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A LOGARITHMIC MEAN AND INTERSECTIONS
OF OSCULATING HYPERPLANES IN R”

ALAN HORWITZ

Abstract. We discuss a special case of the means defined in [1]. Let C be the curve in R"
with vector equation &(r) = (¢,rlogt,... ,t(logt)"il>. Let 0 <a; <--- <a, and let Oy be
the osculating hyperplane to C at a;. Then we show that Oy,...,0, have a unique point of

intersection, P = (iy,...,i,) € R", and in particular, i; equals the mean
n a!
M(ah...,a,,):(nfl)!z n ’
=1 T (Ina; —Ing;)

0
iR

the logarithmic mean of Neuman.

1. Introduction

For n >3, let C be the curve in R" with vector equation é&(r) = (x;(¢),...,x,(¢)),
let

Win(t) =W (X (1), %) 1 (0),2, (1), (1))
the Wronskian of x{(t),...,x}_;(¢),%; ;(t),...,x,(t),j = 1,...,n, let & be the vec-
tor (x1,...,X,), and let A(t) be the vector (Wi ,(t),—~Wa,(t),...,(=1)" W, (1)).
Note that with this notation we mean that Wy ,(t) = W (x5(2),...,x),(¢)), and Wy, (1) =
W (¥, (1),...,x,_;(t)). In[1] we defined the osculating hyperplane, O,,to C att =a
to be the hyperplane in R" with equation

%-A(a) = &(a) - A(a), assuming that Ai(a) # 0.
It is not hard to show(see [1]) that O, has n'th order contact with C at t = a. That
is, if C,(t) = (6:(t) — &(a)) - A(a), then C(a) = 0 for j=0,1,...,n—1. This
generalizes the osculating plane in R*, which has 3rd order contact with C at a.
For example, if é(r) = (t,12,13,1*), then Wy 4(t) = W (21,31%,41%) = 4813, Wo4(1) =
W (1,31%,41%) =720 Wa4(1) =W (1,21,41%) = 481, W3 4(t) =W (1,2¢,31*) = 12, and
A(t) = (48¢3,—721%,48t,—12). The equation of the osculating hyperplane at r = 1 is
(x1,x0,x3,x4) - A(1) = € (1) - A(1) or 4x; — 6xp +4x3 —x4 = 1.
Ci(t)=(t—1,12 =1, —1,1* —1)- (48,-72,48,—12)
=—12(t*—4r + 67— 4 +1),
and it then follows that C;(1) = C|(1) =C{(1) =C{’(1) =0.
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In [1] the author proved the following general result about defining means using
intersections of osculating hyperplanes to curves in R".

THEOREM 1. Let C be the curve in R" with vector equation
O(t) = (x1(t),...,xn(2)), te€l=]a,b],

where each x; € C"~(I) and is strictly monotone on 1.
Let

Win(t) =W (xj(t),....xX_1(2),x; 1 (2),...,x, (1))

be the Wronskian of x(t),...,.x;_(t),X; 1 (t),...,x,(t). Assume that every subset of
{Wins....Won} is an extended complete Chebyshev system on I. Let a=a; < --- <
an = b be n given points in I, and let Oy be the osculating hyperplane to C at ay.
Then

(1) O1,...,0, have a unique point of intersection, P, in R", and

(2)If P=(i1,...,iy), then a; <x,;1(ik) <apfork=12,....n

By Theorem 1, one can define n symmetric means in ay,...,a, as follows:
R
M (ay,...,an) =x; (ix), k=1,...,n.

In particular, we showed in [1] that if x (1) = *Kok=1,...,n—2, Xy—1(1) =logt, and
1
Xu(t) = —, then M, (ay,...,a,) = P(ay,...,a,), where P is the logarithmic mean in n

variables defined by Pittenger [5]. At the end of [ 1] we stated that perhaps another inter-
esting generalization of the logarithmic mean to n variables would be M| (ay,...,a,),
where x(¢) = t(logt)k*1 ,k=1,...,n. We never pursued that, but the point of this pa-
per is to prove that Mj(ay,...,a,) equals the following logarithmic mean in n variables

defined by Neuman [4]:

Ly(ay,...,a,) = (n—1)! En—
=1 Tl (Ina; — Ing;)
1
i#/
That is, we show that Neuman’s logarithmic mean equals the x coordinate of the in-
tersection of the osculating hyperplanes to the curve &(t) = (¢,tlogt, ... ,t(logt)n_l> .
Ly was also defined in a different way(and unknowingly) by Xiao and Zhang [7]. Mu-
stonen [3] gives a good summary of these connections and other generalizations. See
also the paper by Merikoski [2], where a general approach is given for extending means

in two variables to n variables. The methods used in this paper are decidedly different
than those in the papers just cited. We now state our main result.

