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POLYNOMIAL PROBLEMS OF THE CASAS–ALVERO TYPE

S. YAKUBOVICH

Abstract. We establish necessary and sufficient conditions for an arbitrary polynomial of degree
n , especially with only real roots, to be trivial, i.e. to have the form a(x− b)n . To do this, we
derive new properties of polynomials and their roots. In particular, it concerns new bounds and
genetic sum representations of the Abel-Goncharov interpolation polynomials. Moreover, we
prove the Sz.-Nagy type identities, the Laguerre and Obreshkov-Chebotarev type inequalities for
roots of polynomials and their derivatives. As applications these results are associated with the
known problem, conjectured by Casas-Alvero in 2001, which says, that any complex univariate
polynomial, having a common root with each of its non-constant derivative must be a power of
a linear polynomial. We investigate particular cases of the problem, when the conjecture holds
true or, possibly, is false.

1. Introduction and preliminary results

It is well known from elementary calculus that an arbitrary polynomial f with
complex coefficients (complex polynomial) of degree n ∈ N

f (z) = a0z
n +a1z

n−1 + . . .+an−1z+an, a0 �= 0, (1)

having a root λ ∈ C of multiplicity μ , 1 � μ � n , shares it with each of its derivatives
up to order μ − 1, but f (μ)(λ ) �= 0. When λ is a unique root of f , it has the form
f (z) = a(z− λ )n , μ = n and λ is the same root of each derivative of f up to order
n−1. We will call such a polynomial a trivial polynomial. Obviously, as it follows from
the fundamental theorem of algebra, f has at least two distinct roots, i.e. a polynomial
of degree n is non-trivial, if and only if its maximum multiplicity of roots r does not
exceed n−1.

In 2001 Casas-Alvero [1] conjectured that an arbitrary polynomial f degree n � 1
with complex coefficients is of the form f (z) = a(z− b)n,a,b ∈ C , if and only if f
shares a root with each of its derivatives f (1), f (2), . . . , f (n−1).

We will call a possible non-trivial polynomial, which has a common root with each
of its non-constant derivatives a CA-polynomial. The conjecture says that there exist
no CA-polynomials. The problem is still open. However, it is proved for small degrees,
for infinitely many degrees, for instance, for all powers n , when n is a prime (see in [2],
[3], [4] ). We observe that such a kind of CA-polynomial of degree n � 2 cannot have
all distinct roots since at least one root is common with its first derivative. Therefore it
has a multiplicity at least 2 and a maximum of possible distinct roots is n−1.
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Our main goal here is to derive necessary and sufficient conditions for an arbitrary
polynomial (1) to be trivial. For example, solving a simple differential equation of the
first order, we easily prove that a polynomial is trivial, if and only if it is divisible by its
first derivative. In the sequel we establish other criteria, which will guarantee that an
arbitrary polynomial has a unique joint root.

Without loss of generality one can assume in the sequel that f is a monic polyno-
mial of degree n , i.e. a0 = 1 in (1). Generally, it has k distinct roots λ j of multiplicities
r j , j = 1, . . . ,k , 1 � k � n such that

r1 + r2 + . . .+ rk = n. (2)

By r we will denote the maximum of multiplicities (2), r = max1� j�k(r j) , r0 =
min1� j�k(r j) and by ξ (m)

ν , ν = 1, . . . ,n−m the zeros of the m-th derivative f (m), m =
1, . . . ,n−1. For further needs we specify zeros of the n−1st and n−2nd derivatives,

denoting them by ξ (n−1)
1 = zn−1 and ξ (n−2)

2 = zn−2 , respectively. It is easy to find an-

other zero of the n− 2-nd derivative, which is equal to ξ (n−2)
1 = 2zn−1 − zn−2 . When

zeros zn−1, zn−2 are real we write, correspondingly, xn−1, xn−2 . The value zn−1 is
called the centroid. It is a center of gravity of roots and by Gauss-Lucas theorem it is
contained in the convex hull of all non-constant polynomial derivatives (see details in
[5]).

The paper is structured as follows: In Section 2 we study properties of the Abel-
Goncharov interpolation polynomials, including integral and series representations and
upper bounds. Section 3 deals with the Sz.-Nagy type identities and Obreshkov-Che-
botarev type inequalities for roots of polynomials and their derivatives. As applications
new criteria are found for an arbitrary polynomial with only real roots to be trivial.
Section 4 is devoted to the Laguerre type inequalities for polynomials with only real
roots to localize their zeros. The final Section 5 contains applications of these results
towards solution of the Casas-Alvero conjecture and its particular cases.

2. Abel-Goncharov polynomials, their upper bounds and integral and genetic
sum’s representations

We begin, choosing a sequence of complex numbers (repeated terms are permitted)

z0,z1,z2, . . . ,zn−1,n∈N , where z0 ∈{λ1,λ2, . . . ,λk}, zm ∈{ξ (m)
1 , ξ (m)

2 , . . . ,ξ (m)
n−m}, m =

1,2, . . . ,n− 1, satisfying conditions f (m)(zm) = 0, m = 0,1, . . . , n− 1 and, clearly
f (n)(z) = n! . Then we represent f (z) in the form

f (z) = zn +Pn−1(z), (3)

where Pn−1(z) is a polynomial of degree at most n− 1. To determine Pn−1(z) we
differentiate the latter equality m times, and we calculate the corresponding derivatives
in zm to obtain

P(m)
n−1(zm) = − n!

(n−m)!
zn−m
m , m = 0,1, . . . ,n−1. (4)
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But this is the known Abel-Goncharov interpolation problem (see [6]) and the polyno-
mial Pn−1(z) can be uniquely determined via the linear system (4) of n equations with
n unknowns and triangular matrix with non-zero determinant. So, following [6], we
derive

Pn−1(z) = −
n−1

∑
k=0

n!
(n− k)!

zn−k
k Gk(z), (5)

where Gk(z),k = 0,1, . . . ,n−1 is the system of the Abel-Goncharov polynomials [6],
[7], [8]. On the other hand it is known that

Gn(z) = zn −
n−1

∑
k=0

n!
(n− k)!

zn−k
k Gk(z).

Thus comparing with (3), we find that

Gn(z) ≡ Gn (z,z0,z1,z2, . . . ,zn−1) = f (z),

and
Gn (λ j,z0,z1,z2, . . . ,zn−1) = f (λ j) = 0, j = 1,2, . . . ,k.

Plainly, one can relate possible CA-polynomialswith the correspondingAbel-Goncharov
polynomials, fixing a sequence {zm}n−1

0 such that

zm ∈ {λ1,λ2, . . . ,λk}, m = 0,1, . . . , n−1.

Further, It is known [6] that the Abel-Goncharov polynomial can be represented
as a multiple integral in the complex plane

Gn(z) = n!
∫ z

z0

∫ s1

z1
. . .

