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MULTIPLIERS ON SPACES OF VECTOR

VALUED ENTIRE DIRICHLET SERIES

AKANKSHA AND G. S. SRIVASTAVA

Abstract. The spaces of entire functions represented by Dirichlet series have been studied by
Hussein and Kamthan and others. In this paper we have studied a sequence space which depends
upon the order of an entire function represented by vector valued Dirichlet series and obtain the
dual nature of this sequence space. In the later part we obtain some coefficient multipliers for
some classes of vector valued Dirichlet series.

1. Introduction

Consider a vector-valued Dirichlet series

f (s) =
∞

∑
n=1

ane
sλn , (1)

where s = σ + it, (σ and t are real variables), an ’s belong to a complex Banach
algebra E with the unit element ω and {λn} is any increasing sequence such that
0 < λ1 < λ2 < λ3 < .. . < λn < .. . ; lim

n→∞
λn = ∞ . Let σc( f ) and σa( f ) be the abscissa

of convergence and abscissa of absolute convergence respectively of the series in (1).
B. L. Srivastava [5] has proved that if the sequence {λn} satisfies the condition

lim
n→∞

sup
logn
λn

= 0, (2)

then

σc( f ) = σa( f ) = − lim
n→∞

sup
log ||an||

λn
. (3)

If σc( f ) = σa( f ) = ∞ then (1) represents a vector valued entire Dirichlet series. Sup-
pose that f (s) is a vector valued entire Dirichlet series. We define its maximum modu-
lus as

M(σ) = lub−∞<t<∞
|| f (σ + it)||.

B. L. Srivastava [5] introduced the order for entire VVDS. The entire function f (s) is
said to be of order ρ where

ρ = lim
σ→∞

sup
loglogM(σ)

σ
, (0 � ρ � ∞) . (4)

Mathematics subject classification (2010): 30B50, 30D15.
Keywords and phrases: Vector Valued Dirichlet Series (VVDS), Analytic function, Entire function,

Dual space, Norm.

c© � � , Zagreb
Paper JCA-04-06

89

http://dx.doi.org/10.7153/jca-04-06


90 AKANKSHA AND G. S. SRIVASTAVA

f (s) is said to be of slow growth if the order is zero and of fast growth if the order is
infinite. When 0 < ρ < ∞, we define the type T of f (s) as

T = lim
σ→∞

sup
logM(σ)
exp(ρσ)

, (0 � T � ∞) . (5)

The growth properties of the function f (s) represented by a VVDS (1) in terms of its
coefficients and exponents were given by B. L. Srivastava [5]. If f (s) given by (1) is
entire and (2) and (3) are satisfied, then it is of finite order ρ if and only if

ρ = lim
n→∞

sup
λn logλn

log ||an||−1 . (6)

From the equation (6), for a given ε > 0 there exists positive integer no such that for
all n > no ,

λn logλn

log ||an||−1 < ρ + ε.

i.e.,
||an|| � λn

−λn/M; where M = ρ + ε.

Let X denote the space of all entire functions f (s) defined by VVDS (1) and satisfying

lim
n→∞

sup
log‖ an ‖
λn logλn

� −1
ρ

. (7)

Le Hai Khoi has worked a lot on the spaces of analytic Dirichlet series with neg-
ative exponents and obtained various results. In [3] he introduced various concepts
of duality for sequence spaces. The aim of this paper is to introduce a new sequence
space using the order of entire functions represented by VVDS and obtain some auxil-
iary condition of convergence of VVDS (1). Further we throw light on the dual nature
of the sequence space of entire function represented by VVDS and derive coefficient
multipliers.

As given in [3], we give some definitions regarding dual spaces.

Let A and B be two sequence spaces, we denote the sequence space of “multipliers”
from A to B by (A,B)such that

(A,B) = {u = (un) ;(unan) ∈ B,∀(an) ∈ A} .

In what follows we shall always consider E to be a complex Banach algebra with unit
element ω and the sequence {λn} satisfies the condition (2). We denote by Eρ the
sequence space

Eρ =
{

(an) ⊆ E : lim
n→∞

sup
log ||an||
λn logλn

� − 1
ρ

}
.

The Köthe dual [4] of the space Eρ is defined as

Eα
ρ =

{
(un) ⊆ E;

∞

∑
n=1

||unan || < ∞, ∀(an) ∈ Eρ

}
.



MULTIPLIERS ON SPACES OF VECTOR VALUED ENTIRE DIRICHLET SERIES 91

Now we introduce another sequence space Eβ
ρ such that

Eβ
ρ =

{
(un) ⊆ E;

∞

∑
n=1

unan converges∀(an) ∈ Eρ

}
.