THEOREM 2. For n >3, let C be the curve in R" with vector equation 6(t) =

(t,tlogt, ...t (logt) - ) Let 0 <ay < --- < ay, and let Oy be the osculating hyper-
planeto C at ay. Then Oy, ...,0, have a unique point of intersection, P= (iy,...,i,) €
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R", and
n a,
Mi(ay,....an) = (n=1)! Y, 57— : (1)
J=1 H (lnaj — lnai)

i=1

i]
Note that for n =2, the x coordinate of the point of intersection of the tangent lines
to the curve é(r) = (t,¢logt) is the well known logarithmic mean L(a,b) = 2%

in two variables. So in a certain sense the logarithmic mean Ly(ay,...,a,) above
is a natural generalization of the logarithmic mean in two variables since it involves
intersections of osculating hyperplanes to a curve in R" whose first two components
are ¢ and tlog¢, and where the remaining components follow the “natural pattern” of
the first two components.

REMARK 1. Using the curve from Theorem 2 and Theorem 1, one also obtains
means My(ay,...,a,) = xk_l(ik),k =2,...,n. Of course those means involve the in-
verses of the functions y = t(logt)m,m > 1, which are not elementary functions.

2. Preliminary Material

If f1,..,fu are n given functions of ¢, then we let

fl(t) f2(t) fn(t)
@) £yt e fu)
A7V 57V

denote the Wronskian determinant. Throughout the rest of the paper, we define

x(t) = t(logt) " k=1,...,n. )
Wen(t) = W (XL (0), o X (0),X 1 (2), - x5 (2)) k= 1,... .

LEMMA 1. Forr>2

, O DA VA V11 () R
-

Proof. We use induction in r. So suppose that (3) holds for some positive integer
r=2.
—D7 (= 1)!

(":2) r—j
- Jj—1 x,({ j)(t)

r+1 d r d = (
50 = grlh 0 =kg 3

r—1

SES G0 5 )

J=1
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kY (=1 = (]

- DG
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)

(r)

- DG

) xl((rJrlfj) (I) iy

) xl((rJrlfj) (I) iy

Using the identity ('

=D}

which implies that

-

kY, p

j=1
o DG -

D!

)1 )

T+ (3

D=0

l)'(;:i) r+l j

tJ

— 1)!(;:}

)x](cr+1—j)(

. . , B
To start the induction, x;_ () =

k
2
k

X (1) = x5 (1) —

(1)

k
t
k
t

k

Tt

_k

£

which is (3) with r =2

xi (1)

—t—zxk(t)"‘_

= (i

)=

—jt )

r—1

>

), we have

(-]_1) (/ 1)

(1) —

(_l)jJrlj! :) (r—j)

(

ti+l

r—2
j—1

Xk

-)!(3

—1Y(

)

r—2
Jj=2

k

()

r+1-1)

()

)x](cH_l_j)(l).

k

1,
+ ?xk+1

1<k

(1) - -

t\t

tJ

t—zxk+1 (t)

xi(t) + ;karl(t)

1

)

1

K0 = 50+ ) + 3t (1)~ 35 (1)

1
X (1) + PR (1), which implies that

- t_zkarl(t)

) xl((rJrlfj) (I) )

D73 s

. -2
NOTATION 1. Let a,; = (—1)/"1(j—1)! (r 1) . Then Lemma 1 can be written
j—

kz iy
j=1

“4)
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LEMMA 2. For k> 2, x]({r)(l) =0 forany r < k—2, and for r > 2, xgril)(l) =
(r—1)!
Proof. For the first part, we use induction in k. So assume that x,(cl)(l) =0 for
r—1 .
[<k—2. By @), &), (1) =k ¥ a,x 7 (1). Suppose that r <k—1. Then r—
=1
k— j—1<k—2, which implies that x" /(1) = 0; Thus x\") | (1) = 0 whenever
(k+1) —2. To start the induction, consider x}(z) = (logt)k_2 (k—1+1ogt) so
k
x(1)=0for k>3. x;, (1) = ;x}c(t) for k > 1 therefore x}/(1) =0 for k > 4.