∫ sn−1

zn−1

dsn . . .ds1. (6)

Moreover, making simple changes of variables in (6), it can be verified that Gn(z) is a
homogeneous function of degree n (cf. [7]). Therefore

Gn(αz) = Gn (αz,αz0,αz1, . . . ,αzn−1) = αnGn(z), α �= 0. (7)

The following Goncharov upper bound holds for Gn (see [9], [6], [7], [11])

|Gn(z)| �
(
|z− z0|+

n−2

∑
s=0

|zs+1− zs|
)n

. (8)

Let us represent the Abel-Goncharov polynomials Gn(z) in a different way. To do this,
we will use the following representation of the Gauss hypergeometric function given
by relation (2.2.6.1) in [12], namely

∫ b

a
(z−a)α−1(b− z)β−1(z+ c)γdz

= (b−a)α+β−1(a+ c)γB(α,β )2F1

(
α,−γ;α + β ;

a−b
a+ c

)
, (9)
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where α,β ,γ are positive integers, a,b,c ∈ C and B(α,β ) is the Euler beta-function.
So, our goal will be a representation of the Abel-Goncharov polynomials in terms of
the so-called genetic sums considered, for instance, in [10]. Moreover, this will lead us
to a sharper upper bound for these polynomials, improving the Goncharov bound (8).
Indeed, G1(z) = z− z0 . When n � 2, we use the multiple integral representation (6),
and appealing to the representation (9), we obtain recursively

Gn(z) = n!
∫ z

z0

∫ s1

z1
. . .

∫ sn−2

zn−2

(sn−1 − zn−1)dsn−1 . . .ds1

= n!(zn−2−zn−1)
∫ z

z0

∫ s1

z1
. . .

∫ sn−3

zn−3

(sn−2−zn−2)2F1

(
1,−1; 2;

zn−2− sn−2

zn−2− zn−1

)
dsn−2 . . .ds1

= n!
1

∑
j1=0

(−1) j1(−1) j1

(2) j1
(zn−2−zn−1)1− j1

∫ z

z0

∫ s1

z1
. . .
∫ sn−3

zn−3

(sn−2−zn−2)1+ j1dsn−2 . . .ds1.

Hence, employing properties of the Pochhammer symbol and repeating this process,
we find

Gn(z) = n!
1

∑
j1=0

(zn−2 − zn−1)1− j1

(2) j1(1− j1)!

∫ z

z0

∫ s1

z1
. . .

∫ sn−3

zn−3

(sn−2 − zn−2)1+ j1dsn−2 . . .ds1

= n!
1

∑
j1=0

1+ j1

∑
j2=0

(zn−2 − zn−1)1− j1(zn−3− zn−2)1+ j1− j2

(2) j2(1− j1)!(1+ j1− j2)!
×

×
∫ z

z0

∫ s1

z1
. . .

∫ sn−4

zn−4

(sn−3− zn−3)1+ j2dsn−3 . . .ds1.

Continuing to calculate iterated integrals with the use of (9), we arrive finally at the
following genetic sum representation of the Abel-Goncharov polynomials ( j0 = jn =
0, z−1 ≡ z)

Gn(z) = n!
1

∑
j1=0

1+ j1

∑
j2=0

. . .
1+ jn−2

∑
jn−1=0

n−1

∏
s=0

(zn−2−s− zn−1−s)1+ js− js+1

(1+ js− js+1)!
. (10)

Analogously, we derive the genetic sum representation for the m-th derivative G(m)
n (z) ,

namely ( j0 = 0)

G(m)
n (z) = n!

1

∑
j1=0

1+ j1

∑
j2=0

. . .
1+ jn−2−m

∑
jn−1−m=0

(z− zm)1+ jn−1−m

(1+ jn−1−m)!

n−2−m

∏
s=0

(zn−2−s− zn−1−s)1+ js− js+1

(1+ js− js+1)!
,

(11)
where m = 0,1, . . . ,n−1.

Meanwhile, the Taylor expansions of G(m)
n (z) in the neighborhood of points zm

give the formulas

G(m)
n (z)=

n!
(n−m)!

(z−zm)n−m+
G(n−1)

n (zm)
(n−m−1)!

(z−zm)n−m−1+ . . .+G(1+m)
n (zm)(z−zm),

(12)



POLYNOMIAL PROBLEMS OF THE CASAS-ALVERO TYPE 101

where m = 0,1, . . . ,n− 1. Thus comparing coefficients in front of (z − zm)s, s =
1, . . . ,n−m−1 in (11) and (12), we find the values of derivatives G(s+m)

n (zm) in terms
of zm,zm+1, . . . ,zn−1 . Precisely, we obtain ( j0 = 0)

G(s+m)
n (zm) = n!

1

∑
j1=0

1+ j1

∑
j2=0

. . .
1+ jn−3−m

∑
jn−2−m=0

(zm − zm+1)2+ jn−2−m−s

(2+ jn−2−m− s)!
×

×
n−3−m

∏
l=0

(zn−2−l − zn−1−l)1+ jl− jl+1

(1+ jl − jl+1)!
, (13)

where s = 1,2, . . . ,n−m, m = 0,1, . . . ,n−1.
Finally, in this section, we will establish a sharper upper bound for the Abel-

Goncharov polynomials. We have

THEOREM 1. Let z,z0,z1,z2, . . . ,zn−1 ∈ C, n � 1 . The following upper bound
holds for the Abel-Goncharov polynomials

|Gn (z,z0,z1,z2, . . . ,zn−1) |

�
1

∑
k0=0

2−k0

∑
k1=0

. . .
n−1−k0−k1−...−kn−3

∑
kn−2=0

(
n!

k0!k1! . . .kn−2! (n− k0− k1− . . .− kn−2)!

)
×

×
n−1

∏
s=0

|zn−2−s− zn−1−s|ks , (14)

where z−1 ≡ z and(
n!

l0!l1! . . . lm!

)
=

n!
l0!l1! . . . lm!

, l0 + l1 + . . .+ lm = n

are multinomial coefficients. This bound is sharper than the Goncharov upper bound
(8) .

Proof. In fact, making simple substitutions ks = 1 + js − js+1, s = 0,1, . . . ,n−
1, j0 = jn = 0 and writing identity (10) for the Abel-Goncharov polynomials (6), we
estimate their absolute value, coming out immediately with inequality (14). Further-
more, appealing to the multinomial theorem, we estimate the right-hand side of (14) in
the following way

1

∑
k0=0

2−k0

∑
k1=0

. . .
n−1−k0−k1−...−kn−3

∑
kn−2=0

(
n!

k0!k1! . . .kn−2 (n− k0− k1− . . .− kn−2)!

)
×

×
n−1

∏
s=0

|zn−2−s− zn−1−s|ks

� ∑
l0+l1+...+ln−1=n

(
n!

l0!l1! . . . ln−1!

)n−1

∏
s=0

|zn−2−s− zn−1−s|ls
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=

(
n−1

∑
m=0

|zm−1 − zm|
)n

,

where the summation now is taken over all combinations of nonnegative integer indices
l0 through ln−1 such that the sum of all l j is n . Thus it yields (8) and completes the
proof.

3. Sz.-Nagy type identities for roots of polynomials and their derivatives

In this section we prove Sz.-Nagy type identities [5] for zeros of monic polyno-
mials with complex coefficients and their derivatives. All notations of roots and their
multiplicities given in Section 1 are involved.

