβ −β))

∣∣∣= OM,ρ

(
e−|ν|(tanβ−β )

)
for large ν . Therefore, we have that

RN,M (ν,β ) = OM,ρ

⎛⎝ e−|ν|(tanβ−β )( 1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

⎞⎠ (5.9)

as ν → ∞ in the sector |argν| � π
2 .
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Rotating the path of integration in (5.7) and applying the residue theorem yields

RN,M (ν,β ) = i
eiν(tanβ−β)− π

4 i( 1
2 νπ tanβ

) 1
2

R(H)
M (ν,β )

− 1( 1
2π tanβ

) 1
2 (iν)2N+1

1
2π i

∫ +∞

0

t2N− 1
2 e−t(tanβ−β)

1− it/ν
R(H)

M (it,β )dt

− 1( 1
2π tanβ

) 1
2 (iν)2N+1

1
2π i

∫ +∞

0

t2N− 1
2 e−t(tanβ−β)

1+ it/ν
R(H)

M (it,β )dt

= i
eiν(tanβ−β)− π

4 i(
1
2 νπ tanβ

) 1
2

R(H)
M (ν,β )−RN,M

(
νe−π i,β

)
(5.10)

when π
2 < argν < 3π

2 . It follows that

|RN,M (ν,β )| � e−ℑ(ν)(tanβ−β)(
1
2 |ν|π tanβ

) 1
2

∣∣∣R(H)
M (ν,β )

∣∣∣+ ∣∣RN,M
(
νe−π i,β

)∣∣
in the closed sector π

2 � argν � 3π
2 , using continuity. It was proved in [7] that R(H)

M (ν,β )=

OM

(
|UM (icotβ )| |ν|−M

)
as ν → ∞ in the closed sector − π

2 � argν � 3π
2 , whence,

by (5.9), we deduce that

RN,M (ν,β ) = OM

⎛⎝ e−ℑ(ν)(tanβ−β )( 1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

⎞⎠
+OM,ρ

⎛⎝ e−|ν|(tanβ−β )( 1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

⎞⎠
= OM,ρ

⎛⎝ e−ℑ(ν)(tanβ−β)( 1
2 |ν|π tanβ

) 1
2

|UM (icotβ)|
|ν|M

⎞⎠
as ν → ∞ in the sector π

2 � argν � 3π
2 .

The reflection principle gives the relation

RN,M (ν,β ) = RN,M
(
ν ,β
)

= −i
e−iν(tanβ−β)+ π

4 i(
1
2 νπ tanβ

) 1
2

R(H)
M

(
ν,β
)−RN,M

(
νeπ i,β

)
= −i

e−iν(tanβ−β)+ π
4 i(

1
2 νπ tanβ

) 1
2

R(H)
M

(
νeπ i,β

)−RN,M
(
νeπ i,β

)
,

(5.11)
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valid when − 3π
2 < argν <− π

2 . Trivial estimation and a continuity argument show that

|RN,M (ν,β )| � eℑ(ν)(tanβ−β)(
1
2 |ν|π tanβ

) 1
2

∣∣∣R(H)
M

(
νeπ i,β

)∣∣∣+ ∣∣RN,M
(
νeπ i,β

)∣∣
in the closed sector − 3π

2 � argν �− π
2 . Since R(H)

M

(
νeπ i,β

)
= OM

(
|UM (icotβ )| |ν|−M

)
as ν → ∞ in the closed sector − 3π

2 � argν � π
2 , by (5.9), we find that

RN,M (ν,β ) = OM

⎛⎝ eℑ(ν)(tanβ−β )(
1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

⎞⎠
+OM,ρ

⎛⎝ e−|ν|(tanβ−β )(
1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

⎞⎠
= OM,ρ

⎛⎝ eℑ(ν)(tanβ−β )(
1
2 |ν|π tanβ

) 1
2

|UM (icotβ)|
|ν|M

⎞⎠
as ν → ∞ with − 3π

2 � argν � − π
2 .

5.1.2. Case (ii): x = 1

First, we suppose that |argν| < π
2 . We write (1.7) with N = 0 in the form

A−ν (ν) =
1

3πν
1
3

∫ +∞

0

t−
2
3 e−2πt

1+(t/ν)2 iH(1)
it (it)dt− 1

3πν

∫ +∞

0

e−2πt

1+(t/ν)2 iH(1)
it (it)dt

+
1

3πν
5
3

∫ +∞

0

t
2
3 e−2πt

1+(t/ν)2 iH(1)
it (it)dt.

Let N , M and K be arbitrary positive integers. Using the expression (2.5), we find that

A−ν (ν) =
1

3πν
1
3

N−1

∑
n=0

d6n
Γ
(
2n+ 1

3

)
ν2n +

1
3πν

M−1

∑
m=0

d6m+2
Γ(2m+1)

ν2m

+
1

3πν
5
3

K−1

∑
k=0

d6k+4
Γ
(
2k+ 5

3

)
ν2k +RN,M,K (ν) ,

where

RN,M,K (ν) =
(−1)N

3πν2N+ 1
3

∫ +∞

0

t2N− 2
3 e−2πt

1+(t/ν)2 iH(1)
it (it)dt

− (−1)M

3πν2M+1

∫ +∞

0

t2Me−2πt

1+(t/ν)2 iH(1)
it (it)dt

+
(−1)K

3πν2K+ 5
3

∫ +∞

0

t2K+ 2
3 e−2πt

1+(t/ν)2 iH(1)
it (it)dt. (5.12)
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We remark that RN,N,N (ν) = R3N (ν) . Assume that J , L and Q are integers such that
0 � L < 3N , 0 � L < 3M + 1, 0 � Q < 3K + 2 and J,L,Q ≡ 0 mod 3. We apply