For the second part, we use induction in r. So assume that xﬁr_l)(l) =(r—1)".
By (4),

since xE’*f) (1) =0 for j > 2 by the first part of Lemma 2 just proven. Thus xii)l ()=

r!. To start the induction, x5(1) =1 = 1!

(_l)kfl (_l)nJrl
LEMMA 3. =
2 (n+1—k)!(k—1)! n!
Proof. Follows immediately from the binomial expansion of 1 +x with x = —1

and we omit the details.

=1 “\j=o
n 1 1 n—k xn—j—2 o
2|0 <k—2>!,-§0<n—k—1>']‘ :

1 n—k xn—l—j
Proof. Let d, = Z (—1)k! Z — | . Using induction in n,

k=1
we assume that d,, = 1.

k=1
_(_ nixn_’_ S -1 k—l# nil-k X
= )n! gl (=1) (k—1)! Zg) (n+1—k—j)!
nl n _ 1 X n+l—k Y
=D H"”k; (=1)f l(k—l)' ((n+l—k)!+ et (n+l—k—])'>]




46 ALAN HORWITZ

n l)kl n 1 n-k  yn—l-j
SOV R e & | e A G
n l)k 1
=(-1 ,Z’ n+1_ RIS +1
( )n+1

= (-1~ x"+x

(by Lemma 3) = 1.
Since d; = 1, that completes the proof of the first part of Lemma 4. The proof of

the second part of Lemma 4 is similar and we omit it. The second part of Lemma 4 also

follows from the first part after some manipulations and Lemma 3.
Before proving one of our main results, we introduce the functions v, below.

LEMMA 5. For 1 <k<nandn> 3, let

n—1
Hr!

(Ing)"*=
Vkﬁ(t):(k—l)'t" I /22 n — ] ', t>0.

Then
n! 1
Vertas1 (1) = T ——Via(t)
nl (Inz)" n!
Viai(t) = (H”) w2 T (-
r=0
Proof.
n—1
_rHOr (1 t)n Sk
Vk+1,n+l(t>_ k! Z"n 1)/2 2 ])
n—1
R e =

k! p(n=1)(n=2)/2n—1 S (n—k—j)!

!
al 1 ,Hor 1

! Z (Ing)"*~J n! 1
- k 1 (k )!tn 2)(n—1)/2 l’l k— ]

ktn 1 kn(t)'

1—-j

n (Ing)"™
V17n(l‘)= (Hr!) /22 n—l— :>v1n+1(t)
r=0




A LOGARITHMIC MEAN AND INTERSECTIONS OF OSCULATING HYPERPLANES IN R" 47

- r! 1 "ij (Ing)"~ '
R A V= e e N U R B L
)T : 1l (g
r:or (n—=1)/2 + !;([)r 1 ;(n—2)(n—1)/2 ) (n —— ])'
n—1 (lnt)" nl
= ' _\E) nl
<r=0r'> tn(nil)/2 + tnflvl,n(t).

PROPOSITION 1. Let v, (t) be the functions from Lemma S, and define the vector
functions

Then
n—1
H r!
o =0
- n(n=3)/2

(1) 0,(t) =0for j=1,....n—1.

REMARK 2. & depends on n as does v,, but we suppress this dependence in our
notation for convenience.

Proof. Case 1: j=0

G(1)-5a(t) = 3 (— D v (1)
k=1
:i( D1 (Ine)™ v a(t)
k=1

(S ]

7N
1=
[ ) —_
~
v
~

—

T

)

=

=

= =
|

—

=

~

)

>~

IIM=
—_

| —
—
=

3

—~|= =
S |
INE=]

2 >
| -
[

by Lemma 4 with x = Inz¢.
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Case?2: j=1
-1 . , k21 k—1
From xi(r) = t(logt)" it follows x(r) = t(k—1)(Inr) o+ (In7)""" and
X (1) = (Int) 7 (k—1+1nz).
Note that if k =1, x(t) =1 forall 7, including r = 1.