We begin with

LEMMA 1. Let f be a monic polynomial of degree n � 2 with complex coef-
ficients, m = 0,1, . . . ,n− 2 and z ∈ C . Then the following Sz.-Nagy type identities,
which relate the roots of f and its m-th derivative, hold

zn−1− z =
1
n

k

∑
j=1

r j(λ j − z) =
1

n−m

n−m

∑
j=1

(ξ (m)
j − z), (15)

(zn−1− zn−2)2 =
1

n(n−1)

[
k

∑
j=1

r j(λ j − z)2−n(zn−1− z)2

]

=
1

(n−m)(n−m−1)

[
n−m

∑
j=1

(ξ (m)
j − z)2− (n−m)(zn−1− z)2

]
, (16)

(zn−1− zn−2)2 =
1

n2(n−1) ∑
1� j<s�k

r jrs(λ j −λs)2

=
1

(n−m)2(n−m−1) ∑
1� j<s�n−m

(ξ (m)
j − ξ (m)

s )2. (17)

Proof. In fact, the first Viéte formula (see [5]) says that the coefficient a1 (a0 = 1)
in (1) is equal to

−a1 = r1λ1 + r2λ2 + . . .+ rkλk.

On the other hand, differentiating (1) n−1 times, we find zn−1 =−a1/n . Thus in view
of (2) we prove the first identity in (15). The second identity can be done similarly, using
that a centroid is differentiation invariant, see, for instance, [5]. In order to establish the
first identity in (16), we call formula (11) to find

f (n−2)(z)
(n−2)!

=
n(n−1)

2
(z− zn−2)(z+ zn−2−2zn−1). (18)

Moreover, as a consequence of the second Viéte formula, the coefficient a2 in (1),
which equals

a2 =
f (n−2)(z)
(n−2)!

− n(n−1)
2

z2 +n(n−1)zn−1z (19)
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can be expressed as follows

a2 =
1
2

(
k

∑
j=1

r jλ j

)2

− 1
2

k

∑
j=1

r jλ 2
j . (20)

Hence letting z = zn−2 in (18), and taking into account (15) with z = 0, we deduce

2a2 = n2z2
n−1−

k

∑
j=1

r jλ 2
j = 2n(n−1)zn−1zn−2−n(n−1)z2

n−2.

Therefore, using again (15) and (2), we easily come up with the first identity in (16).
The second one can be proven in the same manner, involving roots of derivatives. Fi-
nally, we prove the first identity in (17). Concerning the second identity, see Lemma
6.1.5 in [5]. Indeed, calling the first identity in (16), letting z = zn−1 and employing
(15), we derive

n2(n−1)(zn−1− zn−2)2 = n
k

∑
j=1

r jλ 2
j +

(
k

∑
s=1

rsλs

)2

−2

(
k

∑
s=1

rsλs

)(
k

∑
j=1

r jλ j

)

= n
k

∑
j=1

r jλ 2
j −

k

∑
s=1

r2
j λ

2
j −2 ∑

1� j<s�k

r jrsλ jλs = ∑
1� j<s�k

r jrs(λ j −λs)2. �

The following result gives an identity, which is associated with zeros of a monic
polynomial and common zeros of its derivatives. Precisely, we have

LEMMA 2. Let f be a monic polynomial of exact degree n � 2 , having k distinct
roots of multiplicities (2) . Let zn−1 = λ1 be a common root of f of multiplicity r1 with

the unique root of its n−1st derivative. Let also zm = ξ (m)
n−m = λkm be a common root

of f of multiplicity rkm and its m-th derivative, m ∈ {1,2, . . . ,n−2} . Then, involving
other roots of f (m) , the following identity holds

[
n−m−2
(n−m)2 +

rkm + r1−n
n(n−1)

]n−m−1

∑
s=1

(zm −ξ (m)
s )2 +

n−m−2
(n−m)2 ∑

1�s<t�n−m−1

(ξ (m)
s −ξ (m)

t )2

=
(n−m)2rkm − (n− r1)(n−m+2)

n(n−1)
(zm − zn−1)2

+
2

n(n−1) ∑
j �=1,km

r j ∑
1�s<t�n−m−1

(λ j − ξ (m)
s )(λ j − ξ (m)

t ). (21)

Proof. We begin, appealing to (15) and letting z = 0. We get

n−m

∑
s=1

ξ (m)
s = (n−m)zn−1, ξ (m)

n−m = zm. (22)
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Hence via identities (17) with z = zm we write the chain of equalities

∑
1�s<t�n−m

(ξ (m)
s − ξ (m)

t )2 =
(n−m−1)(n−m)2

n(n−1)
rkm(zm − zn−1)2

+
(n−m−1)(n−m)2

n(n−1) ∑
j �=1,km

r j(λ j − zn−1)2

=
(n−m−1)(n−m)2

n(n−1)
rkm(zm − zn−1)2

+
n−m−1
n(n−1) ∑

j �=1,km

r j

(
λ j − zm +

n−m−1

∑
s=1

(λ j − ξ (m)
s )

)2

=
(n−m−1)(n−m)2

n(n−1)
rkm(zm − zn−1)2

+
n−m−1
n(n−1)

[
∑

j �=1,km

r j(λ j − zm)2 + ∑
j �=1,km

r j

(
n−m−1

∑
s=1

(λ j − ξ (m)
s )

)2

+2 ∑
j �=1,km

r j

n−m−1

∑
s=1

(λ j − zm)(λ j − ξ (m)
s )

]

=
(n−m−1)(n−m)2

n(n−1)
rkm(zm − zn−1)2

+
n−m−1
n(n−1)

[
(2(n−m)−1) ∑

j �=1,km

r j(λ j − zm)2

+ ∑
j �=1,km

r j

(
n−m−1

∑
s=1

(λ j − ξ (m)
s )

)2

+2 ∑
j �=1,km

r j

n−m−1

∑
s=1

(λ j − zm)(zm − ξ (m)
s )

]

=
(n−m−1)(n−m)2

n(n−1)
rkm(zm − zn−1)2

+
n−m−1
n(n−1)

[
(2(n−m)−1) ∑

j �=1,km

r j(λ j − zm)2

+ ∑
j �=1,km

r j

(
n−m−1

∑
s=1

(λ j − ξ (m)
s )

)2

−2(n−m)(n− r1)(zm − zn−1)2

]

=
(n−m−1)
n(n−1)

(
(n−m)2rkm −n+ r1

)
(zm − zn−1)2

+(n−m−1)(3(n−m)−2)(zn−1− zn−2)2

+
(n−m−1)(n− r1)

n(n−1)

n−m−1

∑
s=1

(zn−1 − ξ (m)
s )2
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− rkm(n−m−1)
n(n−1)

n−m−1

∑
s=1

(zm − ξ (m)
s )2

+2
n−m−1
n(n−1) ∑

j �=1,km

r j ∑
1�s<t�n−m−1

(λ j − ξ (m)
s )(λ j − ξ (m)

t ).

