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ZEROS OF CERTAIN POLYNOMIALS AND ANALYTIC
FUNCTIONS WITH RESTRICTED COEFFICIENTS

IRSHAD AHMAD, TAWHEEDA RASOOL AND ABDUL LIMAN

Abstract. In this paper, we consider the problem of finding the number of zeros of a special class
of polynomial functions and functions analytic in a prescribed region by subjecting the real and
imaginary parts of its coefficients to certain restrictions.

1. Introduction and statement of results

If P(z) = Y, aq,'zj is a polynomial of degree n such that
j=0

ap 2 ap_1 2 ap2 2 ... 2 a1 =ay >0,

then P(z) has all zeros in the closed unit disc. This famous result is known as Enestrom-
Kakeya theorem (see [5, 6, 8]). In the literature [1, 3, 9] there exist extensions and
generalizations of Enestrom-Kakeya theorem. By using Schwartz lemma, Aziz and
Mohammad [1] generalized Enestrom-Kakeya theorem in a different way and proved
the following:

n .
THEOREM A. If P(z) = ¥ a;z/ is a polynomial of degree n with positive and

j=0
real coefficients. If t| >t > 0 can be found such that

atitry+a—1(h—n)—a— =20, r=12,....n+1, a1=a,41=0
then all the zeros of P(z) liein |z| < 11.
n .
Regarding the number of zeros in |z| < % of the polynomial P(z) = ¥ a;z/, Mo-
j=0

=
hammed [7] proved the following.

n .
THEOREM B. If P(z) = ¥ a;z’ is a polynomial of degree n such that
J=0
An 2 dp—1 2 ap2 2 ... 2 a1 = ap >0,
then the number of zeros of P(z) in |z| < § does not exceed

1 a,
14+ ——1log—.
+ 3 og

log aop

Dewan [2] generalized Theorem A to polynomials with complex coefficients and
proved the following result:
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n .
THEOREM C. If P(z) = X a;z’ is a polynomial of degree n with complex coeffi-
J=0
cients if Reaj = oj, Imaj=B;, j=0,1,2,...n and
Oy 2 Oy 2 Op2 2 ... 2 04 =0 >0,

then the number of zeros of P(z) in |z| < % does not exceed

n
o+ Y |Bjl
Jj=0

1 1
Tlog2 ¥ ag

Upadhye [11] gave a generalization of Theorem C for the region |z] < 8, 0 < <
1. In fact, she proved the following:

n .
THEOREM D. If P(z) = ¥ a;z’ is a polynomial of degree n with complex coeffi-
j=0
cients if Reaj = oj, Imaj=B;, j=0,1,2,...,n and for some k > 1
kOt 2 01 20 22> ...2 01 20 >0,

then the number of zeros of P(z) in in % <zl €6, 0< 0 < 1 does not exceed
n
| k(lan\+an)+|ao\—om+2Zo\ﬁj\
j:

1+ i
log 5

!
o8 0]

where

n
My = k(|ow| + om) +|Bol — 00 +2 3, [Bj].
j=1

In this paper, we relax the restriction on the coefficients of polynomial and prove
the more general result from which the other results follows by fairly uniform proce-
dure.

n .

THEOREM 1. If P(z) = Y a;z’/ is a polynomial of degree n with complex coeffi-

J=0
cients such that
|an| < lan—1] < ... < g < M| = 1] = .. = |ar| = laol,
where 0 < k < n and for some real 3,
T .
|arga;— Bl < < Z, j=0,1,2,....m,

then the number of zeros of P(z) in |z| < § does not exceed

n—1
22 |ag| cos o4-2|A —1||ay| sin o+|an | (sina—cos o+1)+2sinor 3 |aj[+2[1-A||a|
j=0

1
Tog2 108 Tao]

With A =1 in Theorem 1, we have
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COROLLARY 1. If P(z) = i a;z’ is a polynomial of degree n with complex co-
efficients such that =
|an| < lan—1| < ... <lag| <lagl 2 lag—1| = ... = |ai| 2 |aol,
where 0 < k < n and for some real 3,
larga; — B| < a < g, j=0,1,2,...

then the number of zeros of P(z) in |z| < % does not exceed

n—1
2]ay|cos o+ |ay|(sino —cos ot + 1) 4+ 2sina ¥, |aj]
j=0

log

log2 |aol

REMARK 1. For A =1, k=n and oo = § = 0 and assume all the coefficients to
be positive in Theorem 1, we obtain Theorem B.

n .
THEOREM 2. If P(z) = Y a;z’/ is a polynomial of degree n with complex coeffi-
j=0
cients such that
|an| < lan—1] < ... <lag| < M| = 1] = .. = |ar| = laol,

where 0 < k <n— 1 and for some real B,
T
|argaj_ﬁ|< (Xg 57 j:O71727"'7

then all the zeros of P(z) lie in

1

n-1 < —{ZMakcosa—i-Z?L — 1]ag|sin o — |a,—1|(sin o + cos @)
an

‘z+ -1

dn
n—1
+2sinet Y |aj| — |ao|(sin o+ cosar — 1) +2|1 —7L|ak|}.