(1.10) to expand the function H(1)
it (it) under the integral in (5.12), to obtain

RN,M,K (ν) =
2
9π

J−1

∑
j=0

d2 j sin

(
(2 j +1)π

3

) Γ
(

2 j+1
3

)
ν

2 j+1
3

×

× (−1)N+ j ν
2 j
3 −2N

π

∫ +∞

0

t2N− 2 j
3 −1e−2πt

1+(t/ν)2 dt

− 2
9π

L−1

∑
�=0

d2� sin

(
(2�+1)π

3

)
Γ
(

2�+1
3

)
ν

2�+1
3

×

× (−1)M+� ν
2�−2

3 −2M

π

∫ +∞

0

t2M− 2�−2
3 −1e−2πt

1+(t/ν)2 dt

+
2
9π

Q−1

∑
q=0

d2q sin

(
(2q+1)π

3

) Γ
(

2q+1
3

)
ν

2q+1
3

×

× (−1)K+q ν
2q−4

3 −2K

π

∫ +∞

0

t2K− 2q−4
3 −1e−2πt

1+(t/ν)2 dt

+RJ,L,Q
N,M,K (ν) ,

(5.13)

with

RJ,L,Q
N,M,K (ν) =

(−1)N

3πν2N+ 1
3

∫ +∞

0

t2N− 2
3 e−2πt

1+(t/ν)2 iR(H)
J (it)dt

− (−1)M

3πν2M+1

∫ +∞

0

t2Me−2πt

1+(t/ν)2 iR(H)
L (it)dt

+
(−1)K

3πν2K+ 5
3

∫ +∞

0

t2K+ 2
3 e−2πt

1+(t/ν)2 iR(H)
Q (it)dt. (5.14)

The integrals in (5.13) can be identified in terms of the Terminant function since

(−1)N+ j ν
2 j
3 −2N

π

∫ +∞

0

t2N− 2 j
3 −1e−2πt

1+(t/ν)2 dt

= ie−2π iν T̂2N− 2 j
3

(−2π iν)− ie
π
3 ie2π iνe

2(2 j+1)πi
3 T̂2N− 2 j

3
(2π iν) ,

(−1)M+� ν
2�−2

3 −2M

π

∫ +∞

0

t2M− 2�−2
3 −1e−2πt

1+(t/ν)2 dt =− ie−2π iν T̂2M− 2�−2
3

(−2π iν)

− ie2π iνe
2(2�+1)πi

3 T̂2M− 2�−2
3

(2π iν) ,
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and

(−1)K+q ν
2q−4

3 −2K

π

∫ +∞

0

t2K− 2q−4
3 −1e−2πt

1+(t/ν)2 dt = ie−2π iν T̂2K− 2q−4
3

(−2π iν)

− ie−
π
3 ie2π iνe

2(2q+1)πi
3 T̂

2K− 2q−4
3

(2π iν) .

Substitution into (5.13) leads to the expansion (1.12). Taking ν = reiθ , the representa-
tion (5.14) becomes

RJ,L,Q
N,M,K (ν) = Φ+

(
N,2N +

1
3
,J

)
+ Φ−

(
N,2N +

1
3
,J

)
−Φ+ (M,2M +1,L)

−Φ− (M,2M +1,L)+ Φ+

(
K,2K +

5
3
,Q

)
+ Φ−

(
K,2K +

5
3
,Q

)
,

(5.15)

with

Φ± (A,B,C) =
(−1)A

6π (eiθ )B

∫ +∞

0

τB−1e−2πrτ

1± iτe−iθ iR(H)
C (irτ)dτ.

In [7, Appendix B] it was shown that

1− (s/rτ)
4
3

1− (s/rτ)2 =
1− (s/r)

4
3

1− (s/r)2 +(τ −1) f (r,τ,s)

for positive r , τ and s , with some f (r,τ,s) satisfying | f (r,τ,s)| � 2. Using the

integral formula (1.11), R(H)
J (irτ) can be written as

R(H)
J (irτ) =

1
√

3π (rτ)
2J+1

3

∫ +∞

0
s

2J−2
3 e−2πs 1− (s/rτ)

4
3

1− (s/rτ)2 H(1)
is (is)ds

=
1

√
3π (rτ)

2J+1
3

∫ +∞

0
s

2J−2
3 e−2πs 1− (s/r)

4
3

1− (s/r)2 H(1)
is (is)ds

+
τ −1

√
3π (rτ)

2J+1
3

∫ +∞

0
s

2J−2
3 e−2πs f (r,τ,s)H(1)

is (is)ds,

and similarly for R(H)
L (irτ) and R(H)

Q (irτ) . Noting that

0 <
1− (s/r)

4
3

1− (s/r)2 < 1

for any positive r and s , substitution into (5.15) yields the upper bound

|RJ,L,Q
N,M,K (ν) | � Ξ+

(
2N,2J,

2J
3

)
+ Ξ−

(
2N,2J,

2J
3

)
+ Ξ+

(
2M,2L,

2L−2
3

)
+ Ξ−

(
2M,2L,

2L−2
3

)
+ Ξ+

(
2K,2Q,

2Q−4
3

)
+ Ξ−

(
2K,2Q,

2Q−4
3

)
,
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with

Ξ± (A,B,C) =
|dB|Γ

(
B+1

3

)
3
√

3π |ν| B+1
3

(∣∣∣∣ 1
2π

∫ +∞

0

τA−C−1e−2πrτ

1± iτe−iθ dτ
∣∣∣∣

+
1
π

∫ +∞

0
τA−C−1e−2πrτ

∣∣∣∣ τ −1
τ ∓ ieiθ

∣∣∣∣dτ
)

.

