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ON A FAMILY OF MULTIVARIABLE POLYNOMIALS

DEFINED THROUGH RODRIGUES TYPE FORMULA

ÖVGÜ GÜREL YILMAZ, RABIA AKTAŞ AND ABDULLAH ALTIN

Abstract. In this paper, we present a family of multivariable polynomials defined by Rodrigues
formula and we discuss their some miscellaneous properties such as generating function and
recurrence relation. We also derive various classes of multilateral generating functions for these
multivariable polynomials and give some special cases of the results. Furthermore, we also show
that some particular cases of the polynomials reduce to the products of Hermite and Laguerre
orthogonal polynomials with one variable.

1. Introduction

The concept of generating function is one of the most surprising and useful inven-
tions in Mathematics and other disciplines. It is a powerful tool for recurrence relations
which come up a lot in electrical engineering, circuit analysis, statistics, mathematics,
physics, geology and any other disciplines that use differential equations. Recently, sev-
eral families of multivariable polynomials defined via generating functions have been
introduced and their some properties have been studied in [2, 4, 5, 6, 9, 11, 14]. This
paper deals with finding a generating function for a family of multivariable polyno-
mials defined by Rodrigues formula and obtaining some recurrence relations for these
polynomials.

We recall that the classical Hermite polynomials Hn (x) of degree n are defined
by the Rodrigues formula

Hn (x) = (−1)n ex2 dn

dxn

(
e−x2

)
(1.1)

and the familiar orthogonality property is as follows

∞∫
−∞

e−x2
Hn (x)Hm (x)dx = 2nn!

√
πδm,n (1.2)

(m,n ∈ N0 := N∪∪∪∪{0})
where δm,n being the Kronecker delta. Laguerre polynomials Ln (x) of degree n are
defined by the Rodrigues formula

Ln (x) =
ex

n!
dn

dxn

(
e−xxn) , (1.3)
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and these polynomials hold the following orthogonality relation

∞∫
0

e−xLn (x)Lm (x)dx = δm,n; m,n ∈ N0. (1.4)

As a generalization of Rodrigues formulas given by (1.1) and (1.3), in [1], the
authors defined a family of polynomials defined through Rodrigues formula:

φk+n(m−1) (x) = eϕm(x) dn

dxn

(
ψk (x)e−ϕm(x)

)
(1.5)

where φk+n(m−1) (x) is a polynomial of degree k+n(m−1) , n = 0,1,2, ... and, ψk (x)
and ϕm (x) are polynomials respectively of degree k and m ; k , m = 0,1,2, .. . In that
work, for these polynomials whose special cases reduce to Hermite polynomials, some
recurrence relations and a generating function were given. In [2], as a generalization
of polynomials (1.5), a family of polynomials in two variables was presented and some
properties of them were obtained.

Motivated essentially by these works in [1, 2], we first consider the following
Rodrigues formula in order to develop a general class of polynomials with r -variables

φn (x1, ...,xr) := φn1,...,nr (x1, ...,xr)

= eϕm(x1,...,xr) ∂ |n|

∂xn1
1 ...∂xnr

r

{
ψk (x1, ...,xr)e−ϕm(x1,...,xr)

}
(1.6)

(ni,k,m = 0,1,2, ...)

where ψk (x1, ...,xr) and ϕm (x1, ...,xr) are polynomials of total degree k and m with
respect to the variables x1, ...,xr, respectively. φn (x1, ...,xr) is a polynomial of total de-
gree N = (m−1)|n|+ k with respect to the variables x1, ...,xr and |n| = n1 + ...+nr.
We then give a generating function for these polynomials by applying Cauchy’s integral
formula and derive various families of bilateral generating functions for them. Under
some special cases, we give some recurrence relations satisfied by φn (x1, ...,xr) . We
also show that some particular cases of these polynomials reduce to known multivari-
able polynomials which are products of Hermite or Laguerre orthogonal polynomials
with one variable.

