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A MIXED PARSEVAL–PLANCHEREL FORMULA

OMRAN KOUBA

Abstract. In this note, a general formula is proved. It expresses the integral on the line of the
product of a function f and a periodic function g in terms of the Fourier transform of f and the
Fourier coefficients of g . This allows the evaluation of some oscillatory integrals.

1. Introduction and notation

In [6] the following integral was described as “difficult”:∫ ∞

−∞

dx(
cosha+ cosx

)
coshx

for a > 0, (1)

it was used to test the trapezoidal rule after transforming the integral using a “sinh”
transformation. Also, in [5] S. Tsipelis proposed to evaluate the following integral∫ ∞

−∞

log(cos2 x)
1+ e2|x| dx. (2)

Both integrals are of the form
∫
R

f (x)g(x)dx where g is a 2π -periodic function.
The particular case, where f is of the form x �→ 1/(x+ z) , (for some z ∈ C\R ,) was
thoroughly investigated in [3] using methods that are different from those discussed
here.

In this note, we prove a general formula, that allows us to express this kind of
integrals in terms of the Fourier transform of f and the Fourier coefficients of g .

Before we proceed, let us recall some standard notation. The spaces L1(R) ,
L2(R) , and L2,loc(R) are, respectively, the space of integrable functions, the space
of square integrable functions, and the space of locally square integrable functions on
R . The spaces L1(R) and L2(R) are equipped with the standard norms denoted ‖·‖1
and ‖·‖2 :

‖ f‖p =
(∫

R

| f (t)|p dt

)1/p

, for p = 1,2.

We consider also L1(T) , (resp. L2(T)), the space of integrable, (resp. square
integrable), 2π -periodic functions. The spaces L1(T) and L2(T) are equipped with
the standard norms denoted ‖·‖L1(T) and ‖·‖L2(T) and defined as follows:

‖ f‖Lp(T) =
(

1
2π

∫
T

| f (t)|p dt

)1/p

, for p = 1,2.
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For a function f ∈ L1(R) we recall that its Fourier transform f̂ is defined by

f̂ (ω) =
∫

R

f (t)e−iωt dt, for ω ∈ R .

And for a 2π -periodic function g ∈ L1(T) we recall that the exponential Fourier
coefficient Cn(g) of g is defined by

Cn(g) =
1
2π

∫
T

g(t)e−int dt, for n ∈ Z ,

In section 2 we will prove our main results and in section 3 we will give some
detailed examples and applications.

2. The main result

In this section we state and prove the main theorem.

THEOREM 1. (The mixed Parseval-Plancherel formula) Consider a function f from
L2,loc(R) , and a 2π -periodic function g from L2(T) . Suppose that

M( f ) def= ∑
k∈Z

∥∥1IIk f
∥∥

2 < +∞, (3)

where 1IIk is the characteristic function of the interval Ik = [2πk,2π(k+1)]. Then∫
R

f (x)g(x)dx = ∑
n∈Z

f̂ (n)Cn(g). (4)

where f̂ is the Fourier transform of f , and (Cn(g))n∈Z is the family of exponential
Fourier coefficients of g .

Proof. First, note that
∥∥1IIk f

∥∥
1 �

√
2π
∥∥1IIk f

∥∥
2 for every k ∈ Z . It follows that∫

R

| f (x)| dx = ∑
k∈Z

∥∥1IIk f
∥∥

1 �
√

2π M( f ) < +∞.