As
∣∣(τ −1)/

(
τ ± ieiθ)∣∣� 1, we find that∣∣∣RJ,L,Q

N,M,K (ν)
∣∣∣� |d2J|Γ

( 2J+1
3

)
3
√

3π |ν| 2J+1
3

∣∣∣e−2π iν T̂2N− 2J
3

(−2π iν)
∣∣∣

+
|d2J|Γ

( 2J+1
3

)
3
√

3π |ν| 2J+1
3

∣∣∣e2π iν T̂2N− 2J
3

(2π iν)
∣∣∣+ 2 |d2J|Γ

( 2J+1
3

)
Γ
(
2N− 2J

3

)
3
√

3π2 (2π)2N− 2J
3 |ν|2N+ 1

3

+
|d2L|Γ

( 2L+1
3

)
3
√

3π |ν| 2L+1
3

∣∣∣e−2π iν T̂2N− 2L−2
3

(−2π iν)
∣∣∣

+
|d2L|Γ

( 2L+1
3

)
3
√

3π |ν| 2L+1
3

∣∣∣e2π iν T̂2N− 2L−2
3

(2π iν)
∣∣∣+ 2 |d2L|Γ

( 2L+1
3

)
Γ
(
2M− 2L−2

3

)
3
√

3π2 (2π)2M− 2L−2
3 |ν|2M+1

+
|d2Q|Γ

(
2Q+1

3

)
3
√

3π |ν| 2Q+1
3

∣∣∣e−2π iν T̂2N− 2Q−4
3

(−2π iν)
∣∣∣

+
|d2Q|Γ

(
2Q+1

3

)
3
√

3π |ν| 2Q+1
3

∣∣∣e2π iν T̂2N− 2Q−4
3

(2π iν)
∣∣∣+ 2 |d2Q|Γ

(
2Q+1

3

)
Γ
(
2K− 2Q−4

3

)
3
√

3π2 (2π)2K− 2Q−4
3 |ν|2K+ 5

3

.

By continuity, this bound holds in the closed sector |argν| � π
2 . Suppose that N =

π |ν|+ ρ , M = π |ν|+ σ and K = π |ν|+ η where ρ , σ and η are bounded. An
application of Stirling’s formula shows that

2 |d2J|Γ
( 2J+1

3

)
Γ
(
2N− 2J

3

)
3
√

3π2 (2π)2N− 2J
3 |ν|2N+ 1

3

= OJ,ρ

(
e−2π |ν|

|ν| 1
2

|d2J|
Γ
( 2J+1

3

)
|ν| 2J+1

3

)
,

2 |d2L|Γ
(

2L+1
3

)
Γ
(
2M− 2L−2

3

)
3
√

3π2 (2π)2M− 2L−2
3 |ν|2M+1

= OL,σ

(
e−2π |ν|

|ν| 1
2

|d2L|
Γ
(

2L+1
3

)
|ν| 2L+1

3

)
,

and

2 |d2Q|Γ
(

2Q+1
3

)
Γ
(
2K− 2Q−4

3

)
3
√

3π2 (2π)2K− 2Q−4
3 |ν|2K+ 5

3

= OQ,η

⎛⎝e−2π |ν|

|ν| 1
2

|d2Q|
Γ
(

2Q+1
3

)
|ν| 2Q+1

3

⎞⎠
as ν → ∞ . Using Olver’s estimation (5.1), we find∣∣∣e±2π iν T̂2N− 2J

3
(±2π iν)

∣∣∣= OJ,ρ

(
e−2π |ν|

)
,



28 G. NEMES∣∣∣e±2π iν T̂2N− 2L−2
3

(±2π iν)
∣∣∣= OL,σ

(
e−2π |ν|

)
,

and ∣∣∣e±2π iν T̂2N− 2Q−4
3

(±2π iν)
∣∣∣= OQ,η

(
e−2π |ν|

)
for large ν . Therefore, we have

RJ,L,Q
N,M,K (ν) = OJ,ρ

(
e−2π |ν| |d2J|

Γ
(

2J+1
3

)
|ν| 2J+1

3

)
+OL,σ

(
e−2π |ν| |d2L|

Γ
(

2L+1
3

)
|ν| 2L+1

3

)

+OQ,η

⎛⎝e−2π |ν| |d2Q|
Γ
(

2Q+1
3

)
|ν| 2Q+1

3

⎞⎠
(5.16)

as ν → ∞ in the sector |argν| � π
2 .