2. A family of generating functions for the multivariable polynomials
φn1,...,nr (x1, ...,xr)

With the help of the Cauchy’s integral formula, we give a family of generating
function for the polynomials φn1,...,nr (x1, ...,xr) as follows:

THEOREM 2.1. Let the polynomials ψk (x1, ...,xr) and ϕm (x1, ...,xr) be indepen-
dent of n1,n2, ...,nr . A generating function for the polynomials φn1,...,nr (x1, ...,xr) is
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given by

∞

∑
n1,...,nr=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!
...

tnr
r

nr!

= ψk (x1 + t1, ...,xr + tr)eϕm(x1,...,xr)−ϕm(x1+t1,...,xr+tr). (2.1)

Proof. We begin by considering the series

An1,...,nr (x1, ...,xr,t1) :=
∞

∑
n1=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!
. (2.2)

From Cauchy’s integral formula we have

∂ n1

∂xn1
1

{
ψk (x1, ...,xr)e−ϕm(x1,...,xr)

}
=

n1!
2π i

∮
C∗

1

ψk (z1,x2, ...,xr)e−ϕm(z1,x2,...,xr)

(z1 − x1)
n1+1 dz1

where the closed contour C∗
1 in the complex z-plane is a circle (centered at z1 =

x1) of sufficiently small radius, which is described in the positive direction (counter-
clockwise), so that we find from (1.6) and (2.2) that

An1,...,nr (x1, ...,xr,t1)

= eϕm(x1,...,xr)
∞

∑
n1=0

∂ n2+...+nr

∂xn2
2 ...∂xnr

r

⎧⎪⎨
⎪⎩

1
2π i

∮
C∗

1

ψk (z1,x2, ...,xr)e−ϕm(z1,x2,...,xr)

(z1− x1)
n1+1 dz1

⎫⎪⎬
⎪⎭ tn1

1

=
eϕm(x1,...,xr)

2π i
∂ n2+...+nr

∂xn2
2 ...∂xnr

r

∮
C∗

1

ψk (z1,x2, ...,xr)e−ϕm(z1,x2,...,xr)

z1 − x1

∞

∑
n1=0

(
t1

z1 − x1

)n1

dz1

=
eϕm(x1,...,xr)

2π i
∂ n2+...+nr

∂xn2
2 ...∂xnr

r

∮
C1

ψk (z1,x2, ...,xr)e−ϕm(z1,x2,...,xr)

z1 − (x1 + t1)
dz1,

∣∣∣∣ t1
z1 − x1

∣∣∣∣< 1

= eϕm(x1,...,xr) ∂ n2+...+nr

∂xn2
2 ...∂xnr

r

{
ψk (x1 + t1,x2, ...,xr)e−ϕm(x1+t1,x2,...,xr)

}

where C1 is a circle (centered at z1 = x1 +t1) with radius ε > 0 in the complex z-plane.
Thus, we get

∞

∑
n1=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!
(2.3)

= eϕm(x1,...,xr) ∂ n2+...+nr

∂xn2
2 ...∂xnr

r

{
ψk (x1 + t1,x2, ...,xr)e−ϕm(x1+t1,x2,...,xr)

}
.
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When multiplying both sides of (2.3) by
tn2
2

n2!
and then summing both sides, we obtain

∞

∑
n1,n2=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!
tn2
2

n2!

=
∞

∑
n2=0

eϕm(x1,...,xr) ∂ n2+...+nr

∂xn2
2 ...∂xnr

r

{
ψk (x1 + t1,x2, ...,xr)e−ϕm(x1+t1,x2,...,xr)

} tn2
2

n2!
. (2.4)

Applying the Cauchy’s integral formula again to the right hand-side of (2.4), for suitable
contour C2, we have

∞

∑
n1,n2=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!

tn2
2

n2!