J=0

We now turn to study the zeros of certain related analytic functions and in this
direction we prove the following.

THEOREM 3. Let f(z) = ¥, a;z’ (not identically zero) be analytic in |z| < 1. If
j=0
Reaj=oj and Imaj=B;, j=0,1,2,...,n and for some finite k,
O0<op< o é...glak>ak+1 = ...

with A > 1, then the number of zeros of f(z) in |z| < § does not exceed

Ao+ (A — 1) o] + Eom,»\

1
" log2 o]

With A =1 in Theorem 3, we have
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COROLLARY 2. If f(z) = ¥ a;z/ be analytic in |z| < 1. If Rea; = o and
J=0
Imaj=B;, j=0,1,2,...,n and for some finite k,

O<op<o <...<o 2041 2.

then the number of zeros of f(z) in |z| < % does not exceed

o + '20 1Bj
1 =
Tlog2 ) T al
2. Lemma

For the proof of some these results we need the following lemma which is due to
Govil and Rahman [4].

LEMMA. For any two complex numbers by and by such that |by| > |by| and

larg bj—B|< a< 5, j=0,1

SIS

for some real B, then

|bo — b1| < (Jbo| — |b1]) cos o+ (|bo| + |b1|) sin c.

3. Proof of theorems
Proof of Theorem 1. Consider the polynomial

F(z) = (1-2)P(2)
= (1—2) (and" +an12" ' + ...+ arz+ap)

= —a, 7" (ap—ap 1)+ A+ (ag—ar_ )+ ...+ (ay—ay) 2+ (a1 —ag) z+ap.

Therefore for |z| = 1 we have

IF(2)| < |an| + |an—an—1]+ ... + a1 — ax| + lax — ax—1| + ... + a1 — ao| + |ao|
= |an| + |an — an—1|+ ... + |axe1 — Aax + Aag — a| + |ax — Aag + Lag — ag—1|
+... 4+ |ay — ao| + |ao|
< Jan| + lan — an—1| + ..+ a1 — Aa| + [Aag — ax—1 |+ 2|1 — A|ay
+...+|ay — ao| + |ao].
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Using above lemma, we have

|F(2)] < |an] +2|1 —Allar] + (|an—1| — |an|) cos ot + (|ay—1] + |an|) sina
+(lan—2| — |an—1|)cos ...
+(lan—2| + lan—1]) sina + (Aa| — |agi1]) cos o + (Alax| + |a41]) sin e
+(Aag| — |ag—1]|)cosa+ (Alag| + |ag—1|) sinoc + ... + (|az| — |a1)|cos &
+(laz| + |ar|) sinoc+ (|a| — |ao)| cos ot + (|a1| + |ao|) sin 0t + [ao|
= |ay| + 2|1 — A||ag| + |an| sin & — |a, | cos ot + 2|a, 1| sina + . .. + 2|, 1| sine
+24 ag|sin o+ 2A ag| cos o + ... + 2|ay| sin a + |ag| sin & — |ag| cos o + |ag|
n—1
= |an|(sino — cos o+ 1) + 2A|ax| cos o +2|A — 1||ag|sinot+ 2sinor Y. |y
j=0
—lao|(cosat+sinar — 1) + 2|1 — A ||y
< an|(sinor —cos o + 1) + 24 |ag| cos o+ 2| A — 1]|a| sin o
n—1
+2siner Y |aj|+ 2|1 — A ||ay
Jj=0
=M.

Thus |F(z)] < M for |z] = 1. Also for |F(0)| = |ao| # 0.
Now it is known (see, [10, pp. 171]) that if f(z) is analytic, £(0) # 1 and |f(z)|
< M in |z < 1, then the number of zeros of f(z) in |z| < %, does not exceed
1 M

——log ———.
log2 £ T£(0)]

Thus, the number of zeros of F(z) in |z| < § does not exceed

n—1
2A |ag|cos o4-2|A —1]]ay| sin o+ |an | (sino—cos a+1)+2sinor ¥ [a;[+2[1—-A |||

1 =0
log2

log

laol
As the number of zeros of P(z) in |z| < 1 is also equal to the number of zeros F(z) the

theorem follows. [

Proof of Theorem 2. Consider the polynomial

F(z) = (1—2)P(z)
= —a, "M (ap—an_1)"+..+(ag—ar—1) 4.+ (ay—ay )2 +(a1 —ag ) z+ag

Let |z] > 1, then 0 < k< n—1, we have

IF(2)] > land"™ = (an—an-1)2"| = [(an—1 — an-2)2" " + ..+ (a1 — ap) 2"
+(ag — ag_1)* + ...+ (a1 — ap)z+ ao|
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= |an?™ = (an—an_ 1) |~ (a1 —an_2)2" .. A (g — A+ Aag—ay) 2
+(ag + Aag — ar—y — Aa)?* + ...+ (a; — ag)z + ao|

