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ON CERTAIN SUBCLASSES OF p-VALENT FUNCTIONS

M. K. AOUF, R. M. EL-ASHWAH, AND AHMED M. ABD-ELTAWAB

Abstract. This paper gives some inclusion relationships of certain class of p-valent functions
which are defined by using the new linear operator ‘.Kg; . Further, a property preserving integrals
is considered.

1. Introduction

Let A (p) denote the class of functions of the form

f(z)zz”—l—iakﬂ,zkﬂ’ (peN={1,2,3,...}), (1.1)
k=1

which are analytic and p-valent in the unit disc U = {z:z € C and |z] < 1} and let
A(l)=A.

If f and g are analytic in U, we say that f is subordinate to g, written sym-
bolically as, f < g or f(z) < g(z), if there exists a Schwarz function w, which (by
definition) is analytic in U with w(0) = 0 and |w(z)| < 1(z € U) such that f(z) =
g(w(z)) (z € U). In particular, if the function g is univalent in U, we have the equiva-
lence (see for example [7]):

f(z) < 8(2) & f(0) = ¢(0) and f(U) C g(U).
For functions f € A (p) given by (1.1) and g € A(p) given by
g(z)=2"+ i biip? P (pEN),
k=1
the Hadamard product (or convolution) of f and g is given by
Ur8)@ =2+ Tawsber 7 = ()
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For the function f € A(p) We introduced the operator EKgZ :A(p) — A(p) as
follows:

sire= (" 95PTT) 7(“;{“’/01(1_£>“_yfﬂ—1f<z>dz

Z
_ r(p+oc+[3 y+1) AN
T T(p+BT(a—y+1) zﬁ ( ) S
Flp+ta+tB—y+1) (B+p+k) ket
=P )
o C(p+B) Zi[ ((%Jr[3+10+1<—7/+1)}ak”Z
B>-pa>y—LyeRpeNzeU) (1.2)

From (1.2), it is easy to verify that

JEASIE )) = (a+B+p—y+ )RETf(2) = (a+B—y+1)RGf(2). (13)
REMARK 1. (i) For y=1,

RE S (@) =0F ,f (2)

()L

- Fpra b (- ) P od

r( +a+p) i[ (B+p+k)
T(p+B) & T(e+B+p+k)

(B>-p;a>0peN;zel),

=+

] apip? P (1.4)

where the operator Qg_p was introduced and studied by Liu and Owa [5] and Qg_l =
Qg, where the operator Qg was introduced and studied by Jung et al. [3];
(ii) For o =y and B =c,

91,‘;‘;,‘37 (2) =Jepf(2)
:p+c/zzc‘1f(t)dt

¢ Jo
- c+p k+
= P P 1.5
¢ Jrkzl<c+k+p)a"+“’Z (15)

(¢c>—-p;peN;zeU)

where J., is the familiar integral operator, which was defined by Saitoh et al. [9].
The operator J.; = J. was introduced by Bernardi [1] and we note that J; 1 = J was
introduced and studied by Libera [4] and Livingston [6].
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DEFINITION 1. We say that a function f € A (p) isintheclass R,(a+1,8,7,4),
if it satisfies the following condition:

(R 1())

pzP

Re >A, (zeU), (1.6)

where B> —p, 0 >y—2,yeRO<KA<1,peNandzeU.

Using (1.3) condition (1.4) can be re-written in the form

REY £(z RITLV £ (2)
Re{ (a+B+p—y+1) L2 (q4p—yt1)- L2 228 o)
pzr pzr

(B>-p,oo>y—2,yeRO0KA<1l,peNandzeU).

REMARK 2. (i) For y=1, we have
RP(a+ 17[37 171) = Rp(a+ lvﬁvx’)
!
<(051'1@)

> A,
pz¥

f:f€A(p) andRe

(B>-p;a>-1,0<A<lipeNandzeU)};
(ii) For y=a+1 and 8 = ¢, we have
Rp(a+1,c,a+1,4) = Ry(c,A)

= {f:feA(p) andRe{Z(J#EZ))/}>A,

(c>-p;0<A<l;peNandzeU)};

2. Basic properties of the class R,(o.+1,,7,1)

Unless otherwise mentioned, we shall assume in the reminder of this paper that
B>-p,oa>y—2,yeR, 0<A <1, and peN.

We begin by recalling the following result (Jack’s lemma), which we shall apply
in proving our inclusion theorems below.