=
eϕm(x1,...,xr)

2π i
∂ n3+...+nr

∂xn3
3 ...∂xnr

r

∮
C2

ψk (x1 + t1,z2,x3, ...,xr)e−ϕm(x1+t1,z2,,x3,....,xr)

z2− (x2 + t2)
dz2

= eϕm(x1,...,xr) ∂ n3+...+nr

∂xn3
3 ...∂xnr

r
ψk (x1 + t1,x2 + t2,x3,...,xr)e−ϕm(x1+t1,x2+t2,x3,...,xr)

for
∣∣∣ t2
z2−x2

∣∣∣< 1. When the above method is applied (r−3) times repeatedly by means

of Cauchy’s integral formula, we obtain

∞

∑
n1,...,nr−1=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!
tn2
2

n2!
...

tnr−1
r−1

nr−1!
(2.5)

= eϕm(x1,...,xr) ∂ nr

∂xnr
r

{
ψk (x1 + t1, ...,xr−1+tr−1,xr)e−ϕm(x1+t1,...,xr−1+tr−1,xr)

}
.

By multiplying both sides of (2.5) by
tnr
r

nr!
and then summing both sides, we have

∞

∑
n1,...,nr=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!
tn2
2

n2!
...

tnr
r

nr!

= eϕm(x1,...,xr)
∞

∑
nr=0

∂ nr

∂xnr
r

{
ψk (x1 + t1, ...,xr−1+tr−1,xr)e−ϕm(x1+t1,...,xr−1+tr−1,xr)

} tnr
r

nr!
,

in which considering Cauchy’s integral formula in the right hand for suitable contour
Cr (centered at zr = xr + tr), we conclude that

∞

∑
n1,...,nr=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!
...

tnr
r

nr!

=
eϕm(x1,...,xr)

2π i

∮
Cr

ψk (x1+t1, ...,xr−1+tr−1,zr)e−ϕm(x1+t1,...,xr−1+tr−1,zr)

zr−(xr+tr)
dzr,

∣∣∣∣ tr
zr − xr

∣∣∣∣< 1

= ψk (x1 + t1,x2 + t2, ...,xr + tr)eϕm(x1,...,xr)−ϕm(x1+t1,x2+t2,...,xr+tr)
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which completes the proof. �
Now, we consider many general families of bilateral generating relations for the

polynomials φn1,...,nr (x1, ...,xr) which are generated by (2.1) without using group-
theoretic (or Lie algebraic) technique but, with the help of the similar method as given
in [2, 3, 4, 5, 6, 8, 9, 10, 14].

We begin by stating the following theorem.

THEOREM 2.2. Corresponding to an identically non-vanishing function Ωμ(y1,
...,ys) of s complex variables y1, ...,ys (s ∈ N) and of complex order μ , suppose that

Λμ,ν(y1, ...,ys;z) :=
∞

∑
l=0

alΩμ+νl(y1, ...,ys )zl (2.6)

(al �= 0, μ ,ν ∈ C).

and

Θn,p,μ,ν (x1, ...,xr;y1, ...,ys;ς)

:=
[n1/p]

∑
l=0

al

(n1− pl)!
φn1−pl,n2,...,nr (x1, ...,xr)Ωμ+νl(y1, ...,ys)ς l (2.7)

(n1, p ∈ N) .

Then we have
∞

∑
n1,...nr=0

1
n2!...nr!

Θn,p,μ,ν

(
x1, ...,xr;y1, ...,ys;

η
t p
1

)
tn1
1 tn2

2 ...tnr
r (2.8)

= Λμ,ν(y1, ...,ys;η)ψk (x1 + t1, ...,xr + tr)eϕm(x1,...,xr)−ϕm(x1+t1,...,xr+tr)

provided that each member of (2.8) exists.

Proof. For the proof of Theorem 2.2, we find it to be convenient to denote the first
member of the assertion (2.8) by S . Then, upon substituting for the polynomials

Θn,p,μ,ν

(
x1, ...,xr;y1, ...,ys;

η
t p
1

)

from the definition (2.7) into the left-hand side of (2.8), we obtain

S =
∞

∑
n1,...nr=0

[n1/p]

∑
l=0

al

(n1− pl)!n2!...nr!
φn1−pl,n2,....,nr (x1, ...,xr)

×Ωμ+νl(y1, ...,ys )t
n1−pl
1 tn2

2 ...tnr
r η l

=
∞

∑
l=0

alΩμ+νl(y1, ...,ys )η l
∞

∑
n1,...nr=0

1
n1!n2!...nr!