(=1 (v (1)

jo)
2
Py
=
=
<>
=
=
=
I
M=

w-
Il
-

_l(lnl)k72 (k_ 1 +1Hl)vk7n(t)

- ' Z[ (k—11>z< ~ ) (i e jfzﬂ

b " R G = (Y5
- t(”*”?”*”” ‘ (Z [(—1)" 1(k—z)! 2 (n—k—j)!]

Jj=0
1 "ik(lnz)"—f—l )—o
(k—l)!j:O(n—k—j)!
by Lemma 4 with x = Inz.

Case 3: 2 < j<n (notethat j is fixed here)
We use induction in 7. So assume that

I
M=
Rk

|
=

T
L

a0(6)-5,(1) = 3 (— DD (Ovin(6) =0
k=1

forall [ =1,...,n— 1. We have to show that &\ (¢)-9,.1(¢) = 0.
Now

=
=

(— 15 ()i (2)

o)
—
<
=
—~
~
—
=
=
T
—
—
~
—
=~
Il
—_

(—1)")6,({21 () Vir1041(2)

I
M=

»
< |l
= o

(_1>kx1(<'21(f)"k+1,n+1 (t).

M=

A )y i1 (1) +

k=1

Since xg )( t) =0 for j > 2, we have

CEAORESOESWE xk+1 Wit (2)- )
k=1
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By Lemma 5, for j > 2

o v

n (i ai; i—i
-5 (2 ! )(t)> Ve (0).

, Za oo a1
OV () =k (2 ! ><r>> V()

i=1

Then

d & [ g G-
2 xk+1 Vk+1,n+1(l)=tn_12(—1) 27%{ (t) | viu(t)

k=1 i=1
nl j—lai.' »
= 1 PACHE DY t}jxl(cj )(t)"kn(t)>
k=1 i=1 "
n! ol a; z i
~ el & [_/j (I;l(_l) x )(I)an(f)ﬂ
=1,

n! j_la, 1 (i
= (;1(—1)" L/ ><t>vkn<t>>

n a i [ 1 (i
= (;1(—1)" b )<t>vkn<t>>

n
Since j—i<n—1fori>1, ¥ (=1 % (1)ve,(t) = 0 by the inductive
k=1
hypothesis.

_ Thus o) (t) - Pn41(2) = 0. To start the induction, for n =1 we have &(r) = (1) =
a6y =0= &) (t)-9(r) =0 for j >2.

REMARK 3. Proposition 1 could perhaps also be proven using properties of hy-
pergeometric functions.

3. Useful Determinants

n—1
I1r!
LEMMA 6. Forn >3, W(xy,...,x,)(t) = tn;j—03)/2’t > 0, where W denotes the

Wronskian.
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Proof. It is easy to show that the n functions {t(logt)k_l}

following nth order Euler DE:

ALAN HORWITZ

satisfy the

k=1,....,n

dy n*—3n darly dy
n n—1
— n—1t 0.
a2 drn- T ld =
By Abel’s identity applied to the interval (0,e0),
n?— 3nt"‘1
W(xt, ... x) () = Caexp —/ZTdt
_c n?—3n [dt B C,
— ,,exp — 2 /? = ti(n2—3n)/2.
n—1
We shall let # = 1 to obtain the precise value C, = [] r!.
r=0
x1(t) @) o xp (1) t xp(1) X (1)
xil/(t) xiz/(t) . x;,/(t) 1 x:%(t) x;,/(t)
W(x1,... ) () = xi(1)  x(r) -, (1) _|0x3(2) -, (1)
SO R ORE O NN O R0
implies
10 -0 . ,
Ly x|S0
0+ (1 "1 x5 (1) x, (1)
W) (1) = | 0220 () ;
ax (n—1) 1)
1 -1 X 1)---x 1
0x V(1) Dy | 1 ) s ()
The diagonal entries are xiﬁl(l),r: 1,...,n—1 and for row i we have {xg)(l) x,(qi)(l)

By Lemma 2, the entries in row i, column j,j >

i+2, are each 0. That shows

(1) (1)
(1) (1)
that the matrix . is upper triangular, which implies that

) )

(1) n(1)

i "

(1) 2 (1) n-l

. er-H H)r'
-1 -1 a
) )

by Lemma 2.
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REMARK 4. One could also prove Lemma 6 by instead finding a formula for the
Wronskian of { (logt)k_1 }k . and using well known properties of Wronskians. That

would be easier if one did not already have the recursion for x,(:zl (t). Since we use that

recursion elsewhere, it was easier to then prove Lemmas 2 first.