It can be easily verified that Eα
ρ ⊆ Eβ

ρ . In our first result we prove that in fact the two
spaces are identical and characterize them.

2. Main Results

We now prove

THEOREM 1. For every 0 < ρ < ∞, we have Eα
ρ = Eβ

ρ . Moreover, (un) ∈ Eβ
ρ if

and only if

lim
n→∞

sup
log ||un||
λn logλn

<
1
ρ

. (8)

Proof. First we suppose that (8) holds, i.e.,

T = lim
n→∞

sup
log ||un||
λn logλn

<
1
ρ

.

Then for a given δ > 0, there exists N1 such that ∀n � N1 we have

log ||un||
λn logλn

< T + δ

or
||un|| � λ λn(T+δ )

n ∀n � N1.

Also, for the sequence (an) ∈ Eρ , there exists N2 such that ∀n � N2,

||an|| � λ λn((−1/ρ)+δ )
n .

Therefore for all n � max{N1,N2}, ||anun|| � ||an|| ||un|| < λ λn(T−(1/ρ)+2δ)
n .

Since the sequence (λn) satisfies condition (2), the series
∞
∑

n=0
λ aλn

n converges for a < 0.

We can always choose 0 < 2δ < 1
ρ −T . Hence the series

∞
∑

n=1
||unan || converges. Thus

the sequence (un) ∈ Eα
ρ ⊆ Eβ

ρ .

Conversely, let us assume that (un) ∈ Eβ
ρ is such that

L = lim
n→∞

sup
log ||un||
λn logλn

� 1
ρ

.

We first suppose that L < ∞; then there is a subsequence
(
unk

)
k such that

lim
k→∞

log ||unk ||
λnk logλnk

= L .
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We now define the sequence (an) as

an =

{
ω/||un||, if n = nk, k = 1,2, . . . ,

0, otherwise.

Then we have

lim
n→∞

sup
log ||an||
λn logλn

= lim
k→∞

log ||ank ||
λnk logλnk

= lim
k→∞

log1
/||unk ||

λnk logλnk

= −L � −1
ρ

.

This implies that (an) ∈ Eρ . We also have ||ankunk || = 1 for every k = 1,2, . . . , hence

the series
∞
∑

n=1
||unan || does not converge, contradicting the fact that (un) ∈ Eβ

ρ .

If L = ∞, then for an arbitrarily large positive number K , we can find a subse-
quence

(
unk

)
k such that

lim
n→∞

sup
log ||un||
λn logλn

= K >
1
ρ

.

Again proceeding as above we get a contradiction. Hence (un) ∈ Eβ
ρ implies (8)

must hold. Using the first part, we conclude that (un) ∈ Eα
ρ . Hence we get Eα

ρ = Eβ
ρ

and the proof of Theorem 1 is complete. �
Next we prove

THEOREM 2. The space Eρ is perfect i.e., Eαα
ρ = Eρ .

Proof. Let the sequence (an) /∈ Eρ . Then we have

lim
n→∞

sup
log ||an||
λn logλn

>
−1
ρ

.

Now proceeding as in the proof of Theorem 1, we can find a sequence (un) ∈ Eα
ρ

such that ‖unan|| = 1 i.e. ∑anun does not converge.Therefore. (an) /∈ Eαα
ρ . Hence

Eαα
ρ ⊆ Eρ . The reverse inclusion always holds. Hence we obtain Eαα

ρ = Eρ i.e. the
space Eρ is perfect. This proves Theorem 2. �

Now we obtain some results for the spaces

(
Eρ , l p) =

{
(un) ⊆ E;

∞

∑
n=1

||unan ||p < ∞∀(an) ∈ Eρ

}

and (
l p,Eρ

)
=

{
(un) ⊆ E;(unan) ∈ Eρ ∀(an) ∈ l p} .

We prove
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THEOREM 3. For the sequence space Eρ defined as above, we have ∀ 0 < p � ∞(
Eρ , l p) = Eα

ρ .

Proof. Suppose that a sequence (un) /∈ Eα
ρ . Then from Theorem 1, we have

L = lim
n→∞

sup
log ||un||
λn logλn

� 1
ρ

Assume that L < ∞ ; then there is a subsequence
(
unk

)
k such that

lim
k→∞

log ||unk ||
λnk logλnk

= L .

Let 0 < p < ∞. We consider the sequence(an) as

an =

{
ω/||un||, if n = nk, k = 1,2, . . . ,

0, otherwise.

By proceeding as in Theorem 1 we see that the sequence (an) ∈ Eρ but (anun) /∈ l p .
When p = ∞ we consider a sequence

an =

{
ωn/||un||, if n = nk, k = 1,2, . . . ,

0, otherwise.