Next, we consider the sector π
2 < argν < 3π

2 . Rotating the path of integration in
(5.14) and applying the residue theorem gives

RJ,L,Q
N,M,K (ν) = ie

π
3 i e

2π iν

3
R(H)

J (ν)+
(−1)N

3πν2N+ 1
3

∫ +∞

0

t2N− 2
3 e−2πt

1+(t/νe−π i)2 iR(H)
J (it)dt

− i
e2π iν

3
R(H)

L (ν)− (−1)M

3πν2M+1

∫ +∞

0

t2Me−2πt

1+(t/νe−π i)2 iR(H)
L (it)dt

+ ie−
π
3 i e

2π iν

3
R(H)

Q (ν)+
(−1)K

3πν2K+ 5
3

∫ +∞

0

t2K+ 2
3 e−2πt

1+(t/νe−π i)2 iR(H)
Q (it)dt,

(5.17)

for π
2 < argν < 3π

2 . It is easy to see that the sum of three integrals has the order of
magnitude given in the right-hand side of (5.16). It follows that when J = K = Q , the
bound (5.16) remains valid in the wider sector − π

2 � argν � 3π
2 . Otherwise, we have∣∣∣∣ie π

3 i e
2π iν

3
R(H)

J (ν)− i
e2π iν

3
R(H)

L (ν)+ ie−
π
3 i e

2π iν

3
R(H)

Q (ν)
∣∣∣∣

� e−2πℑ(ν)

3

∣∣∣R(H)
J (ν)

∣∣∣+ e−2πℑ(ν)

3

∣∣∣R(H)
L (ν)

∣∣∣+ e−2πℑ(ν)

3

∣∣∣R(H)
Q (ν)

∣∣∣ .
It was proved in [7] that R(H)

J (ν) = OJ

(
|d2J|Γ

(
2J+1

3

) |ν|− 2J+1
3

)
as ν → ∞ in the

closed sector − π
2 � argν � 3π

2 , whence, by (5.16), we deduce that

RJ,L,Q
N,M,K (ν) = OJ,ρ

(
e−2πℑ(ν) |d2J|

Γ
( 2J+1

3

)
|ν| 2J+1

3

)
+OL,σ

(
e−2πℑ(ν) |d2L|

Γ
( 2L+1

3

)
|ν| 2L+1

3

)

+OQ,η

⎛⎝e−2πℑ(ν) |d2Q|
Γ
(

2Q+1
3

)
|ν| 2Q+1

3

⎞⎠
(5.18)
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as ν → ∞ in the sector π
2 � argν � 3π

2 .
Similarly, if J = K = Q , the bound (5.16) remains valid in the wider sector − 3π

2 �
argν � π

2 ; and by the foregoing argument, it is true in the larger sector − 3π
2 � argν �

3π
2 . Otherwise, we have

RJ,L,Q
N,M,K (ν) = OJ,ρ

(
e2πℑ(ν) |d2J|

Γ
(

2J+1
3

)
|ν| 2J+1

3

)
+OL,σ

(
e2πℑ(ν) |d2L|

Γ
(

2L+1
3

)
|ν| 2L+1

3

)

+OQ,η

⎛⎝e2πℑ(ν) |d2Q|
Γ
(

2Q+1
3

)
|ν| 2Q+1

3

⎞⎠
(5.19)

for large ν with − 3π
2 � argν � − π

2 .
Consider now the sector 3π

2 < argν < 5π
2 . Rotation of the path of integration in

(5.17) and application of the residue theorem yields

RJ,L,Q
N,M,K (ν) = ie

π
3 i e

2π iν

3
R(H)

J (ν)− i
e2π iν

3
R(H)

L (ν)+ ie−
π
3 i e

2π iν

3
R(H)

Q (ν)

+ i
e−2π iν

3
R(H)

J

(
νe−π i)+ i

e−2π iν

3
R(H)

L

(
νe−π i)+ i

e−2π iν

3
R(H)

Q

(
νe−π i)

+
(−1)N

3πν2N+ 1
3

∫ +∞

0

t2N− 2
3 e−2πt

1+(t/νe−2π i)2 iR(H)
J (it)dt

− (−1)M

3πν2M+1

∫ +∞

0

t2Me−2πt

1+(t/νe−2π i)2 iR(H)
L (it)dt

+
(−1)K

3πν2K+ 5
3

∫ +∞

0

t2K+ 2
3 e−2πt

1+(t/νe−2π i)2 iR(H)
Q (it)dt,

for 3π
2 < argν < 5π

2 . It is easy to see that the sum of three integrals has the order of
magnitude given in the right-hand side of (5.16). It follows that when J = K = Q ,
the bound (5.19) holds in the sector 3π

2 � argν � 5π
2 . Otherwise, we need to bound

R(H)
J (ν) , R(H)

L (ν) and R(H)
Q (ν) . From the connection formula

H(1)
ν (ν) = −H(1)

νe−2πi

(
νe−2π i)−H(2)

νe−2πi

(
νe−2π i)− e−2π iνH(2)

νe−2πi

(
νe−2π i) ,

we obtain the relation

R(H)
J (ν) = R(H)

J

(
νe−2π i)+R(H)

J

(
νe−π i)− e−2π iνH(2)

νe−2πi

(
νe−2π i)

= R(H)
J

(
νe−2π i)+R(H)

J

(
νe−π i)+ e−2π iνR(H)

0

(
νe−π i) .

Since R(H)
J (ν) = OJ

(
|d2J|Γ

(
2J+1

3

) |ν|− 2J+1
3

)
as ν → ∞ in the sector − π

2 � argν �
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3π
2 , we infer that

ie
π
3 i e

2π iν

3
R(H)

J (ν) = OJ

(
e−2πℑ(ν) |d2J|

Γ
(

2J+1
3

)
|ν| 2J+1

3

)
+OJ

(
|ν|− 1

3

)
for large ν with 3π

2 � argν � 5π
2 . A similar estimation holds for the terms involving

R(H)
L (ν) and R(H)

Q (ν) . The sum of the three terms containing R(H)
J

(
νe−π i

)
, R(H)

J

(
νe−π i

)
and R(H)

Q

(
νe−π i

)
has the order of magnitude given in the right-hand side of (5.19).