φn1,...,nr (x1, ...,xr)t
n1
1 tn2

2 ...tnr
r

= Λμ,ν(y1, ...,ys;η)ψk (x1 + t1, ...,xr + tr)eϕm(x1,...,xr)−ϕm(x1+t1,...,xr+tr)

which completes the proof of Theorem 2.2. �
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3. Further Remarks and Observations

If we express the multivariable function

Ωμ+νl(y1, ...,ys ) (l ∈ N0, s ∈ N)

in terms of several relatively simpler functions of one and more variables, Theorem 2.2
can be applied to yield various families of bilateral generating functions. For instance,
if we set

s = r and Ωμ+νl(y1, ...,yr) = h(γ1,...,γr)
μ+νl (y1, ...,yr)

in Theorem 2.2, where the multivariable Lagrange-Hermite polynomials h(α1,...,αr)
n (x1,

...,xr) [4] are generated by

r

∏
j=1

{(
1− x jt

j)−α j
}

=
∞

∑
n=0

h(α1,...,αr)
n (x1, ...,xr)tn (3.1)

where |t| < min
{
|x1|−1 , |x2|−1/2 , ..., |xr|−1/r

}
, then we obtain the following result

which provides a class of bilateral generating functions for the Lagrange-Hermite mul-
tivariable polynomials and the polynomials φn1,....,nr (x1, ...,xr) generated by (2.1).

COROLLARY 3.1. If Λμ,ν (y1, ...,yr;z) :=
∞
∑
l=0

alh
(γ1,...,γr)
μ+νl (y1, ...,yr)zl where al �=

0 , ν,μ ∈ N0 ; and

Θn,p,μ,ν (x1, ...,xr;y1, ...,yr;ς)

:=
[n1/p]

∑
l=0

al

(n1− pl)!
φn1−pl,n2,...,nr (x1, ...,xr)h(γ1,...,γr)

μ+νl (y1, ...,yr)ς l

where n1, p ∈ N . Then we have

∞

∑
n1,...nr=0

1
n2!...nr!

Θn,p,μ,ν

(
x1, ...,xr;y1, ...,yr;

η
t p
1

)
tn1
1 ...tnr

r (3.2)

= Λμ,ν (y1, ...,yr;η)ψk (x1 + t1, ...,xr + tr)eϕm(x1,....,xr)−ϕm(x1+t1,...,xr+tr)

provided that each member of (3.2) exists.

REMARK 3.2. Using the generating function (3.1) and taking al = 1, μ = 0, ν =
1, we have

∞

∑
n1,...nr=0

[n1/p]

∑
l=0

1
(n1− pl)!n2!...nr!

φn1−pl,n2,...,nr (x1, ...,xr)t
n2
2 ...tnr

r

×h(γ1,...,γr)
l (y1, ...,yr)η ltn1−pl

1

= ψk (x1 + t1, ...,xr + tr)eϕm(x1,...,xr)−ϕm(x1+t1,...,xr+tr)
r

∏
j=1

{(
1− y jη j)−γ j

}
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where (
|η | < min

{
|y1|−1 , |y2|−1/2 , ..., |yr|−1/r

})
.

Set

s = 1 and Ωμ+νl(y) = Hμ+νl (y)

in Theorem 2.2, where the n th Hermite polynomial Hn(x) is generated by

∞

∑
n=0

Hn (x)
tn

n!
= exp

(
2xt− t2

)
. (3.3)

Then, we get the following result which provides a class of bilateral generating func-
tions for Hermite polynomials and the polynomials φn1,....,nr (x1, ...,xr) .

COROLLARY 3.3. Let Λμ,ν(y;z) :=
∞
∑
l=0

alHμ+νl(y)zl where al �= 0 , ν,μ ∈ N0 ;

and

Θn,p,μ,ν (x1, ...,xr;y;ς)

:=
[n1/p]

∑
l=0

al

(n1− pl)!
φn1−pl,n2,...,nr (x1, ...,xr)Hμ+νl(y)ς l

where n1, p ∈ N . Then we get

∞

∑
n1,...nr=0

1
n2!...nr!