After proceeding as in Theorem 1 we see that the sequence (an) ∈ Eρ but (anun) /∈ l∞.
Hence we conclude that for 0 < p � ∞, (un) /∈ Eα

ρ ⇒ (un) /∈ (
Eρ , l p

)
. Thus

(
Eρ , l p

)⊆
Eα

ρ , 0 < p � ∞.
Conversely, assume that (un)∈Eα

ρ . Then for a given number T < 1/ρ there exists

N1 such that ∀ n� N1, ||un|| � λ λnT
n . Suppose that (an)∈Eρ , then for δ ∈

(
0, 1

ρ −T
)

there exists N2 such that ∀n � N2

||an|| � λ λn((−1/ρ)+δ )
n .

Consequently, for all n � N = max{N1,N2} , we have

||anun|| � λ λn(T−(1/ρ)+δ )
n .

If 0 < p < ∞ , then we have

∞

∑
n=N

||anun||p �
∞

∑
n=N

λ λn p(T−(1/ρ)+δ )
n < ∞ ;

as p(T − (1/ρ)+ δ ) < 0, which implies that (anun) ∈ l p.

Now let us take p = ∞ , then we have ||anun|| � λ λn(T−(1/ρ)+δ )
n � 1, ∀n � N ,

which shows that (anun) ∈ l∞. Thus in both cases (un) ∈
(
Eρ , l p

)
and consequently,

Eα
ρ ⊂ (

Eρ , l p
)
, 0 < p � ∞ . This completes the proof of Theorem 3. �

In the next result we obtain the sequence space of multipliers from l p to Eρ .



94 AKANKSHA AND G. S. SRIVASTAVA

THEOREM 4. For the space Eρ we have(
l p,Eρ

)
= Eρ , 0 < p � ∞.

Proof. Let (un) ∈
(
l p,Eρ

)
,0 < p � ∞. Suppose that (un) /∈ Eρ , this implies that

lim
n→∞

sup
log ||un||
λn logλn

= T >
1
ρ

,

Assume that T < ∞ ; then there exists a subsequence
(
unk

)
k such that

lim
k→∞

log ||unk ||
λnk logλnk

= T.

Then for any δ > 0 such that T − δ > 1
ρ , we have

log ||unk ||
λnk logλnk

> T − δ , ∀ k � k0(δ ),

||unk ||−1 � λnk
−(T−δ )λnk , ∀ k � k0(δ ).

Define a new sequence (bn) such that

bn =

{
ωλn

(T−δ )λn/||un||, if n = nk,

0, otherwise.

Then we have

∞

∑
n=1

||bn||p =
∞

∑
k=1

||bnk ||p =
∞

∑
k=1

||unk ||−pλnk
p(T−δ )λnk � O(1) +

∞

∑
k=k0

λnk
−(pλnk ) < ∞

which shows that (bn) ∈ l p . Now consider

lim
n→∞

sup
log ||bnun||
λn logλn

= lim
k→∞

log ||bnkunk ||
λnk logλnk

= (T − δ ) > 1
/

ρ.

In the second case i.e., p = ∞ , we define a sequence (cn) such that

cn =

{
ωλn

(T−δ )λn/||un||, if n = nk, k = 1,2, . . . ,

0 otherwise.

We can see that ||cn|| � 1, ∀n � 1, which shows that (cn) ∈ l∞. Then we have

lim
n→∞

sup
log ||cnun||
λn logλn

= lim
k→∞

sup
log ||cnkunk ||
λnk logλnk

= (T − δ) > 1
/

ρ.
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Hence we see that in both cases, we get sequences (bnun) and (cnun) which do not
belong to Eρ even though (bn) ∈ l p and (cn) ∈ l∞ respectively. This is a contradiction.
Thus

(
l p,Eρ

) ⊆ Eρ ,0 < p � ∞.
To prove the converse, assume that (un) ∈ Eρ , Then we have

lim
n→∞

sup
log ||un||
λn logλn

� 1
M

.

Let (dn) be an arbitrary sequence such that (dn) ∈ l p,0 < p � ∞ . In both cases, there
exists a constant P such that ||dn|| � P,∀ n � 1. Hence we have

lim
n→∞

sup
log ||dnun||
λn logλn

� lim
n→∞

sup
log ||un||
λn logλn

+ lim
n→∞

sup
log ||dn||
λn logλn

� lim
n→∞

sup
log ||un||
λn logλn

� 1
ρ

,

which shows that (dnun) ∈ Eρ . Thus Eρ ⊂ (
l p,Eρ

)
, ∀0 < p � ∞ . Hence the result

follows. �
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