Our next result shows that the Wronskians Wy, are in fact identically equal to the
functions vy, from Lemma 5.

PROPOSITION 2. For 1 <k<nandn> 3,

(Ing)" "+~
t) =
(k_l)!tn 2)( /22 (n—k— J!’

t>0.

Proof. Consider the following system of linear equations in the unknown func-

nﬁlr!

tions u(t),...,un(t), where ky(t) = —=25
xp(O)ug(t) + - xn (1) un (1) = kn(t)
Xy (0)uy () 4 - X, () un(t) =0

(6)
A Oy (1) + -1 (Ouale) = 0.

The coefficent matrix of (6) has determinant W (xy,...,x,)(¢), which is nonzero by
Lemma 6. By Cramer’s Rule, the unique solution is given by

xi (1) e xje1 (1) ka(r) xjpa (1) - xa(2)
X)X (1) 0 X)) ()
xi() X)) 0 X)) e x()

) 4000 |
J - W(xl,,,,’xn)(t) , J=1,...,n.

Expand about column j to obtain

(=1 Win(t)

xj(t) :k"(t)m

= (=1 W),

By Proposition 1, x;(t) = (—1)/*1v; ,(¢) also satisfies (6). By uniqueness, W;, () =
VJ'J,(Z‘), j= 1,...,1’1
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REMARK 5. It follows immediately from Proposition 2 that the Wy, also satisfy
the following recursion from Lemma 5 for n > 2:

n! 1
Witinr1(t) = ?t—n_ka,n(t),k >1 (7
nl (Ing)" n!
Wit (1) = (H)r!> m(n—=1)/2 + =1 Wia(t). ®)

(7) can also be proven using the determinant definition of the W, along with standard
properties of determinants. However, we found it difficult to prove (8) this way—hence
the introduction of the v, functions.

REMARK 6. We actually use the recursions (7) and (8) in the proofs below and
not the explicit formula given in Proposition 2.

LEMMA 7. Forn >3,

i (— 1)k prt I G- =-0"" ] &;—b).
k=1

1<i<j<n; i,j#k 1<i<j<n

Proof. Ttis well known that the Vandermonde determinant

by by - by
S = I ®i—b),
br1172 b372 bn—2 I<i<j<n
b?fl bgfl . bzfl
which implies that
n—1 ;n—1 n—
b’ 21,2 2...1," ;
n—2 pn— n—
R T
2]1 2]2 b 1<i<j<n

By expanding

along the first row and using induction, one has
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( (n—1)(n— 2/22 k+1bn 1 H (bj_bi)

I<i<j<n; i, j#k

and the lemma follows immediately.

PROPOSITION 3. For n >3,

W17n(a1) —W27n(a1) ( l)n+lW ( ) | |
Wl’n(ag) _W2n(a2) ( 1)n+1Wnn( ) (Hr'>n2 1<,-1;Ij<n(lna"_lnal).

n

: : : (n—2)/2
Wl,n(an) _W2,n(an) ( l)nJern n(a") j=1

Proof. We use induction. So assume that

Win-1(a) —Waui(a) - (=1)"Wa14-1(a))
Win-1(ay)  —Wau-i(ay) -~ (=1)'Wao1p-1(ay)

Win-1(a, 1) ~Wan-1(a, ;) -+ (_l)anfl,nfl(an—l)