Therefore, the final result is

RJ,L,Q
N,M,K (ν) = OJ,ρ

(
cosh(2πℑ(ν)) |d2J|

Γ
( 2J+1

3

)
|ν| 2J+1

3

)

+OL,σ

(
cosh(2πℑ(ν)) |d2L|

Γ
(

2L+1
3

)
|ν| 2L+1

3

)

+OQ,η

⎛⎝cosh(2πℑ(ν)) |d2Q|
Γ
(

2Q+1
3

)
|ν| 2Q+1

3

⎞⎠+OJ,L,Q

(
|ν|− 1

3

)
(5.20)

as ν → ∞ in the sector 3π
2 � argν � 5π

2 .
Similarly, we find that when J = L = Q , the estimate (5.18) holds in the sector

− 5π
2 � argν � − 3π

2 . Otherwise, it can be shown that the estimation (5.20) is valid in
this sector too.

5.2. Stokes phenomenon and Berry’s transition

5.2.1. Case (i): x > 1

We study the Stokes phenomenon related to the asymptotic expansion of A−ν (ν secβ )
occurring when argν passes through the values ± π

2 . In the range |argν| < π
2 , the

asymptotic expansion

A−ν (ν secβ) ∼− 1
π

∞

∑
n=0

(2n)!an (−secβ )
ν2n+1 (5.21)

holds as ν → ∞ . From (5.10) we have

A−ν (ν secβ ) = R0,0 (ν,β ) = i
eiν(tanβ−β )− π

4 i( 1
2 νπ tanβ

) 1
2

R(H)
0 (ν,β )−R0,0

(
νe−π i,β

)
= iH(1)

ν (ν secβ )−Aν
(
νe−π i secβ

)
when π

2 < argν < 3π
2 . Similarly, from (5.11) we find

A−ν (ν secβ ) = −iH(2)
ν (ν secβ )−Aν

(
νeπ i secβ

)
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for − 3π
2 < argν < − π

2 . For the right-hand sides, we can apply the asymptotic expan-
sions of the Hankel functions and the Anger–Weber function to deduce that

A−ν (ν secβ ) ∼ i
eiν(tanβ−β )− π

4 i( 1
2 νπ tanβ

) 1
2

∞

∑
m=0

(−1)m Um (icotβ )
νm − 1

π

∞

∑
n=0

(2n)!an (−secβ )
ν2n+1

(5.22)
as ν → ∞ in the sector π

2 < argν < 3π
2 , and

A−ν (ν secβ) ∼−i
e−iν(tanβ−β )+ π

4 i( 1
2 νπ tanβ

) 1
2

∞

∑
m=0

Um (icotβ )
νm − 1

π

∞

∑
n=0

(2n)!an (−secβ)
ν2n+1 (5.23)

as ν → ∞ in the sector − 3π
2 < argν <− π

2 . Therefore, as the line argν = π
2 is crossed,

the additional series

i
eiν(tanβ−β)− π

4 i(
1
2 νπ tanβ

) 1
2

∞

∑
m=0

(−1)m Um (icotβ )
νm (5.24)

appears in the asymptotic expansion of A−ν (ν secβ ) beside the original one (5.21).
Similarly, as we pass through the line argν = − π

2 , the series

− i
e−iν(tanβ−β )+ π

4 i( 1
2 νπ tanβ

) 1
2

∞

∑
m=0

Um (icotβ)
νm (5.25)

appears in the asymptotic expansion of A−ν (ν secβ ) beside the original series (5.21).
We have encountered a Stokes phenomenon with Stokes lines argν = ± π

2 .
In the important paper [1], Berry provided a new interpretation of the Stokes phe-

nomenon; he found that assuming optimal truncation, the transition between compound
asymptotic expansions is of Error function type, thus yielding a smooth, although very
rapid, transition as a Stokes line is crossed.

Using the exponentially improved expansion given in Theorem 1.3, we show that
the asymptotic expansion of A−ν (ν secβ ) exhibits the Berry transition between the
two asymptotic series across the Stokes lines argν = ± π

2 . More precisely, we shall
find that the first few terms of the series in (5.24) and (5.25) “emerge” in a rapid and
smooth way as argν passes through π

2 and − π
2 , respectively.

From Theorem 1.3, we conclude that if N ≈ 1
2 |ν| (tanβ −β) , then for large ν ,

|argν| < π , we have

A−ν (ν secβ ) ≈− 1
π

N−1

∑
n=0

(2n)!an (−secβ )
ν2n+1

+ i
eiν(tanβ−β )− π

4 i(
1
2 νπ tanβ

) 1
2

∑
m=0

(−1)m Um (icotβ)
νm T̂2N−m+ 1

2
(iν (tanβ −β))

− i
e−iν(tanβ−β)+ π

4 i(
1
2 νπ tanβ

) 1
2

∑
m=0

Um (icotβ )
νm T̂2N−m+ 1

2
(−iν (tanβ −β)),
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where ∑m=0 means that the sum is restricted to the first few terms of the series.
In the upper half-plane the terms involving T̂2N−m+ 1

2
(−iν (tanβ −β)) are expo-

nentially small, the dominant contribution comes from the terms involving

T̂2N−m+ 1
2
(iν (tanβ −β)) .