Applying again (17), (22), we split the right-hand side of the latter identity in (17) in two
parts, selecting the root zm . Thus in the same manner after straightforward calculations
it becomes

[
n−m−2
(n−m)2 +

rkm + r1−n
n(n−1)

]n−m−1

∑
s=1

(zm−ξ (m)
s )2+

n−m−2
(n−m)2 ∑

1�s<t�n−m−1

(ξ (m)
s −ξ (m)

t )2

=
(n−m)2rkm − (n− r1)(n−m+2)

n(n−1)
(zm − zn−1)2

+
2

n(n−1) ∑
j �=1,km

r j ∑
1�s<t�n−m−1

(λ j − ξ (m)
s )(λ j − ξ (m)

t ),

completing the proof of Lemma 2. �

REMARK 1. It is easy to verify identity (21) for the least case m = n− 2, when

the double sums are empty and ξ (n−2)
1 = 2zn−1− zn−2 (see above).

COROLLARY 1. A polynomial with only real roots of degree n � 2 is trivial, if
and only if its n−2nd derivative has a double root.

Proof. Indeed, necessity is obvious. To prove sufficiency we see that since the
n−2nd derivative has a double real root xn−2 , it is equal to the root xn−1 of the n−1st
derivative. Therefore letting in (16) z = xn−1 , we find that its left-hand side becomes
zero and, correspondingly, all squares in the right-hand side are zeros. This gives the
conclusion that all roots are equal to xn−1 . �

COROLLARY 2. Let f be an arbitrary polynomial of degree n � 3 with at least
two distinct roots, whose n−2nd derivative has a double root. Then it contains at least
one complex root.

Proof. In fact, if all roots are real it is trivial via Corollary 1. �
Evidently, each derivative up to f (r−1) of a polynomial f with only real roots,

where r is the maximal multiplicity, shares a root with f . Moreover, owing to the Rolle
theorem all roots of f (m), m = r,r + 1, . . . ,n− 1 are simple, we have that a possible
common root with f is simple too (we note, that a number of common roots does not
exceed k− 2, because minimal and maximal roots cannot be zeros of f (m), m � r ).
This circumstance gives an immediate

COROLLARY 3. There exists no non-trivial polynomial with only real roots, hav-
ing two distinct zeros and sharing a root with at least one of its derivatives, whose order
exceeds r−1, r = max1� j�k(r j) .
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Proof. Indeed, in the case of existence of such a polynomial, these two distinct
roots cannot be within zeros of any derivative f (m), m > r owing to the Rolle theorem.
Moreover, if any of the two roots are in common with roots of f (r) , its multiplicity is
greater than r , which is impossible.

We extend Corollary 3 to three distinct real roots. Precisely, it leads to

COROLLARY 4. There exists no non-trivial polynomial f of degree n � 3 with
only real roots, having three distinct zeros and sharing a root with its n− 2nd and
n−1st derivatives.

Proof. Assume such a polynomial exists and let’s denote its roots λ1 = xn−1, λ2 =
xn−2 and λ3 of multiplicities r1, r2, r3 , respectively. Hence employing identities (16),
we write for this case

(n2 −n− r2)(xn−1− xn−2)2 = r3(λ3− xn−1)2.

In the meantime, squaring both sides of the first identity in (15) for this case after simple
modifications , we obtain

r2
2(xn−1− xn−2)2 = r2

3(λ3− xn−1)2.

Hence, comparing with the previous equality, we come out with the relation

(n2−n− r2)r3 = r2
2 .

But n = r1 + r2 + r3, r j � 1, j = 1,2,3. Consequently,

r2
2 � n(n−1)− r2 > (n−1)2− r2 � (r1 + r2)2 − r2 � r2

2 + r2 + r2
1 > r2

2,

which is impossible. �
REMARK 2. If we omit the condition for f to have a common root with the n−

2nd derivative in Corollary 4, it becomes false. In fact, this circumstance can be shown
by the counterexample f (x) = x3 − x.

The following result deals with the case of 4 distinct roots. We have,

COROLLARY 5. There exists no non-trivial polynomial f of degree n � 4 with
only real roots, having four distinct zeros and sharing a root with its n− 2nd and
n−1st derivatives.

Proof. Similarly to the previous corollary, we assume the existence of such a poly-
nomial and call its roots λ1 = xn−1, λ2 = xn−2 and λ3,λ4 of multiplicities r j, j =
1,2,3,4, respectively. Hence the first identity in (16) yields

(n2−n− r2)(xn−1− xn−2)2 = r3(λ3− xn−1)2 + r4(λ4− xn−1)2. (23)

Meanwhile, using the first identity in (15) for this case, we derive in a similar manner

r2
2(xn−1− xn−2)2 = r2

3(λ3− xn−1)2 + r2
4(λ4− xn−1)2 +2r3r4(λ3− xn−1)(λ4− xn−1).
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Thus, after straightforward calculations, we come out with the quadratic equation

Ay2 +By+C = 0

in the variable y = (λ3 − xn−1)/(λ4 − xn−1) with coefficients A = r3r2
2 − r2

3(n
2 − n−

r2), B = −2r3r4(n2 −n− r2), C = r4r2
2 − r2

4(n
2 −n− r2). But, it is easy to verify that

B2 − 4AC > 0. Therefore the quadratic equation has two distinct real roots. Writing
λ3− xn−1 = y(λ4− xn−1) and substituting into (23), we obtain

(n2−n− r2)(xn−1 − xn−2)2 = (r3y
2 + r4)(λ4− xn−1)2.

At the same time, since y �= 0, we have λ4− xn−1 = y−1(λ3− xn−1) and

y2(n2−n− r2)(xn−1− xn−2)2 = (r3y
2 + r4)(λ3− xn−1)2.

Hence,

λ4 = xn−1±
√

n2−n− r2

r3y2 + r4
|xn−1− xn−2|,

λ3 = xn−1±|y|
√

n2−n− r2

r3y2 + r4
|xn−1− xn−2|.

Consequently,

λ4−λ3 =

√
n2−n− r2

r3y2 + r4
|xn−1−xn−2|(1−|y|) =−

√
n2−n− r2

r3y2 + r4
|xn−1−xn−2|(1+ |y|)

=

√
n2−n− r2

r3y2 + r4
|xn−1− xn−2|(1+ |y|) =

√
n2−n− r2

r3y2 + r4
|xn−1− xn−2|(|y|−1),

which is possible only in the case xn−1 = xn−2, λ3 = λ4 . Thus we get a contradiction
with Corollary 1 and complete the proof. �

In the same manner we prove

COROLLARY 6. There exists no non-trivial polynomial f of degree n � 5 with
only real roots, having five distinct zeros and sharing roots with its n−2nd and n−1st
derivatives.

Proof. Assuming its existence, it has the roots λ1 = xn−1, λ2 = xn−2 , λ3 = 2xn−1−
xn−2, λ4 and λ5 of multiplicities r j, j = 1,2,3,4,5, respectively. Hence

(n2−n− r2− r3)(xn−1− xn−2)2 = r4(λ4− xn−1)2 + r5(λ5 − xn−1)2.