LEMMA 1. ([2]) Let the (nonconstant) function w(z) be analytic in U, with w(0) =
0. If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point zo € U, then
20w (z0) = Ew(zo), where & is a real number and & > 1.

THEOREM 1. The following inclusion property for the class Ry(oc+1,B,7,1)
holds true:
RP(avﬁa%A)CRP(O{—'—lvﬁv%A)' (21)
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Proof. Let f € Ry(o,B,y,A) and define a regular function w(z) in U such that
w(0) =0,w(z) # —1 by

A(F5700) 14 A Dw
pz’ N 1+w(z)

(2.2)

then from (1.3) we have

(0 + B p— 1+ DRI F() — (o + B 7+ DR p() = por LECAZ D)

1+ w(z)
(2.3)
Differentiating (2.3) with respect to z, we obtain
(R0) 1reagwe  20-h) W) o
o T+ w(2) at+B+p—r+1(1+wi)] '

We claim that |w(z)| < 1 for z € U. Otherwise there exists a point zgp € U such that
max|;|<|,,| [w(z)| = |w(z0)| = 1. Applying Jack’s lemma, we have

20w (20) =Ew(z) (£ =1). (2.5)
From (2.4) and (2.5) we have

!/
oy
oK @) i@ Uwe) 204 Ewl) 06
pzo 1+w(z0) +BA+p—v+1(1+w(z))? '
Since Re {%} A& >1, and % is real and positive, we see that
w < A, which obviously contradicts f € R, (e, 3,7,4). Hence |w(z)| <
0

1 for z € U and it follows from (2.2) that f € R,(ct+ 1,,7,4). This completes the
proof of Theorem 1. [

THEOREM 2. Let ¢ be any real number and ¢ > —p. If f € Ry(o.+1,B,7,1),
then

Jep ERp(a+1,B,7,14),
where J., is defined by (1.5).

Proof. From (1.5), we have

(R () = (DTG Q) - K @) @)

Define a regular function w(z) in U such that w(0) =0,w(z) # —1 by

z (%g;ch,pf (Z)> 14+ 2A-1)w(z) 2.8)
pzl N 1+w(z) ’ ’
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From (2.7) and (2.8) we have

O(+l Y a+1,y 1+ (22— 1Dw(z)
(e + YRGS (@) =Ry ey () = p? =TSR 29)
Differentiating (2.9) with respect to z, and using (2.8) we obtain
<%a+l "z )) 1+ @2A-Dw(x) 2(1-4)  2v'(z) (2.10)
par 1+w(z) ctp (1+w(z)* '

The remaining part of the proof of Theorem 2 is similar to that of Theorem 1. [J

THEOREM 3. If f € A(p), and satisfy the condition

(9, @) | e

Re > o A——
pzP 2(c+p)

(c>—p). (2.11)

Then
Jep ERp(0+1,B,7,1),

where J. ), is defined by (1.5).

The proof of Theorem 3 is similar to that of Theorem 2 and so we omit it.

THEOREM 4. Let f(z) be defined by (1.5). If J., € Rp(0e+1,B,7,A), then f €
Ry(o+1,B,7,A) in |z] < ﬁ where J., is defined by (1.5).
ct+p

Proof. Since J., € Rp(0c+1,B,7,A) we can write

z (ing;wc,pf (Z)>’ —pP A+ (1= A)u(2)], (2.12)

where u(z) € P, the class of functions with positive real part in the unit disk U and
normalized by u(0) = 1. We can re-write (2.13) as

(c+p)RG T F (@)= RGN, f (2) = p2? [+ (1= A)u(2)]. (2.13)
Differentiating (2.13) with respect to z, and using (2.7) we obtain

( aHYf()) A== / 2.14

T— (1-2) —u(z)+c+pzu (2). (2.14)

Using the well-known estimate (see [8]) |zu' (z)| < 13’; sReu(z),|z| =r, (2.14) yields

iR(wa( ) r
%—A =2 (2 (1= gt ) R

(2.15)

Re
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The right-hand side of (2.15) is positive if r < ctp

14/ (c+p)?+1

The result is sharp for the function f defined by f(z) = ﬁ (2Jepf (2))

(c+p)

!
where J. , is given by ( RATLY Jepf (z)> = pzP~! 1F@A—1)z

B.p 1+z

REMARK 3. (i) Taking y =1 in the above results, we obtain analogues results for

the subclasses which are defined in Remark 2 (i);

(ii) Taking y= o+ 1 and B =c¢ (¢ > —p) in the above results, we obtain ana-

logues results for the subclasses which are defined in Remark 2 (ii).
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