) n—3 ] H (lnaj — lna,-)
- H ' 1<i<j<n—1
= Or. 1

r=|

il aﬁn—Z)(n—3)/2

j=1
forany O <a; <ap <---<ap—.
Using (7) we have
Was(ay) Wa(a)) -+ (<1 Wi (ay)
Win(ay) —Wan(a,) - (—l)n+ Wn(ay)
Wl,n(an) _Wz,n(an) (_1)n+1WVl7"(an)
Wi (a A )" "W,y i (a
Wl,n(al) L ,1,,15 1) ( )ka,{,;Zl(al) ( )(n 1) iz 21( l)
Win-1(ay) (=D W1 (ay) ()" W 1-1(ay)
= ((n=1)1)""'x Lalda) == kay (n=1)a >
' W )1’7 ' —1 kW'nf a, ' —1 n+lWr; n
Win(a,) — ngilgan) L )kag;zl( W )(n 1)a'1,§ 21( )
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Using (8) yields
n—1
(n—1N" " x
"*2},, (na)™" (= D)Wii(a)  Wiwila) (D™ Wi i(ay)
—0 n 1)(n—-2)/2 u71172 u71172 (n 1) n—2
" (lnaz)" L D)W@) Wiai(@) (D) Wi (@y)
0 gnfl)(n72)/2 a;*Z a372 (}’1 1)‘1; 2
") Jna)™ ) Wii(a)  Wineila) | (D Waii(ay)
0 : (nfl)(n72)/2 ll,r;72 a’r;72 (n— 1)a’r; 2

By adding (n—1)! x Col. 2 to Col.1 we have

((n—1)1)" "'
"ﬁzr, (na)"™"  Wiila)  C0Wei(@) (D" W aoi(a)
o . a(lnfl)(n—Z)/Z 11772 karll—Z (nfl)uVIHZ
"_2r' (na)"™ ' Wiailag) (=1 Wen_1(a) L E)" Wi 1(a)

y o . a(znfl)(n—Z)/Z a372 karzl—Z (n 1)“; 2
") Jna)™ Wii(a) G0 Wii(@) D) Waii(e,)
hat . agln—l)(n—Z)/Z a;rZ ka:—Z (n—1)a™ 2
. n—2 . 1

Factoring out [] r! from Col. 1, factoring out ¢ from Column k+1,k=1,..,n

r=0

1, and factoring out a"%z fromrow j,j=1,...,n,yields

m X
H an—Z
=1’
Inay)"~! k n
gty —Wiaea(@) - (C) Wemn (@) o (1) Wi ()
1
Inay)"~! k n+l
i Wiao1(a) - (C) Wioi(@y) - (=1 W1 (ay)
az .
i o : =
S Wiae1(@,) - (C) Wi (@) - (1" Wasi1(a,)

By expanding about Col. 1 we obtain
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X
InIa”‘
=17
. _Wl,n—l(a2) (_1)n+1Wn—l7n—1(a2)
(Inap)"~ . .
ai(n—%?n—s)/z : -
~Win-1(a,) - ( D" Wy i (ay,)
~Wini(a)) - (= 1)”“Wn 1ae1(ay)

_W17n*1(a3) (_l)n+1Wn71,n71(a3)
. . +- 1t

(Inay)" !
a(2n72)(n73)/2

(=" Wo1-1(a,)

_W17n71(an) !
(_l)n+ anl,nfl(al)

~Win-1(ay)

el _(na)"!
( l) u£n72)(n73)/2

~Wip-1(a, ) - (1" Wi (a, )

Factoring out —1 from each column of each determinant and using the induction hy-

pothesis gives

(_l)n—l . «
n—
I1 4;
J=1
n—2 n—3 nel 11 (lnujflnu,)
| (Ing;) 2<i<j<
(H r') D32 fl a0 Tt
X n—3 = (lnajflnui)
( )n+1 1—[ rl (Ina,)"™"  1<i<j<n—1
a3/ " 232
=1

e n—2
iy
(—l)nlnrzo—2<(lnal)nl H (lnaj—lnal-)+...
12 2<

<i<j<n

+(_1)n+l (lnan)n_l H (lnaj—lna,-)).

1<i<j<n—1



56 ALAN HORWITZ

Applying Lemma 7 to each term of the sum in parentheses yields

n_1 n—2
()
0 L I (ina;—Ina).