Therefore using similar ideas as in the proof of Corollary 5, we come out again to the
contradiction. �

For an arbitrary number of distinct zeros we establish the following
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COROLLARY 7. There exists no non-trivial polynomial f of degree n with only
real roots, having k � 2 distinct zeros of multiplicities (2) r j, j = 1, . . . ,k and among
them all roots of f (m) for some m, satisfying the relations

r � m <
1
2

(
1− 1

r0

)
(n−1), (24)

where r, r0 are maximum and minimum multiplicities of roots of f .

Proof. In fact, as a consequence of (16) we have the identity

(n−m)(n−m−1)
n(n−1)

k

∑
j=1

r j(λ j − xn−1)2 =
n−m

∑
j=1

(ξ (m)
j − xn−1)2 (25)

for some m , satisfying condition (24). Hence, since m � r , it has n−m � k− 2 and

ξ (m)
j = λmj , mj ∈ {1, . . . ,k}, j = 1, . . . ,n−m are simple roots of f (m) . Thus we find

n−m

∑
j=1

[
rmj

(n−m)(n−m−1)
n(n−1)

−1

]
(λmj − xn−1)2

+
(n−m)(n−m−1)

n(n−1)

k

∑
j=n−m+1

rmj (λmj − xn−1)2 = 0.

But, owing to condition (24)

rmj

(n−m)(n−m−1)
n(n−1)

−1 � r0
(n−m)(n−m−1)

n(n−1)
−1 � 0, j = 1, . . . ,n−m.

Indeed, we have from the latter inequality

m � n− 1
2
−
√

n2−n
r0

+
1
4

and, in turn,

n− 1
2
−
√

n2−n
r0

+
1
4

=
2(1− r−1

0 )(n2 −n)

2n−1+
√

4(n2−n)r−1
0 +1

� (1− r−1
0 )(n2 −n)
2n−1

>
1
2

(
1− 1

r0

)
(n−1).

Therefore λ j = xn−1, j = 1, . . . ,k and this contradicts to the fact that all roots are
distinct. �

Finally, in this section, we will employ identities (17) to prove an analog of the
Obreshkov- Chebotarev theorem for multiple roots (see [5], Theorem 6.4.3), involving
estimates for smallest and largest of distances between consecutive zeros of polynomi-
als and their derivatives. Namely, it has



POLYNOMIAL PROBLEMS OF THE CASAS-ALVERO TYPE 109

THEOREM 2. Let f be a polynomial of degree n > 2 with only real zeros. De-
note the largest and the smallest of the distances between consecutive zeros of f by Δ
and δ , respectively. Denoting the corresponding quantities associated with f (m), m =
1,2, . . . , n−2 by Δ(m) and δ (m) , the following inequalities hold

δ (m) � Δ
rk
n

√
k2−1

(n−m+1)(n−1)
, (26)

δ
r0k
n

√
k2−1

(n−m+1)(n−1)
� Δ(m), (27)

δ
r0k
2n

√
k2 −1

3(n−1)
� |xn−1− xn−2| � Δ

rk
2n

√
k2−1

3(n−1)
, (28)

where r0, r are minimum and maximum multiplicities of roots of f , respectively, and
k � 2 is a number of distinct roots.

Proof. Following similar ideas as in the proof of Theorem 6.4.3 in [5], we assume
distinct roots of f in the increasing order and roots of its m-th derivative in the non-
decreasing order, and taking the second identity in (17), we deduce

[δ (m)]2

(n−m)2(n−m−1) ∑
1� j<s�n−m

(s− j)2 � [Δr]2

n2(n−1) ∑
1� j<s�k

(s− j)2.

Hence, in view of the value of the sum

∑
1� j<s�q

(s− t)2 =
1
12

q2(q2−1),

after simple manipulations we arrive at the inequality (26). In the same manner (cf. [5])
we establish inequalities (27), (28), employing Sz.-Nagy type identities (17). �

4. Laguerre type inequalities

In 1880 Laguerre proved his famous theorem for polynomials with only real roots,
which provides their localization with upper and lower bounds (see details in [5]). Pre-
cisely, we have the following Laguerre inequalities

xn−1− (n−1) |xn−1− xn−2| � wj � xn−1 +(n−1) |xn−1− xn−2| , j = 1, . . . ,n,

where wj are roots of the polynomial f of degree n and xn−1, xn−2 are roots of
f (n−1), f (n−2) , respectively. First we prove an analog of the Laguerre inequalities for
multiple roots.
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LEMMA 3. Let f be a polynomial with only real roots of degree n ∈ N , hav-
ing k distinct roots λ j, j = 1, . . . ,k of multiplicities (2) and xn−1, xn−2 be roots of
f (n−1), f (n−2) , respectively. Then the following Laguerre type inequalities hold

xn−1−
√

(n− r j)(n−m−1)
r j −m

|xn−1− xn−2| � λ j

� xn−1 +

√
(n− r j)(n−m−1)

r j −m
|xn−1− xn−2| , (29)

where j = 1, . . . ,k, m = 0,1, . . . ,r j −1.

Proof. In fact, appealing to the Sz.-Nagy type identities (15), (16) and the Cauchy
-Schwarz inequality, we find

(xn−1− xn−2)2 =
1

(n−m)(n−m−1)

[
n−m

∑
s=1

(ξ (m)
s −λ j)2 − (n−m)(xn−1−λ j)2

]

� 1
(n−m)(n−m−1)

⎡
⎣ 1

n− r j

(
n−m

∑
s=1

(ξ (m)
s −λ j)

)2

− (n−m)(xn−1−λ j)2

⎤
⎦

=
r j −m

(n− r j)(n−m−1)
(xn−1−λ j)2 , m = 0,1, . . . ,r j −1,

which yields (29). �
As a corollary we improve the Laguerre inequality (28) for multiple roots.

COROLLARY 8. Let f be a polynomial with only real roots of degree n∈N . Then
the multiple zero λ j of multiplicity r j � 1, j = 1, . . . ,k lies in the interval

[
xn−1−

√(
n
r j

−1

)
(n−1)|xn−1− xn−2| , xn−1 +

√(
n
r j

−1

)
(n−1)|xn−1− xn−2|

]
.

(30)

Proof. Indeed, the fraction
(n−r j)(n−m−1)

r j−m attains its minimum value, letting m = 0

in (29). �
REMARK 3. When all roots are simple, the latter interval coincides with the one

generated by (28).
A localization of roots of the m-th derivative f (m), m = 0,1, . . . ,n−2 is given by

LEMMA 4. Roots of the m-th derivative f (m), m = 0,1, . . . ,n−2 satisfy the fol-
lowing Laguerre type inequalities

xn−1− (n−m−1) |xn−1− xn−2| � ξ (m)
ν � xn−1 +(n−m−1) |xn−1− xn−2| , (31)
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where ν = 1, . . . ,n−m.