Θn,p,μ,ν

(
x1, ...,xr;y;

η
t p
1

)
tn1
1 ...tnr

r

= Λμ,ν(y;η)ψk (x1 + t1, ...,xr + tr)eϕm(x1,....,xr)−ϕm(x1+t1,...,xr+tr) (3.4)

provided that each member of (3.4) exists.

REMARK 3.4. If we take al = 1
l! , μ = 0, ν = 1 and then use the generating

relation (3.3) for Hermite polynomials, we have

∞

∑
n1,...nr=0

[n1/p]

∑
l=0

φn1−pl,n2,...,nr (x1, ...,xr)Hl(y)
1

l!(n1− pl)!n2!...nr!
η ltn1−pl

1 ...tnr
r

= exp
(
2yη −η2)ψk (x1 + t1, ...,xr + tr)eϕm(x1,....,xr)−ϕm(x1+t1,...,xr+tr).

We conclude this section by remarking that for each suitable choice of the coeffi-
cients al (l ∈N0), if the multivariable function Ωμ+νl(y1, ...,ys), (s∈N), is expressed
as an appropriate product of several simpler relatively functions, the assertion of Theo-
rem 2.2 can be applied to yield many different families of multilateral generating func-
tions for the polynomials φn1,...,nr .
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4. Some recurrence relations of the polynomials φn1,...,nr (x1, ...,xr)

In this section, we give some recurrence relations satisfied by the polynomial set
φn1,...,nr (x1, ...,xr) for some special choices of the polynomials ψk (x1, ...xr) .

Setting ψk (x1, ...xr) = (a1x1 +a2x2 + ...+arxr +ar+1)
k (a1, ...,ar+1 ∈ R , k =

0,1, ...) in (1.6), we get

φn1,...,nr (x1, ...,xr) = eϕm(x1,...,xr) ∂ |n|

∂xn1
1 ...∂xnr

r

{
(a1x1 + ...+arxr +ar+1)

k e−ϕm(x1,...,xr)
}

.

(4.1)
which are generated by

∞

∑
n1,...,nr=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!
...

tnr
r

nr!
(4.2)

= eϕm(x1,...,xr)−ϕm(x1+t1,x2+t2,...,xr+tr) [a1 (x1 + t1)+ ...+ar(xr + tr)+ar+1]
k

from Theorem 2.1.
For brevity, we need the following notations: for x = (x1, ...,xr) and n = (n1, ...,nr) ,

let denote
∂ |n|

∂xn1
1 ...∂xnr

r
f (x1, ...,xr) =

∂ |n|

∂xn f (x1, ...,xr) .

Let e1, ...,er be the standard basis of Rr , that is, the i th coordinate of e j is 1 if i = j ,
0 if i �= j .

Now, we can give the following results for these polynomials.

THEOREM 4.1. Let

Ω(l1,...,lr) (x1, ...,xr;n1, ...,nr) = (a1x1 + ...+arxr +ar+1)φn−l1e1−...−lrer (x1, ...,xr)

+
r

∑
j=1

a j (n j − l j)φn−l1e1−...−lrer−e j (x1, ...,xr)

(l1, l2, ..., lr ∈ N0).

Then for the polynomials φn1,...,nr (x1, ...,xr) , we have the following recurrence
relations for 1 � i � r

−
m−1

∑
p=0

∑
l1+...+lr=p

(
n1

l1

)
...

(
nr

lr

)
Ω(l1,...,lr) (x1, ...,xr;n1, ...,nr)

∂ p+1

∂xl+ei
ϕm (x1, ...,xr)

= (a1x1 + ...+arxr +ar+1)φn+ei (x1, ...,xr)

+
r

∑
j=1

a jn jφn+ei−e j (x1, ...,xr)−aikφn (x1, ...,xr)

where l = (l1, l2, ..., lr) and

m � 1, ni � li +1; i = 1,2, ...,r.
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Proof. Without loss generality, we can assume i = 1. Differentiating each member
of the generating function (4.2) with respect to t1 and then using (4.2) again, we find
that

∞

∑
n1,...,nr=0

φn1+1,n2,...,nr (x1, ...,xr)
tn1
1 tn2

2 ...tnr
r

n1!...nr!
(4.3)

=
a1k

[a1 (x1 + t1)+ ...+ar(xr + tr)+ar+1]

∞

∑
n1,...,nr=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!
...

tnr
r

nr!