Under the above assumption on N , from (5.2) and (5.4), the Terminant functions have
the asymptotic behaviour

T̂2N−m+ 1
2
(iν (tanβ −β)) ∼ 1

2
+

1
2

erf

((
θ − π

2

)√1
2
|ν|(tanβ −β)

)

provided that argν = θ is close to π
2 , ν is large and m is small in comparison with N .

Therefore, when θ < π
2 , the Terminant functions are exponentially small; for θ = π

2 ,
they are asymptotically 1

2 up to an exponentially small error; and when θ > π
2 , the

Terminant functions are asymptotic to 1 with an exponentially small error. Thus, the
transition across the Stokes line argν = π

2 is effected rapidly and smoothly. Similarly,
in the lower half-plane, the dominant contribution is controlled by the terms involving
T̂2N−m+ 1

2
(−iν (tanβ −β)) . From (5.3) and (5.4), we have

T̂2N−m+ 1
2
(−iν (tanβ −β)) ∼ 1

2
− 1

2
erf

((
θ +

π
2

)√1
2
|ν| (tanβ −β)

)

under the assumptions that argν = θ is close to − π
2 , ν is large and m is small in

comparison with N ≈ 1
2 |ν|(tanβ −β) . Thus, when θ > − π

2 , the Terminant functions
are exponentially small; for θ = − π

2 , they are asymptotic to 1
2 with an exponentially

small error; and when θ < − π
2 , the Terminant functions are asymptotically 1 up to an

exponentially small error. Therefore, the transition through the Stokes line argν = − π
2

is carried out rapidly and smoothly.
We remark that from the expansions (5.22) and (5.23), it follows that (5.21) is an

asymptotic expansion of A−ν (ν secβ ) in the wider sector |argν| � π − δ < π , with
any fixed 0 < δ � π .

5.2.2. Case (ii): x = 1

The analysis of the Stokes phenomenon for the asymptotic expansion of A−ν (ν)
is similar to the case x > 1. In the range |argν| < 3π

2 , the asymptotic expansion

A−ν (ν) ∼ 1
3π

∞

∑
n=0

d2n
Γ
( 2n+1

3

)
ν

2n+1
3

(5.26)

holds as ν → ∞ . Employing the continuation formulas stated in Section 1, we find that

A−ν (ν) = A−ν
(
νe−2π i)− iH(1)

ν
(
νe−2π i)− ie−2π iνH(2)

ν
(
νe−2π i)
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and

A−ν (ν) = A−ν
(
νe2π i)+ ie2π iνH(1)

ν
(
νe2π i)+ iH(2)

ν
(
νe2π i) .

For the right-hand sides, we can apply the asymptotic expansions of the Hankel func-
tions and the Anger–Weber function to deduce that

A−ν (ν) ∼ 1
3π

∞

∑
n=0

d2n
Γ
( 2n+1

3

)
ν

2n+1
3

+ ie−2π iν 2
3π

∞

∑
j=0

d2 j sin

(
(2 j +1)π

3

) Γ
(

2 j+1
3

)
ν

2 j+1
3

(5.27)
as ν → ∞ in the sector 3π

2 < argν < 5π
2 , and

A−ν (ν) ∼ 1
3π

∞

∑
n=0

d2n
Γ
( 2n+1

3

)
ν

2n+1
3

− ie2π iν 2
3π

∞

∑
j=0

d2 j sin

(
(2 j +1)π

3

) Γ
(

2 j+1
3

)
ν

2 j+1
3

(5.28)

as ν → ∞ in the sector − 5π
2 < argν < − 3π

2 . Therefore, as the line argν = 3π
2 is

crossed, the additional series

ie−2π iν 2
3π

∞

∑
j=0

d2 j sin

(
(2 j +1)π

3

) Γ
(

2 j+1
3

)
ν

2 j+1
3

(5.29)

appears in the asymptotic expansion of A−ν (ν) beside the original one (5.26). Simi-
larly, as we pass through the line argν = − 3π

2 , the series

− ie2π iν 2
3π

∞

∑
j=0

d2 j sin

(
(2 j +1)π

3

) Γ
(

2 j+1
3

)
ν

2 j+1
3

(5.30)

appears in the asymptotic expansion of A−ν (ν) beside the original series (5.26). We
have encountered a Stokes phenomenon with Stokes lines argν = ± 3π

2 . With the aid
of the exponentially improved expansion given in Theorem 1.4, we shall find that the
asymptotic series of A−ν (ν) shows the Berry transition property: the two series in
(5.29) and (5.30) “emerge” in a rapid and smooth way as the Stokes lines argν = 3π

2
and argν = − 3π

2 are crossed.