Proof. Similarly to the proof of Lemma 3, we employ the Sz.-Nagy type identities
(15), (16) and the Cauchy -Schwarz inequality to deduce

(xn−1− xn−2)2 =
1

(n−m)(n−m−1)

[
n−m

∑
s=1

(ξ (m)
s − ξ (m)

ν )2 − (n−m)(xn−1− ξ (m)
ν )2

]

� 1
(n−m)(n−m−1)

⎡
⎣ 1

n−m−1

(
n−m

∑
s=1

(ξ (m)
s − ξ (m)

ν )

)2

− (n−m)(xn−1− ξ (m)
ν )2

⎤
⎦

=
1

(n−m−1)2

(
xn−1− ξ (m)

ν

)2
, m = 0,1, . . . ,n−2.

Thus we come up with (31) and complete the proof. �
When the root xn−1 = λ1 be in common with f of multiplicity r1 , we have

LEMMA 5. Let f be a polynomial with only real roots of degree n � 2 and xn−1 =
λ1 be a common zero with f of multiplicity r1 , having k � 2 distinct roots λ j of
multiplicities r j, j = 1, . . . ,k . Then the following Laguerre type inequalities hold

xn−1−
√(

1
rs
− 1

n− r1

)
(n2−n) |xn−1− xn−2| � λs � xn−1

+

√(
1
rs
− 1

n− r1

)
(n2−n) |xn−1− xn−2| , (32)

where s = 2, . . . ,k.

Proof. In the same manner we involve the first Sz.-Nagy type identity in (15) with
z = λs , which can be written in the form

(n− r1)(xn−1 −λs) =
k

∑
j=2

r j(λ j −λs).

Hence squaring both sides of the latter equality and appealing to the Cauchy -Schwarz
inequality, we derive by virtue of (16)

(n− r1)2(xn−1−λs)2 =

(
k

∑
j=2

r j(λ j −λs)

)2

� (n− r1− rs)
k

∑
j=2

r j(λ j −λs)2

= (n− r1− rs)
[
(n2−n)(xn−1− xn−2)2 +(n− r1)(xn−1−λs)2] .
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Thus after simple calculations we easily arrive at (32). �
REMARK 4. Inequalities (27) are sharper than the corresponding relations, gener-

ated by interval (30).
The following result gives a Laguerre type localization for common roots of a

possible CA-polynomial with only real roots and its m-th derivative.

LEMMA 6. Let f be a CA-polynomial of degree n � 2 with only real distinct
zeros of multiplicities (2) , including common roots xn−1 = λ1 of its n−1st derivative
and xm of its m-th derivative, m = r,r + 1, . . . ,n− 2 , where r = max1� j�k(r j) . Then
the following Laguerre type inequality holds

n− r1− rkm

(n− r1)2

(
n2− r1 +(n− r1)(n−m)(n−m−2)

)
(xn−1− xn−2)2 � (xn−1− xm)2,

(33)
where xn−2 is a root of f (n−2) and rkm is the multiplicity of xm as a root of f .

Proof. Appealing again to Sz.-Nagy type identities (15), (16) with z = xm , in-
equality (31) and the Cauchy-Schwarz inequality, we find

(xn−1− xn−2)2 =
1

n(n−1)

[
k

∑
j=2

r j(λ j − xm)2 − (n− r1)(xn−1− xm)2

]

� 1
n(n−1)

[
k

∑
j=2

r j(λ j − xm)2− (n− r1)(n−m−1)2(xn−1− xn−2)2

]

� 1
n(n−1)

⎡
⎣ 1

n− r1− r jm

(
k

∑
j=2

r j(λ j − xm)

)2

− (n− r1)(n−m−1)2(xn−1− xn−2)2

⎤
⎦

=
n− r1

n(n−1)

[
n− r1

n− r1− r jm
(xn−1− xm)2 − (n−m−1)2(xn−1− xn−2)2

]
.

Hence, making straightforward calculations, we derive (33), completing the proof of
Lemma 6. �

Let us denote by d, d(m), D,D(m) the following values

d = min2� j�k|λ j − xn−1|, d(m) = min1� j�n−m|ξ (m)
j − xn−1|, (34)

D = max
2� j�k

|λ j − xn−1|, D(m) = max
1� j�n−m

|ξ (m)
j − xn−1|, (35)

and by
span( f ) = λ ∗ −λ∗,

where
λ ∗ = max

1� j�k
(λ j), λ∗ = min1� j�k(λ j)

are roots of f with multiplicities r∗, r∗ , respectively. Then D(m+1) � D(m) � D and
(cf. [5]) span( f (m+1)) � span( f (m)) � span( f ) , where span( f (m)) is the span of the m-
th derivative. Moreover, the strict inequalities D(m) < D , span( f (m)) < span( f ) hold
when m is sufficiently large.
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LEMMA 7. Let xn−1 = λ1, xn−2 = λ2 be common roots of f with its n− 1st,
n− 2nd derivatives, respectively, of multiplicities r1,r2 as roots of f , and the maxi-
mum distance D (see (35)) be attained at the root λs0 , s0 ∈ {3, . . . ,k}, k � 3 of f of
multiplicity rs0 . Then the following inequalities hold√

n2−n− r2

n− r1− r2
|xn−1− xn−2| � D �

√
n2−n− r2

rs0
|xn−1− xn−2| , (36)

1
2

√
rs0

3(n− r1)

(
5+

r2

n2−n− r2

)
span( f ) � D

�
√

1
n− r1

[
n− r1− rs0

4

(
5+

r2

n2−n− r2

)]
span( f ). (37)

Proof. In order to establish (36), we employ identities (16) and under condition of
the lemma we write

(n2−n− r2)(xn−1− xn−2)2 =
k

∑
j=3

r j(λ j − xn−1)2 � (n− r1− r2)D2.

Since n > r1 + r2 and xn−2 �= λs0 (otherwise f is trivial, because equalities xn−2 =
λs0 = λ ∗ or xn−2 = λs0 = λ∗ mean that the maximum multiplicity r > n− 2, and we
appeal to Corollary 3), we come up with the lower bound (36) for D . The lower bound
comes immediately from the estimate

(n2−n− r2)(xn−1− xn−2)2 =
k

∑
j=3

r j(λ j − xn−1)2 � rs0D
2.

Now, since 2D � span( f ) , we find from (36)

span( f ) � 2

√
n2−n− r2

rs0
|xn−1− xn−2| .

Hence, since D = max(|λ ∗ − xn−1|, |λ∗ − xn−1|) , the n−2nd derivative has roots xn−2

and 2xn−1−xn−2 and span( f ) = D+Λ , where Λ = min(|λ ∗ − xn−1|, |λ∗ − xn−1|) , we
appeal to the first identity in (16), letting z = λs0 and writing it in the form

(n− r1)(xn−1−λs0)
2 =

k

∑
j=2

r j(λ j −λs0)
2 −n(n−1)(xn−1− xn−2)2.