− ∂
∂ t1

ϕm (x1 + t1, ...,xr + tr)
∞

∑
n1,...,nr=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!
...

tnr
r

nr!
.

Since the Taylor series of the polynomial
∂

∂ t1
ϕm (x1 + t1, ...,xr + tr) at (t1, ...,tr) =

(0, ...,0) is

∂
∂ t1

ϕm (x1 + t1, ...,xr + tr)

=
m−1

∑
p=0

∑
l1+...+lr=p

1
l1!...lr!

∂ p+1

∂xl1+1
1 ∂xl2

2 ...∂xlr
r

ϕm (x1, ...,xr)t
l1
1 ...tlrr ,

the equality (4.3) can be written in the form

(a1x1 + ...+arxr +ar+1)
∞

∑
n1,...,nr=0

φn1+1,n2,...,nr (x1, ...,xr)
tn1
1 ...tnr

r

n1!...nr!

+(a1t1 + ...+artr)
∞

∑
n1,...,nr=0

φn1+1,n2,...,nr (x1, ...,xr)
tn1
1 ...tnr

r

n1!...nr!

= a1k
∞

∑
n1,...,nr=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!
...

tnr
r

nr!

− (a1x1 + ...+arxr +ar+1)
∞

∑
n1,...,nr=0

m−1

∑
p=0

∑
l1+...+lr=p

(
∂ p+1

∂xl1+1
1 ∂xl2

2 ...∂xlr
r

ϕm (x1, ...,xr)

)

×φn1,...,nr (x1, ...,xr)
tn1+l1
1

n1!l1!
...

tnr+lr
r

nr!lr!

− (a1t1 + ...+artr)
∞

∑
n1,...,nr=0

m−1

∑
p=0

∑
l1+...+lr=p

(
∂ p+1

∂xl1+1
1 ∂xl2

2 ...∂xlr
r

ϕm (x1, ...,xr)

)

×φn1,...,nr (x1, ...,xr)
tn1+l1
1

n1!l1!
...

tnr+lr
r

nr!lr!
.

If we make necessary calculations, we find the desired recurrence relation for i = 1.
Similarly, it can be easily obtained for i = 2,3, ...r. �



176 Ö. GÜREL YILMAZ, R. AKTAŞ AND A. ALTIN

Other recurrence relations for the polynomials φn1,...,nr (x1, ...,xr) can be obtained
by differentiating the generating function (4.2) with respect to xi , i = 1,2, ...,r as fol-
lows:

THEOREM 4.2. Let Ω(l1,...,lr) (x1, ...,xr;n1, ...,nr) be given as in Theorem 4.1. The
polynomials φn1,...,nr (x1, ...,xr) satisfy the following recurrence relations

−
m−1

∑
p=0

∑
l1+...+lr=p

(
n1

l1

)
...

(
nr

lr

)
Ω(l1,...,lr) (x1, ...,xr;n1, ...,nr)

∂ p+1

∂xl+ei
ϕm (x1, ...,xr)

= (a1x1 + ...+arxr +ar+1)
{

∂
∂xi

φn (x1, ...,xr)−φn (x1, ...,xr)
∂

∂xi
ϕm (x1, ...,xr)

}

+
r

∑
j=1

a jn j

{
∂

∂xi
φn−e j (x1, ...,xr)−φn−e j (x1, ...,xr)

∂
∂xi

ϕm (x1, ...,xr)
}

−aikφn (x1, ...,xr)

where
m � 1, ni � li +1; i = 1,2, ...,r.

The next results can be easily obtained from Theorem 4.1 and Theorem 4.2.

THEOREM 4.3. The polynomials φn1,...,nr (x1, ...,xr) hold that

(a1x1 + ...+arxr +ar+1)
{

φn+ei (x1, ...,xr)+ φn (x1, ...,xr)
∂

∂xi
ϕm (x1, ...,xr)

}

=
r

∑
j=1

a jn j

{
∂

∂xi
φn−e j (x1, ...,xr)−φn−e j (x1, ...,xr)

∂
∂xi

ϕm(x1, ...,xr)−φn+ei−e j (x1, ...,xr)
}

+(a1x1 + ...+arxr +ar+1)
∂

∂xi
φn (x1, ...,xr) .

