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POLYNOMIAL PROBLEMS OF THE CASAS–ALVERO TYPE

S. YAKUBOVICH

Abstract. We establish necessary and sufficient conditions for an arbitrary polynomial of degree
n , especially with only real roots, to be trivial, i.e. to have the form a(x− b)n . To do this, we
derive new properties of polynomials and their roots. In particular, it concerns new bounds and
genetic sum representations of the Abel-Goncharov interpolation polynomials. Moreover, we
prove the Sz.-Nagy type identities, the Laguerre and Obreshkov-Chebotarev type inequalities for
roots of polynomials and their derivatives. As applications these results are associated with the
known problem, conjectured by Casas-Alvero in 2001, which says, that any complex univariate
polynomial, having a common root with each of its non-constant derivative must be a power of
a linear polynomial. We investigate particular cases of the problem, when the conjecture holds
true or, possibly, is false.
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