Thus, f belongs to L1(R) , and we can consider its Fourier transform. Similarly,∫
R

| f (x)g(x)| dx = ∑
k∈Z

∫
Ik
| f (x)g(x)| dx �

√
2π M( f )‖g‖L2(T) < +∞,

thus f g belongs also to L1(R) .
Now, let us consider the the family ( fk)k∈Z defined by fk(x)= f (x+2πk) . Clearly

‖1Im fk‖2 = ‖1Im+k f‖2 . Thus

∑
k∈Z

‖1Im fk‖2 = M( f ) < +∞
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and the series ∑k∈Z 1Im fk is normally convergent in L2(R) for every m ∈ Z . This
proves that the formula F = ∑k∈Z fk defines a function F that belongs to L2,loc(R) .
Moreover, this function is clearly 2π -periodic, and ‖F‖L2(T) � 1√

2π M( f ) . Now, the
classical Parseval’s formula, (see [2, Chap. I, §5.] or [4, Chap. 5, §3.],) implies that

1
2π

∫
T

F(x)g(x)dx = ∑
n∈Z

Cn(F)Cn(g). (5)

Using the fact that ∑n−1
k=−n 1II0 fk converges to 1II0F in L2(R) , and that 1II0g ∈ L2(R) ,

we conclude that ∫ 2π

0
F(x)g(x)dx = lim

n→∞

n−1

∑
k=−n

∫ 2π

0
fk(x)g(x)dx

= lim
n→∞

n−1

∑
k=−n

∫ 2π(k+1)

2πk
f (x)g(x)dx

=
∫

R

f (x)g(x)dx (6)

where, for the last equality, we used the fact that f g ∈ L1(R) .
Similarly,

2πCn(F) =
∫ 2π

0
F(x)e−int dx = lim

n→∞

n−1

∑
k=−n

∫ 2π

0
fk(x)e−int dx

= lim
n→∞

n−1

∑
k=−n

∫ 2π(k+1)

2πk
f (x)e−int dx

=
∫

R

f (x)e−int dx = f̂ (n) (7)

where we used again the fact that f ∈ L1(R) for the last equality. Replacing (6) and (7)
in (5), the desired formula follows. �

The next corollary is straightforward.

COROLLARY 1. Consider a function f from L2,loc(R) , and a T -periodic, square
integrable function g. Suppose that

MT ( f ) def= ∑
k∈Z

∥∥1I[kT,(k+1)T ] f
∥∥

2
< +∞, (8)

Then ∫
R

f (x)g(x)dx = ∑
n∈Z

f̂

(
2πn
T

)
Cn(g). (9)

where f̂ is the Fourier transform of f , and (Cn(g))n∈Z is the family of exponential
Fourier coefficients of g .
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3. Examples

EXAMPLE 1. For positive real numbers a and b , let g and f be the functions
defined by

g(x) =
1

cosha+ cosx
, f (x) =

1
cosh(bx)

,

It is known [1, Chap.I, §9] that f̂ (ω) = π
b f
( π

2bω
)
. Moreover, it is easy to note that for

every k ∈ Z we have
∥∥1IIk f

∥∥
2 � Be−2πb|k| for some absolute constant B .

Furthermore, it is easy to check that

g(x) =
1

sinha ∑
n∈Z

(−1)ne−|n|aeinx,

that is

Cn(g) =
(−1)ne−|n|a

sinha
, for n ∈ Z .

Applying Theorem 1, we obtain∫ ∞

−∞

dx
(cosha+ cosx)cosh(bx)

=
π

bsinha
+

2π
bsinha

∞

∑
n=1

(−1)ne−na

cosh(πn/(2b))

In particular, for b = 1, we obtain the following expression of the integral (1) as a
rapidly convergent series:∫ ∞

−∞

dx
(cosha+ cosx)coshx

=
π

sinha
+

2π
sinha

∞

∑
n=1

(−1)ne−na

cosh(πn/2)
.

This is a simpler alternative series expansion to the one given in [6].

EXAMPLE 2. In our second example, let g and f be the functions defined by

g(x) = log(cos2 x), f (x) =
1

1+ e2|x| .