For the special case ψk (x1, ...,xr) = 1 in (1.6), we have the polynomials

φn1,...,nr (x1, ...,xr) = eϕm(x1,...,xr) ∂ |n|

∂xn1
1 ...∂xnr

r

{
e−ϕm(x1,...,xr)

}
. (4.4)

which are of degree N1 = (m−1)|n| ; |n| = n1 + ... + nr. As a result of Theorems
4.1–4.3, we have following:

COROLLARY 4.4. For the polynomials φn1,...,nr (x1, ...,xr) , we have the following
recurrence relations

φn+ei (x1, ...,xr) = −
m−1

∑
p=0

∑
l1+...+lr=p

(
n1

l1

)
...

(
nr

lr

)
φn−l1e1−...−lrer (x1, ...,xr)

× ∂ p+1

∂xl+ei
ϕm (x1, ...,xr) ,
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∂
∂xi

φn (x1, ...,xr)−φn (x1, ...,xr)
∂

∂xi
ϕm (x1, ...,xr)

= −
m−1

∑
p=0

∑
l1+...+lr=p

(
n1

l1

)
...

(
nr

lr

)
φn−l1e1−...−lrer (x1, ...,xr)

∂ p+1

∂xl+ei
ϕm (x1, ...,xr) ,

(m � 1, ni � li +1; i = 1,2, ...,r)

and

φn+ei (x1, ...,xr)+ φn (x1, ...,xr)
∂

∂xi
ϕm (x1, ...,xr) =

∂
∂xi

φn (x1, ...,xr)

for 1 � i � r.

5. Some special cases of the polynomials φn1,...,nr (x1, ...,xr)

Under suitable choices, the family of polynomials φn1,...,nr (x1, ...,xr) reduce to
several known multivariable polynomials which are products of Hermite or Laguerre
orthogonal polynomials with one variable. Now, let consider some special cases.

REMARK 5.1. By getting ψk (x1, ...,xr) = x1...xr and ϕm (x1, ...,xr) = x2
1 + ... +

x2
r , the family of polynomials given by (1.6) reduces to the following polynomials

φn1,...,nr (x1, ...,xr) = ex2
1+...+x2

r
∂ |n|

∂xn1
1 ...∂xnr

r

{
(x1...xr)e−x2

1−...−x2
r

}

=

(
−1

2
ex2

1
dn1+1

dxn1+1
1

e−x2
1

)
...

(
−1

2
ex2

r
dnr+1

dxnr+1
r

e−x2
r

)

=
(−1)n1+...+nr

2r Hn1+1 (x1) ...Hnr+1 (xr) ; n1, ...,nr = 0,1, ...,

which are generated by

∞

∑
n1,...,nr=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!
...

tnr
r

nr!

= (x1 + t1) ...(xr + tr)e−(t21+...+t2r +2x1t1+...+2xrtr)

where Hn1+1 (x1) ,...,Hnr+1 (xr) are Hermite polynomials of degree n1 + 1, ...,nr + 1,
respectively. These polynomials satisfy the following orthogonality relation from (1.2)
(see also [7])

∞∫
−∞

...

∞∫
−∞

e−(x2
1+...+x2

r )φn1,...,nr (x1, ...,xr)φk1,...,kr (x1, ...,xr)dx1...dxr

= 2
n1+...+nr−r

(n1 +1)!...(nr +1)!π
r
2 δn1,k1 ...δnr ,kr

where δn1,k1 , ...,δnr ,kr are Kronecker delta.
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REMARK 5.2. If we take ϕm (x1, ...,xr) = x2
1 + ...+x2

r +α1x1 + ...+αrxr in (4.4),
we have

φn1,...,nr (x1, ...,xr)

= ex2
1+...+x2

r +α1x1+...+αrxr
∂ |n|

∂xn1
1 ...∂xnr

r
e−x2

1−...−x2
r−α1x1−...−αrxr

=
(

ex2
1+α1x1

∂ n1

∂xn1
1

e−x2
1−α1x1

)
...