Therefore,

(n− r1)D2 �
[
n− r1− 5

4
rs0 −

rs0r2

4(n2−n− r2)

]
[span( f )]2
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and we establish the upper bound (37) for D . On the other hand span( f ) = D+Λ . So,

D2 �
(

1− rs0

4(n− r1)

(
5+

r2

n2−n− r2

) )(
D2 + Λ2 +2DΛ

)
and we easily come out with the lower bound (37) for D , completing the proof of
Lemma 7. �

LEMMA 8. Let xn−1 = λ1,xn−2 = λ2 be common roots of f with its n− 1st,
n−2nd derivatives of multiplicities r1,r2, r1 + r2 < n, respectively. Then we have the
following lower bound for span( f )

span( f ) �

√
n2− r1

n− r1− r2
|xn−1− xn−2|. (38)

Proof. Indeed, identities (16) with z = xn−2 yield

(n2− r1)(xn−1− xn−2)2 =
k

∑
j=3

r j(λ j − xn−2)2

and we derive

(n2− r1)(xn−1− xn−2)2 � (n− r1− r2)[span( f )]2,

which implies (38). �
Next, we establish an analog of Lemma 5 for roots of derivatives. Precisely, we

have

LEMMA 9. Let xn−1, xn−2 be roots of the n− 1st, n− 2nd derivatives of f ,
respectively. Then

D(m) �
√

n−m−1 |xn−1− xn−2|, (39)

where m ∈ {r,r + 1, . . . ,n− 2}, r = max1� j�k(r j). Besides, if xn−1 is a root of f (m) ,
then we have a stronger inequality

D(m) �
√

n−m |xn−1− xn−2|. (40)

Moreover,

2 D(m) � span( f (m)) � n−m
n−m−1

D(m). (41)

and if xn−1 is a root of f (m) , it becomes

2 D(m) � span( f (m)) �
√

(n−m)(n−m−1)+1
(n−m−1)(n−m−2)

D(m), (42)

where m ∈ {r,r+1, . . . ,n−3}.
Proof. In fact, since (see (16))

(n−m)(n−m−1)(xn−1− xn−2)2 =
n−m

∑
j=1

(ξ (m)
j − xn−1)2 � (n−m)

[
D(m)

]2
,
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we get (39). Analogously, we immediately come out with (40), when xn−1 is a root
of f (m) , because one element of the sum of squares is zero. In order to prove (41), we

appeal again to (16), letting z = ξ (m)
s0 , s0 ∈ {1,2, . . . ,n−m} , m ∈ {r,r+1, . . . ,n−2} ,

r = max1� j�k(r j) , which is a root of f (m) , where the maximum D(m) is attained. Hence
owing to Laguerre type inequality (31)

(n−m)
[
D(m)

]2
� (n−m−1)[span( f (m))]2 − n−m

n−m−1

[
D(m)

]2
,

which leads to the lower bound for span( f (m)) in (41). The upper bound is straightfor-
ward since xn−1 belongs to the smallest interval containing roots of f (m) . In the same
manner we establish (42), since in this case

(n−m−1)
[
D(m)

]2
� (n−m−2)[span( f (m))]2− n−m

n−m−1

[
D(m)

]2
. �

REMARK 5. The case m = n− 2 gives equalities in (39), (41). Letting the same
value of m in (40), we easily get a contradiction, which means that the only trivial
polynomial is within polynomials with only real roots, whose derivatives f (n−2), f (n−1)

have a common root (see Corollary 1).

5. Applications to the Casas-Alvero conjecture

In this final section we will discuss properties of possible CA-polynomials, which
share roots with each of their non-constant derivatives. We will investigate particular
cases of the Casas-Alvero conjecture, especially for polynomials with only real roots,
showing when it holds true or, possibly, is false.

We begin with

PROPOSITION 1. The Casas-Alvero conjecture holds true, if and only if it is true
for common roots {zν}n−1

0 lying in the unit circle.

Proof. The necessity is trivial. Let’s prove the sufficiency. Let the conjecture be
true for common roots {zν}n−1

0 of a complex polynomial f and its non-constant deriva-
tives, which lie in the unit circle. Associating with f an Abel-Goncharov polynomial
Gn (6), one can choose an arbitrary α > 0 such that |zν | < α−1, ν = 0,1, . . . ,n− 1.
Hence owing to (7)

f (αzν )= Gn (αz0,αzν ,αz1, . . . ,αzn−1)= αnGn(zν )= αn f (zν )= 0, ν = 0,1, . . . ,n−1,

and

f (ν)
n (αz)= n!

dν

dzν

∫ αz

αz0

∫ s1

αz1
. . .
∫ sn−1

αzn−1

dsn . . .ds1 = n!αν
∫ αz

αzν

∫ sν+1

αzν+1

. . .
∫ sn−1

αzn−1

dsn . . .dsν+1,

we find f (ν)
n (αzν ) = 0. Hence αzν , ν = 0,1, . . . ,n− 1 are common roots of ν -th

derivatives f (ν) and f , lying in the unit circle. Consequently, since via assumption
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the Casas-Alvero conjecture is true when common roots are inside the unit circle, we
have that f is trivial and z0 = z1 = . . . = zn−1 = a is a unique joint root of f of the
multiplicity n . Proposition 1 is proved. �

The following lemma will be useful in the sequel.

LEMMA 10. Let f be a CA-polynomial with only real roots of degree n � 2 and
{xν}n−1

0 be a sequence of common roots of f and the corresponding derivatives f (ν) .
Let f (s+ν)(xν) � 0, s = 1,2, . . . ,n−ν−1 and ν = 0,1, . . . ,n−1 . Then xν is a maximal
root of the derivative f (ν) .

Proof. In fact, the proof is an immediate consequence of the expansion (12), where
we let Gn(x) = f (x) . Indeed, f (ν)(xν )= 0,ν = 0,1, . . . ,n−1 and when x > xν we have
from (12) f (ν)(x) > 0,ν = 0,1, . . . ,n−1. So, this means that there are no roots, which
are bigger than xν . This completes the proof of Lemma 10. �

PROPOSITION 2. Under conditions of Lemma 10 the Casas-Alvero conjecture
holds true for polynomials with only real roots.

Proof. We will show that under conditions of Lemma 10 there exists no CA-
polynomial f with only real roots. Indeed, assuming its existence, we find via con-
ditions of the lemma that the root x0 is a maximal zero of f (x) . This means that
x0 � x1 . On the other hand, the classical theorem of Rolle states that between zeros
x0, x1 in the case x0 > x1 there exists at least one zero of the derivative f (1)(x) , say

ξ (1)
1 , which is bigger than x1 . But this is impossible because x1 is a maximal zero of the

first derivative. Thus x0 = x1 � x2 . Then between x1 and x2 in the case x1 > x2 there
exists a zero ξ (1)

2 of the first derivative such that x1 > ξ (1)
2 > x2 . Hence between x1

and ξ (1)
2 there exists at least one zero of the second derivative, which is bigger than x2 .

But this is impossible, since x2 is a maximal zero of f (2)(x) . Therefore x0 = x1 = x2 .
Continuing this process we observe that the sequence {xν}n−1

0 is stationary and f has
a unique joint root, which contradicts the definition of the CA-polynomial. �

COROLLARY 9. There exists no CA-polynomial f with only real roots, having
a non-increasing sequence {xν}n−1

0 of roots in common with f and its non-constant
derivatives.