It is easy to note that for every k ∈ Z we have
∥∥1IIk f

∥∥
2 � Be−2π |k| for some constant

B . Moreover,

f̂ (ω) = 2
∫ ∞

0

e−2x

1+ e−2x cos(ωx)dx

= 2
∞

∑
k=1

(−1)k−1
∫ ∞

0
e−2kx cos(ωx)dx

=
∞

∑
k=1

(−1)k−1 4k
4k2 + ω2 .

Further, since

g(x) = 2log
∣∣1+ e2ix

∣∣−2log2 = 2ℜLog(1+ e2ix)−2log2
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with Log being the principal branch of the logarithm, we conclude that for every n ∈ Z

we have

C2n+1(g) = 0, and C2n(g) =

{
(−1)n−1/ |n| if n �= 0,

−2log2 if n = 0.

Using Theorem 1, we obtain∫ ∞

−∞

log(cos2 x)
1+ e2|x| dx = ∑

n∈Z

f̂ (2n)C2n(g)

= −2log2
∞

∑
k=1

(−1)k−1

k
+2

∞

∑
n=1

(
∞

∑
k=1

(−1)k+n k
(k2 +n2)n

)
= −2log2 2+2J (10)

with

J =
∞

∑
n=1

(
∞

∑
k=1

(−1)k+n k
(k2 +n2)n

)
(11)

Now, this double series is not absolutely convergent, so we must be careful. First,
exchanging the roles of k and n we have

J =
∞

∑
k=1

(
∞

∑
n=1

(−1)k+nn
p(n2 + k2)

)

Now, using the properties of convergent alternating series we have

∞

∑
n=1

(−1)k+nn
k(n2 + k2)

=
q−1

∑
n=1

(−1)k+nn
k(n2 + k2)

+Rq(k),

with

Rq(k) =
(−1)k

k

∞

∑
n=q

(−1)nn
n2 + k2 and

∣∣Rq(k)
∣∣� 1

k
· q
k2 +q2

Thus

J =
q−1

∑
n=1

(
∞

∑
k=1

(−1)k+nn
k(n2 + k2)

)
+ εq (12)

with εq = ∑∞
k=1 Rq(k) and

εq �
∞

∑
k=1

q
k(k2 +q2)

.

Now, since

• q
k(k2 +q2)

� 1
2k2 for every q ,

• the series
∞

∑
k=1

1
2k2 is convergent,
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• and lim
q→∞

q
k(k2 +q2)

= 0 for every k ,

we conclude that lim
q→∞

εq = 0. So, letting q tend to +∞ in (12) we get

J =
∞

∑
n=1

(
∞

∑
k=1

(−1)k+nn
k(n2 + k2)

)
(13)

Taking the sum of the two expressions (11) and (13) of J we obtain

2J =
∞

∑
n=1

(
∞

∑
k=1

(−1)k+n

n2 + k2

(
n
k

+
k
n

))
=

∞

∑
n=1

(
∞

∑
k=1

(−1)k+n

nk

)
= (− log2)2 = log2 2.

Replacing back in (10) we obtain∫ ∞

−∞

log(cos2 x)
1+ e2|x| dx = − log2 2.

EXAMPLE 3. For positive real numbers a and b , let g and f be the functions
defined by

g(x) =
1

cosha− cosx
, f (x) = e−x2/(4b),

It is known [1, Chap.I, §4] that f̂ (ω) = 2
√

πb f (2bω) . Moreover,

Cn(g) =
e−|n|a

sinha
, for n ∈ Z .

Hence ∫
R

e−x2/(4b)

cosha− cosx
dx =

2
√

πb
sinha

(
1+2

∞

∑
n=1

e−an−bn2

)
In particular, for b = a we get

∫
R

e−x2/(4a)

cosha− cosx
dx =

2
√

πa
sinha

(
1+2

∞

∑
n=1

e−an(n+1)

)
=

2
√

πa
sinha

(ea/4ϑ2(0,e−a)−1),

where ϑ2(u,q) is one of the well-known Jacobi Theta functions [7, Chap. XXI].
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