(
ex2

r +αrxr
∂ nr

∂xnr
r

e−x2
r−αrxr

)

=
(

e(x1+
α1
2 )2 ∂ n1

∂xn1
1

e−(x1+
α1
2 )2
)

...

(
e(xr+ αr

2 )2 ∂ nr

∂xnr
r

e−(xr+ αr
2 )2
)

= (−1)
n1+...+nr

Hn1

(
x1 +

α1

2

)
...Hnr

(
xr +

αr

2

)
; n1, ...,nr = 0,1, ... (5.1)

where Hn1

(
x1 + α1

2

)
, ...,Hnr

(
xr + αr

2

)
are Hermite polynomials of degree n1, ...,nr, re-

spectively.
From Theorem 2.1, these polynomials defined by (5.1) are generated by

∞

∑
n1,...,nr=0

φn1,...,nr (x1, ...,xr)
tn1
1

n1!
...

tnr
r

nr!
= e−(t21+...+t2r +(2x1+α1)t1+...+(2xr+αr)tr)

and they verify the following orthogonality relation

∞∫
−∞

...

∞∫
−∞

e−(x1+
α1
2 )2−...−(xr+ αr

2 )2

φn1,...,nr (x1, ...,xr)φk1,...,kr (x1, ...,xr)dx1...dxr

= 2n1+...+nr (n1)!...(nr)!π r/2δn1,k1 ...δnr ,kr .

From Corollary 4.4, they satisfy the following recurrence relations for 1 � i � r

φn+ei (x1, ...,xr)+ (2xi + αi)φn (x1, ...,xr)+2niφn−ei (x1, ...,xr) = 0,

∂
∂xi

φn (x1, ...,xr)+2niφn−ei (x1, ...,xr) = 0

and

φn+ei (x1, ...,xr) =
∂

∂xi
φn (x1, ...,xr)− (2xi + αi) φn (x1, ...,xr) ,

which give the results presented by Altın et.al in [3].

REMARK 5.3. The case of ψk (x1, ...,xr) = xn1
1 ...xnr

r and ϕm (x1, ...,xr) = x1+ ...+
xr in (1.6) gives

φn1,...,nr (x1, ...,xr) = ex1+...+xr
∂ |n|

∂xn1
1 ...∂xnr

r

{
xn1
1 ...xnr

r e−x1−...−xr
}

=
(

ex1
∂ n1

∂xn1
1

xn1
1 e−x1

)
...

(
exr

∂ nr

∂xnr
r

xnr
r e−xr

)
= n1!...nr!Ln1 (x1) ...Lnr (xr) ; n1, ...,nr = 0,1, ...,
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which verifies the following orthogonality relation from (1.4) (see also [7])

∞∫
0

...

∞∫
0

e−x1−...−xrφn1,...,nr (x1, ...,xr)φk1,...,kr (x1, ...,xr)dx1...dxr

= (n1!)
2 ...(nr!)

2 δn1,k1 ...δnr ,kr

where Ln1 (x1) , ...,Lnr (xr) are Laguerre polynomials of degree n1, ...,nr, respectively.

REMARK 5.4. If we take ψk (x1, ...,xr) = xn1
1 ...xnr

r and ϕm (x1, ...,xr) = p1x
k1
1 +

...+ prxkr
r in (1.6), we have

φn1,...,nr (x1, ...,xr) = ep1x
k1
1 +...+prx

kr
r

∂ |n|

∂xn1
1 ...∂xnr

r

{
xn1
1 ...xnr

r e
−
(

p1x
k1
1 +...+prx

kr
r

)}

= L(0,0,...,0)
n (x;p;k)

where the family of polynomials L(α1,...,αr)
n (x;p;k) is defined by (see [10])

L(α1,...,αr)
n (x;p;k) =

r

∏
i=1

epix
ki
i

∂ ni

∂xni
i

xni
i e−pix

ki
i

where p = (p1, ..., pr) ; k = (k1, ...,kr) and pi,ki ∈ N for i = 1,2, ...,r.
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