Let us assume that in (1.12) N,M,K ≈ π |ν| and J = L = Q . When π < argν <
2π , the terms in (1.12) involving the Terminant functions of the argument 2π iν are
exponentially small, and the main contribution comes from the terms involving the
Terminant functions of the argument −2π iν . Therefore, from Theorem 1.4, we deduce
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that for large ν , π < argν < 2π , we have

A−ν (ν) ≈ 1

3πν
1
3

N−1

∑
n=0

d6n
Γ
(
2n+ 1

3

)
ν2n +

1
3πν

M−1

∑
m=0

d6m+2
Γ(2m+1)

ν2m

+
1

3πν
5
3

K−1

∑
k=0

d6k+4
Γ
(
2k+ 5

3

)
ν2k

+ ie−2π iν 2
3π ∑

j=0
d2 j sin

(
(2 j +1)π

3

) Γ
(

2 j+1
3

)
ν

2 j+1
3

×

×
T̂2N− 2 j

3
(−2π iν)+ T̂2M− 2 j−2

3
(−2π iν)+ T̂2K− 2 j−4

3
(−2π iν)

3
,

where, as before, ∑ j=0 means that the sum is restricted to the first few terms of the
series.

Since N,M,K ≈ π |ν| , from (5.2) and (5.4), the averages of the Terminant func-
tions have the asymptotic behaviour

T̂2N− 2 j
3

(−2π iν)+ T̂2M− 2 j−2
3

(−2π iν)+ T̂2K− 2 j−4
3

(−2π iν)

3

∼ 1
2

+
1
2

erf

((
θ − 3π

2

)√
π |ν|
)

,

under the conditions that argν = θ is close to 3π
2 , ν is large and j is small compared

to N , M and K . Thus, when θ < 3π
2 , the averages of the Terminant functions are

exponentially small; for θ = 3π
2 , they are asymptotic to 1

2 with an exponentially small
error; and when θ > 3π

2 , the averages of the Terminant functions are asymptotically 1
up to an exponentially small error. Thus, the transition through the Stokes line argν =
3π
2 is carried out rapidly and smoothly.

Similarly, if N,M,K ≈ π |ν| and J = L = Q , then for large ν , −2π < argν <−π ,
we have

A−ν (ν) ≈ 1

3πν
1
3

N−1

∑
n=0

d6n
Γ
(
2n+ 1

3

)
ν2n +

1
3πν

M−1

∑
m=0

d6m+2
Γ(2m+1)

ν2m

+
1

3πν
5
3

K−1

∑
k=0

d6k+4
Γ
(
2k+ 5

3

)
ν2k

− ie2π iν 2
3π ∑

j=0

d2 j sin

(
(2 j +1)π

3

) Γ
(

2 j+1
3

)
ν

2 j+1
3

e
2(2 j+1)πi

3 ×

×
e

π
3 iT̂

2N− 2 j
3

(2π iν)− T̂
2M− 2 j−2

3
(2π iν)+ e−

π
3 iT̂

2K− 2 j−4
3

(2π iν)

3
.
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From (5.3) and (5.4), the averages of the scaled Terminant functions have the asymp-
totic behaviour

e
2(2 j+1)πi

3

e
π
3 iT̂2N− 2 j

3
(2π iν)− T̂2M− 2 j−2

3
(2π iν)+ e−

π
3 iT̂2K− 2 j−4

3
(2π iν)

3

∼ 1
2
− 1

2
erf

((
θ +

3π
2

)√
π |ν|
)

,

provided that N,M,K ≈ π |ν| , argν = θ is close to − 3π
2 , ν is large and j is small

compared to N , M and K . Therefore, when θ > − 3π
2 , the averages of the scaled

Terminant functions are exponentially small; for θ = − 3π
2 , they are asymptotic to 1

2
up to an exponentially small error; and when θ < − 3π

2 , the averages of the scaled
Terminant functions are asymptotically 1 with an exponentially small error. Thus, the
transition through the Stokes line argν = − 3π

2 is effected rapidly and smoothly.
We note that from the expansions (5.27) and (5.28), it follows that (5.26) is an

asymptotic series of A−ν (ν) in the wider range |argν| � 2π −δ < 2π , with any fixed
0 < δ � 2π .

6. Discussion

In this paper, we have discussed in detail the large order and argument asymptotics
of the Anger–Weber function A−ν (νx) when x � 1, using Howls’ method. When
0 < x < 1, the path P (0) , defined in (2.3), is not the positive real axis, whence the
method is not applicable. If we put x = sechα with a suitable α > 0, the large ν
asymptotics of A−ν (νx) can be written as

A−ν (ν sechα) ∼
√

2
πν

eν(α−tanhα)
∞

∑
n=0

(
1
2

)
n bn (sechα)

νn (6.1)

as ν → +∞ , with (z)n = Γ(z+n)/Γ(z) [12, p. 298]. The first few coefficients are
given by

b0 (sechα) =
1(

1− sech2 α
) 1

4

,

b1 (sechα) =
2+3sech2 α

12
(
1− sech2 α

) 7
4

,

b2 (sechα) =
5+300sech2 α +81sech4 α

864
(
1− sech2 α

) 13
4

.

It is also known that A−ν (ν sechα) has the same asymptotic expansion as the Bessel
function −Yν (ν sechα) , namely

−Yν (ν sechα) ∼ eν(α−tanhα)( 1
2 πν tanhα

) 1
2

∞

∑
n=0

(−1)n Un (cothα)
νn as ν → +∞. (6.2)
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Here Un (cothα) = [Un (x)]x=cothα , where Un (x) is a polynomial in x of degree 3n .
These polynomials can be generated by the following recurrence

Un (x) =
1
2
x2 (1− x2)U ′

n−1 (x)+
1
8

∫ x

0

(
1−5t2

)
Un−1 (t)dt

for n � 1 with U0 (x) = 1 (see, e.g., [11, p. 376], [12, p. 256]). The uniqueness
property of asymptotic power series implies that

bn (sechα) = (−1)n 22nn!