ﬁ d"DO=D)/2 G licn

For n =3 we have

In®t+2Int +2 Inz+1 1
Wis(t) = — Was(t) =2 — Ws5(t) = -
Thus
In?a;+2Ina;+2  Alnaj+1 |
Wis(a)) =Was(a;) Ws5(ay) . a ST
Wis(ay) =Was(ay) Was(ay) | = | efZinet2 phartl 4
W173(a3) W273(a3) W373(a3) ln2a3+21na3+2 _2lna3+1 1
as as as
2(Inaz —Ina;) (Inaz —Inay) (Ina; — Inay)

- ajaras

(after some simplification), which equals

H (lnaj - 1Ila,')

n—1 n=2 L<iss

' <i<j<n
Hr' " (n—1)(n-2)/2
=0 [T a;

j=1

for n =3.

n—1
r=0
PROPOSITION 4. For n >3, let k,(t) = Tk Then

kn(a1) _WZ,n(al) (_l)nHWn,n(al)
kn(az) =Wan(az) --- (=1)""'Wp (a2)

in(tn) —~Wan(atn) -+ (—1)" Wi n(an)

i H (—1)i+1ai(lnak—lnaj)

1<j<k<n

n—2 i=1
=(-1D)""(n—1)! <H r') 1#171{#["
H aﬁn—l)(n—Z)/Z

Jj=1
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Proof. We again use induction. So assume that

kn-1(a)  —Woni(ar) - (=1)"Wa_ia1(ar)
kn-1(a2)  —Woni(a) -+ (=1)"Wy_1a1(a2)

kn—l(anfl) _WZ.,n—l(an—l) (_l)an—l,n—l(an—l)

n—1
Y [T (-D"a(na—1Ina;)
o\ 13 =1\ I<j<k<n-1
B (H ﬂ) j#l’kil‘l (n=2)(n-3)/2
=0 Iilla/n n

forany 0 < a; <apy <--- <ap—1. Using (7) we have

n—1
!
L ey @) )T =)W (@)
arll n—3)/2 a11172 ar1172(n_1)
n—1
!
L eeyWie)  (C)T =) Wi (@)
— a;(nfS)/Z a372 a372(n_1)
n—1 ,
L e )W @) )T =)W ()
"I ap? a2 (n=1)
. n—1 . (nfl)’
Factoring out [] r! from Col. 1, factoring out ~—— from Column k+1, k=1,..,n—

r=0
1, and factoring out anl,z fromrow j, j=1,...,n, we obtain
j

1
e Wiaa@) s (D W (@)
oY | 1
((n 1)) rl;IOr' a(nfl)%n74)/2 ~Win-1(ay) -+ (_1)n+ Wi1.-1(ay)
2
n
a7 : : : :
j=1 1
75:(”’1)%”’4)/2 ~Win-1(a,) - (_1)n+ Wi1n-1(a,)

Expanding about Col. 1 gives
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_Wl,n—l(a2) T (_1)n+1Wn—l7n—1(a2)

1
(n—1)(n—4)/2 . : :
“ n+1
~Winila,) - (=1)"" Wy101(a,)
_WlJl*l(al ( )n+1Wn 1n— l(al)
)

)
—W17n,1(a3) D) W1 (a

1
agnfl)()174)/2 : : :
_lenfl(an)” ( l)nJern 1n+11( )

_Wl,n—l(al) (_l)n Wn—Ln—l(al)

1
)"

~Wigoi(a, 1) - (1" Wi ao1(a,_ ;)

Factoring out —1 from each column of each determinant and using Proposition 3

yields
—1
(=111 ~
_1 n—1 r=0 X
( ) f—l[ an72
=17

N2 n—3 (Ina;—Ina;)
| 1 2siise
uEn—l)(n—At)/Z (rH r.) ] aEn 2)(n—3)/2 oot

X M s O (ng—Ing)
(=1 ——L (T ! Idgjsnst
a,(l"*')(""‘)/z o : nﬁlagnfz)(n%)/z
j=1
| ) n—1 | n—2 | n=3
(n—1)) Hor. Hor
=(-1)"! — = X
(-1) g
=1
ai I (Ina;—Ina) a, I (Ina;—Ina)
2<i<j<n el lsi<jsa-l
. nt (n—2)(n=3)/2 Tt (D nt (n-2)(n—3)/2
a; a;