> |and™ ta, 17— and| {Ian_1 —anol2" T o | — Aag [z

+|?t—1|ak|z|"“+|?tak—ak_1|z|k+|1—?t|ak|z|"+...+|a1—ao|zl+laol}

L1 —a Al A1
2 |2]"|anz+ an—1 — an| — {W + .t ak;rnk?” | |Z|nk|alk|
Aag—ar—y| | [1—Allax ai—ap| lao
+ R e L
|2+ T T

Using lemma and making use of the fact that ﬁ <1, j=1,2,...,n, we have

IF(2)| = [z]"|anz + an—1— an| — {(Ian—z —lan-1])cos o + (lan—2| + |an—1|) sina + ...
+(|Aar| —|ags1]) cos o+ (|Aar| 4 |ars1|) sin o + (|Aax| — |ax—1]) cos &

+([Aag| — |ag—1])sinoc + ...+ (Ja1| — |ao|) cos ot + (Ja1| — |ao|) sin &

Haol +2/1 - Ao
> |z|"lanz+an—1—an|— {2%|ak| cos 42| A —1]|ax| sin ot—|a, 1 |(sin a+cos )

4—2sinocni1 laj| — |ao|(sinot +cosor — 1) +2]1 —7L|ak} >0,
j=0
if
lanz + an—1 — an| > 2A|ag|cos ot + 2|4 — 1]|ay| sin o — |ap—1|(sin o + cos o)
4—2sinocni1 laj| — lao|(sinot +cosor — 1) +2[1 — A|]ay|.
J=0
Hence F(z) does not vanish in

ady—
|z+"1
a

1
-1 > —{Zl|ak|c0sa+2|7t— 1||ag| sin ot — |a,—1|(sin o + cos )
a

n n
n—1
+2sino Y. |aj| — |ao|(sina +cosa — 1) +2[1 —7L|ak}.
j=0
Therefore those zeros of F(z) whose modulus is greater than one lie in

ay—
|z+"1
a

1
-1 < —{ZAakcosa—i-Z?L— L||ag|sin ot — |a,—1|(sina + cos )

n dn

n—1
+2sino Y, |aj| — |ao|(sina +cosa — 1) +2[1 —7L|ak}. (1)
J=0
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But those zeros of F(z) whose modulus is less than or equal to one already (1). Hence
we conclude that all the zeros of F(z) and those of p(z) lie (1). This completes the
proof. [

Proof of Theorem 3. Consider the function

F(z)

(z—1)f(z) = (z— 1) (ap+a1z+arz® +azz’ + ...

=—ao+ Y (aj_1—a;)7.
=1

Hence for |z| =1

F(2)] < laol + Y, laj-1 —aj
=1
< (Jao| +1Bol) + D lotj—1 —aj| + Y, |Bj—1 — Byl
: b=

j=1

k oo [eS)
= (Jaol +[Bol) + X loj — 1|+ D, o1 — oyl + Y, |Bj—1— Bl
=1 =1

. j=k+1
< Joo| + | Bol + [on — o] + |0 — o | + ...+ [0g—1 — 02| + |0t — O—1

oo

+Hlog — 01|+ [ O 1 — Oega| + [Ok2 — O3 + ...+ Z(Iﬂj—l\ +1Bjl)
j=1

<o+ |Bol+ou—op+on—on+...+ 0 | — 2+ |0 — oy

+|0t — Ot |+ Okt — Or + O — O3+ ..+ X, (I1Bj—1| + |Bjl)
=

Oy + |0k — 01| + [0 — Ot | 4+ 01 +2 Y | Bjl
Jj=0

= (Xk_1+|06k—)L(Xk+l06k—OCk_1 \+|ak+?Lak—7Lak—ak+1 |+O€k+1+2 2 |ﬁj|
=0

O 1+ A o— 0yt [+ (A—1) o |+ | A o — o1 |+ (A — 1) | o[+ o 142 Y | Bj|
Jj=0

O 1+ A 0 — 01 +(A—1) 0|+ A 0 — 01 +(A— 1) [ o[+ 01 +2 Y, | B
Jj=0

= ZAOC]C—FZ()L - 1)‘061(‘ +22 |B,‘
=0

which implies that

A0 +2(A — Dol +2 5 B
oy P20l +2 3 18]

[F(0)]

<
|ao|
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Now it is known (see, [10, pp. 171]) that if g(z) is analytic, g(0) # 5 and [g(z)| < M
in |z| < 1, then the number of zeros of g(z) in |z| < § does not exceed

1 M

—1 .
log2 £ 17(0)]

Thus, the number of zeros of F(z) in |z < & does not exceed

2004 +2(A = 1)|oge| 42 Zolﬂj\
=

1
log2 | ® |ao
or equivalently
Ao+ (A =Dl + X |Bjl
1+ ! log /=0
log2 |

As the number of zeros of f(z) in |z| < § is also equal to the number of zeros F(z) the
theorem follows. [
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