(2n)! tanh
1
2 α

Un (cothα)

= (−1)n 22nn!

(2n)!
(
1− sech2 α

) 1
4

Un

((
1− sech2α

)− 1
2

)

for any n � 0. Based on Darboux’s method, Dingle [2, p. 168] gave a formal asymptotic
expansion for the coefficients Un (cothα) when n is large. His result, in our notation,
may be written as

Un (cothα) ≈ (−1)n Γ(n)
2π (2(α − tanhα))n

∞

∑
m=0

(2(α − tanhα))mUm (cothα)
Γ(n−m)

Γ(n)
.

(6.3)
Numerical calculations indicate that this approximation is correct if it is truncated after
the first few terms. Using his formal theory of terminants, Dingle gave exponentially
improved versions of (6.1) and (6.2) [2, p. 468 and p. 512].

As far as we know, no rigorous proof of the late coefficient formula (6.3) nor
realistic error bounds for the expansion (6.1) are available in the literature. Perhaps,
these issues can be handled using differential equation methods, but we leave it as a
future research topic.

A.

In this appendix we give some formulas for the computation of the coefficients
an (−secβ ) appearing in the large ν asymptotics of A−ν (ν secβ ) . It is known that
an (−secβ) = [an (λ )]λ=− secβ where an (λ ) is a rational function of λ �= −1. We
consider these rational functions. The first few are given by

a0 (λ ) =
1

1+ λ
, a1 (λ ) = − λ

2(1+ λ)4 ,

a2 (λ ) =
9λ 2−λ

24(1+ λ)7 , a3 (λ ) = −225λ 3−54λ 2 + λ
720(1+ λ)10 .

From (1.2) we infer that

an (λ ) =
1

(2n)!

[
d2n

dt2n

(
t

λ sinh t + t

)2n+1
]

t=0

.
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Meijer [5] proved the following explicit formula

an (λ ) =
1

(1+ λ)2n+1

n

∑
k=0

(
2n+ k

k

)
(−1)k

(2n−2k)!

[
d2n−2k

dt2n−2k

(
sinht− t

t3

)k
]

t=0

(
λ

1+ λ

)k

.

(A.1)
We show that the higher derivatives can be written in terms of the generalized Bernoulli

polynomials B(κ)
n (�) , which are defined by the exponential generating function(

z
ez −1

)κ
e�z =

∞

∑
n=0

B(κ)
n (�)

zn

n!
for |z| < 2π .

For basic properties of these polynomials, see Milne-Thomson [6] or Nörlund [8]. A
straightforward computation gives

1
(2n−2k)!

[
d2n−2k

dt2n−2k

(
sinh t− t

t3

)k
]

t=0

=
1

2π i

∮
(0+)

(
sinhz− z

z3

)k dz
z2n−2k+1

=
1

2π i

∮
(0+)

(
k

∑
j=0

(−1)k− j
(

k
j

)
zk− j sinh j z

)
dz

z2n+k+1

=
k

∑
j=0

(−1)k− j
(

k
j

)
1

2π i

∮
(0+)

(
sinhz

z

) j dz
z2n+1

=
k

∑
j=0

(−1)k− j
(

k
j

)
1

2π i

∮
(0+)

(
2z

e2z−1

)− j

e− jz dz
z2n+1

=
22n

(2n)!

k

∑
j=0

(−1)k− j
(

k
j

)
B(− j)

2n

(
− j

2

)
.

Substitution into (A.1) yields the explicit representation

an (λ ) =
22n

(2n)!2 (1+ λ)2n+1

n

∑
k=0

k

∑
j=0

(−1) j (2n+ k)!
(k− j)! j!

B(− j)
2n

(
− j

2

)(
λ

1+ λ

)k

.

In 1952, Lauwerier [4] showed that the coefficients in asymptotic expansions of
Laplace-type integrals can be calculated by means of linear recurrence relations. Simple
application of his method provides the formula

an (λ ) =
1

(2n)!

∫ +∞

0
t2ne−(1+λ )tPn (t)dt,

where the polynomials P0 (x) ,P1 (x) ,P2 (x) , . . . are given by the recurrence relation

Pn (x) = −
n

∑
k=1

λ
(2k+1)!

∫ x

0
Pn−k (t)dt

with P0 (x) = 1.



38 G. NEMES

A simpler recurrence for the an (λ ) ’s can be found using the inhomogeneous
Bessel differential equation

d2w(z)
dz2 +

1
z

dw(z)
dz

+
(

1− ν2

z2

)
w(z) =

z−ν
πz2

satisfied by the Anger–Weber function Aν (z) . Substituting z = νλ shows that

λ 2

ν2

d2Aν (νλ )
dλ 2 +

λ
ν2

dAν (νλ )
dλ

+
(
λ 2−1

)
Aν (νλ ) =

λ −1
πν

. (A.2)

It is known that for any λ > 0, the function Aν (νλ ) has the asymptotic expansion

Aν (νλ ) ∼ 1
π

∞

∑
n=0

(2n)!an (λ )
ν2n+1

as ν → ∞ , |argν| < π (see, e.g, [12, p. 298]). Substituting this series into (A.2) and
equating the coefficients of the inverse powers of ν we find

a0 (λ ) =
1

1+ λ
and an (λ ) =

λ
1−λ 2

λa′′n−1 (λ )+a′n−1 (λ )
2n(2n−1)

for n � 1.
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