J=1 j=1
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i H (—1)i+1ai(lnak—lnaj)

1\ 2=l 1§7£gk1§_n

= 1>"1<n—1>!<1‘[r'> —
- o (n-1)(n—-2)/2
r=0 H aj

For n =3 we have

Ina;+1 1
k(a,) —Was(a,) Was(a,)| |2 274 &
k3(ay) —Was(a,) Was(ay)| = |2 _plha+l 1

ap ap
k3(az) —Was(as) Wsslay)| |2 —plhatl L
_ 44 (Inaz —Inay) — ap (Inaz —Inay) + asz(Ina; — Inay)
- ajaras
(after some simplification), which equals
Z (—1)i+1ai(lnak—lnaj)
1\ 2=l 1<7£_<kk§_n
(—1)" Y —1)! (Hﬂ) AEuas
=0 il aﬁn—l)(n—2)/2

4. Proof of Theorem 2

Proof. The equation of the osculating hyperplane, O,,to C at t =a is (xy,...,x,)-
i(a) = &(a) -ii(a), where

a(t) = (t,tlogt,...,t(logt)Wl),
At) = (Win(t),~Wan(t), ..., (= 1) W, (1)),

Wi () is the Wronskian of ¥} (1),...,x}_;(¢),x},(¢),...,x,(t), j=1,...,n. Thus any
intersection point of Oy,...,0, must be a solution of the linear system (xj,...,x,) -
i(aj) = a(a;)-f(a;), j=1,...,n, which can be written in the form

Win(ar) =Wan(ar) - (=1 Wou(a)] k(a)
Win(@2) —Wanu(az) -+ (—1)"F W, 4(a2) .1 ) !

Wl,n-(an) _W2,;1 (an) . . (_l)n-‘rl'Wmn (an) Xn k(a,,)
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n—1
I
where k(t) = d(t) ﬁ(t) = W(X],. .. ,x,,)(t) = m
Xn, by Proposition 3. By Cramer’s Rule,
: (—1)"+1Wn,n(al)
(=" Wn.,n(az)

60

by Lemma 6. (9) has a unique

solution, xi,...,
Wia(a;) =Wan(ay) -
Win(ay) =Wan(ay) -

~
A
,_‘
~—
=
+
Lo
B
=
—
Q
=
~

_ n(an
YT Jalay) —Walay) -<—1>"“Wn<a1>
kn(az) —WZ(az) : (—l)nHWn(az)

n
Z H (—l)iHai(lnak—lnaj)
1 n—2 i=1 \ 1<j<k<n
1Y L) | JFLkF
(=1 (n 1)~<r1;10r-> I (/n )(-2)/2

Jj=1

Ina;—Ina;)

B n—1 "2 1<I<—[ (
! sigjsn,
<rH0r') f[ n— 1)(n—2)/2
by Propositions 3 and 4. Simplifying gives

(n—l)!z H (—l)”“ai(lnak—lnaj)
i=1 \ 1<j<k<n
kA
H (lnaj — lnai)

1<i<j<n

By getting a common denominator in the right hand side of (1), it then follows easily

n
that the latter expression equals (n— 1)! 2

j=1 (lnaj Ina;)

¥

REMARK 7. In [7] the following extension of the identric mean
1/(a—b)
a
tan)=(5) /e

to n variables was given:
Iz(ay,...,ay) = exp ! i(—l)"“a;’_lVi(a)lnai—m ,
V(a) 5
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where
1 1 ... 1 1 ... 1
n aq a ... dji—1 djy1 ... Ay
Via,....an) =[] (ai—a))Vilar,...,an) = ad & ...a,d, .. d |,
Igj<isn e
a’f_z ag_z aj’ilz a:'Hz aﬁ_z
1
and m = Z T n =23, if one lets xi(t) =, x2(t) = >, x3(t) = logt, then
M_(a,b,c) ; Iz(a,b,c) = Uy(a,b,c), where U, is given in [6]. This probably holds
for all n.
CONJECTURE. If x1(t) =t, x2(t) =12, ..., x,_1(t) = " x,(t) = logt, then

My (ay,...,an) =Iz(ay,... a,).

This conjecture is probably somewhat easier to prove than Theorem 2.
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