Proof. Obviously, via (13) f (s+ν)(xν) � 0, s = 1,2, . . . ,n−ν −1 and conditions
of Lemma 10 are satisfied. �

COROLLARY 10. There exists no CA-polynomial f with only real roots, such
that each xν in the sequence {xν}n−1

0 is a maximal root of the derivative f (ν)(x), ν =
0,1, . . . ,n−1 .

Proof. The proof is similar to the proof of Proposition 2. �
An immediate consequence of Corollaries 3,4,5 is



POLYNOMIAL PROBLEMS OF THE CASAS-ALVERO TYPE 117

COROLLARY 11. The CA-polynomial, if any, with only real roots has at least 5
distinct zeros.

Let us denote by l(m) the number of distinct roots of the m-th derivative f (m), m =
0,1, . . . ,n−2, which are in common with f and different from λ1 = xn−1 , which is a
common root with f (n−1) , i.e. the m-th derivative f (m) has l(m) common roots with
f

λ j1 , . . . ,λ jl(m) ⊆ {λ2,λ3, . . . , λk}
of multiplicities

r j1 , . . . ,r jl(m) ⊆ {r2,r3, . . . , rk}.
For instance, l(0) = k−1, l(1) = k−1− s , where s is a number of simple roots of f .
So, we see that n−m � l(m) � 0 and since f is a CA-polynomial, l(m) = 0 if and
only if xn−1 = λ1 is the only common root of f with f (m) .

LEMMA 11. There exists no CA-polynomial with only real roots, having the prop-
erty l(m) = l(m+1) = 0 for some m ∈ {r,r+1, . . . ,n−2}, where r = max1� j�k(r j) .

Proof. In fact, as we saw above, since all roots are real, it follows that all roots of
f (m), m � r are simple, which contradicts equalities l(m) = l(m+1) = 0. Indeed, the
latter equalities yield that xn−1 is a multiple root of f (m) . Therefore r � r1 > m+1 �
r+1, which is impossible. �

Further, as in Lemma 7 we involve the root λs0 of multiplicity rs0 , and D =
|λs0 − xn−1| (see (35)). Thus λs0 = λ∗ or λs0 = λ ∗ and, correspondingly, rs0 = r∗ or
rs0 = r∗ . Hence, calling Sz.-Nagy identities (15), we let z = xn−1 and assume without
loss of generality that λs0 = λ ∗ . Then we obtain for m � r

r∗(xn−1−λ∗) = r∗D+
k

∑
j=2, r j �=r∗, r∗

r j(λ j−xn−1) � r∗D−D(m)
l(m)

∑
s=1

r js −D(m+1)
l(m+1)

∑
s=1

rls

−
(

n− r1− r∗− r∗ −
l(m)

∑
s=1

r js −
l(m+1)

∑
s=1

rls

)
D.

But xn−1−λ∗ = span( f )−D . Therefore,

r∗span( f )+ (n− r1−2(r∗+ r∗))D � (D−D(m))
l(m)

∑
s=1

r js +(D−D(m+1))
l(m+1)

∑
s=1

rls .

The right-hand side of the latter inequality is, obviously, greater or equal to

r0 (l(m)+ l(m+1))(D−D(m)),

where 1 � r0 = min1� j�k(r j) . Moreover, since span( f ) � 2D , the left-hand side does
not exceed (n− r1)D− r∗span( f ) . Thus we come up with the inequality

r0 (l(m)+ l(m+1))(D−D(m)) � (n− r1)D− r∗span( f )
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or since D−D(m) > 0 (m � r ), it becomes

l(m)+ l(m+1) � (n− r1)D− r∗span( f )
r0(D−D(m))

. (43)

Meanwhile, appealing to (16), we get similarly

n(n−1)(xn−1− xn−2)2 = r∗D2 + r∗(λ∗ − xn−1)2 +
k

∑
j=2, r j �=r∗, r∗

r j(λ j − xn−1)2

� r∗D2 + r∗ (span( f )−D)2 +
[
D(m)

]2 l(m)

∑
s=1

r js +
[
D(m+1)

]2 l(m+1)

∑
s=1

rls

+

(
n− r1− r∗ − r∗ −

l(m)

∑
s=1

r js −
l(m+1)

∑
s=1

rls

)
D2.

Therefore, analogously to (43), we arrive at the inequality

l(m)+ l(m+1)� (n− r1)D2 + r∗ [span( f )]2 −n(n−1)(xn−1− xn−2)2 −2Dr∗ span( f )

r0(D2 − [D(m)
]2) .

PROPOSITION 3. There exists no CA- polynomial with only real roots of degree n
such that

span( f ) > (r∗)−1
[
(n− r1− r0)D+ r0D

(m)
]
, m � r. (44)

Proof. Under condition (44), the right-hand side of (43) is less than one. Thus
l(m) = l(m+1) = 0 and Lemma 11 completes the proof. �

Let m = n−2. Then since l(n−1) = 0, inequality (43) becomes

l(n−2) � (n− r1)D− r∗span( f )
r0(D−|xn−1− xn−2|) . (45)

PROPOSITION 4. There exists no CA- polynomial with only real roots of degree n
such that

D <

⎡
⎣r∗

√
n2− r1

n− r1− r2
− r0

⎤
⎦ |xn−1− xn−2|

n− r1− r0
. (46)

Proof. Indeed, employing the lower bound (38) for span( f ) , we find that under
condition (46) the right-hand side of (45) is strictly less than one. Consequently, l(n−
2)= 0 and owing to Corollary 1 f is trivial. If the maximum of multiplicities r > n−2,
f has at most 2 distinct zeros and it is trivial via Corollary 3. �

Finally, we prove
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PROPOSITION 5. Let CA-polynomial with only real roots exist. Then it has the
property

d
D

�
√

2(n−m−1)
2(k−1)−1

, (47)

where d,D are defined by (34),(35) , respectively, and m, m+1 belong to the interval[
r, 1

2

(
1− 1

r0

)
(n−1)

)
.

Proof. Since m, m+1 are chosen from the interval
[
r, 1

2

(
1− 1

r0

)
(n−1)

)
, con-

dition (24) holds for these values. Hence assuming the existence of the CA-polynomial,
we return to the Sz.-Nagy type identity (25) to have the estimate

0 � l(m)
(

r0
(n−m)(n−m−1)

n(n−1)
−1

)
d2 +(k−1− l(m))d2− (n−m− l(m))D2

� (k−1)d2− (n−m)D2 + l(m)(D2−d2).

Writing the same inequality for m+1

0 � (k−1)d2− (n−m−1)D2+ l(m+1)(D2−d2)

and adding two inequalities, we find

0 � 2(k−1)d2− (2(n−m)−1)D2+(l(m)+ l(m+1))(D2−d2),

which means

l(m)+ l(m+1) � (2(n−m)−1)D2−2(k−1)d2

D2−d2 .

So, for the existence of the CA-polynomial it is necessary that the right-hand side of
the latter inequality is greater than or equal to 1. Thus we come up with condition (47)
and complete the proof. �
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