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ON A FAMILY OF MULTIVARIABLE POLYNOMIALS
DEFINED THROUGH RODRIGUES TYPE FORMULA

OVGU GUREL YILMAZ, RABIA AKTAS$ AND ABDULLAH ALTIN

Abstract. In this paper, we present a family of multivariable polynomials defined by Rodrigues
formula and we discuss their some miscellaneous properties such as generating function and
recurrence relation. We also derive various classes of multilateral generating functions for these
multivariable polynomials and give some special cases of the results. Furthermore, we also show
that some particular cases of the polynomials reduce to the products of Hermite and Laguerre
orthogonal polynomials with one variable.

1. Introduction

The concept of generating function is one of the most surprising and useful inven-
tions in Mathematics and other disciplines. It is a powerful tool for recurrence relations
which come up a lot in electrical engineering, circuit analysis, statistics, mathematics,
physics, geology and any other disciplines that use differential equations. Recently, sev-
eral families of multivariable polynomials defined via generating functions have been
introduced and their some properties have been studied in [2, 4, 5, 6, 9, 11, 14]. This
paper deals with finding a generating function for a family of multivariable polyno-
mials defined by Rodrigues formula and obtaining some recurrence relations for these
polynomials.

We recall that the classical Hermite polynomials H, (x) of degree n are defined
by the Rodrigues formula

dn
H,(x) = (—1)"e"2dxn (g‘xz) (1.1)

and the familiar orthogonality property is as follows

/ ¢ Hy (x) Hyy (x) dx = 200N/ TS (1.2)

—oo

(m,n € Ny :=NwW{0})

where 6, , being the Kronecker delta. Laguerre polynomials L, (x) of degree n are
defined by the Rodrigues formula

e
~ nldxn
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and these polynomials hold the following orthogonality relation

oo

/e_"L,, (%) Ly (x)dx = Opp;  m,n € Ny. (1.4)
0

As a generalization of Rodrigues formulas given by (1.1) and (1.3), in [1], the
authors defined a family of polynomials defined through Rodrigues formula:

d}’l

Dpsn(m1) (x) =0 e

(Wk (x)e*‘P"l(x)) (1.5)
where @i (1) (x) is a polynomial of degree k+n(m—1), n=0,1,2,... and, y; (x)
and @, (x) are polynomials respectively of degree k and m; k, m = 0,1,2,... In that
work, for these polynomials whose special cases reduce to Hermite polynomials, some
recurrence relations and a generating function were given. In [2], as a generalization
of polynomials (1.5), a family of polynomials in two variables was presented and some
properties of them were obtained.

Motivated essentially by these works in [1, 2], we first consider the following
Rodrigues formula in order to develop a general class of polynomials with r-variables

On (X1, Xr) 1= Py ny (X015 ey Xp)
ol

— e(Pm Oppedr) %
n
PRI

{Wk (xl,...,x,)e_"””("l""’x")} (1.6)

(ni,k,m=0,1,2,...)

where y (xq,...,x,) and @y, (x1,...,x,) are polynomials of total degree k and m with
respect to the variables xy, ..., x,, respectively. @y (x1,...,x,) is a polynomial of total de-
gree N = (m— 1)|n|+ k with respect to the variables xy,...,x, and |n| =n; + ... +n,.
We then give a generating function for these polynomials by applying Cauchy’s integral
formula and derive various families of bilateral generating functions for them. Under
some special cases, we give some recurrence relations satisfied by ¢, (x1,...,x,). We
also show that some particular cases of these polynomials reduce to known multivari-
able polynomials which are products of Hermite or Laguerre orthogonal polynomials
with one variable.

2. A family of generating functions for the multivariable polynomials
¢I’l1 R (XI y "'axr)

With the help of the Cauchy’s integral formula, we give a family of generating
function for the polynomials @, (x1,...,x,) as follows:

THEOREM 2.1. Let the polynomials Wy (x1,...,x;) and @n (x1,...,x,) be indepen-
dent of ny,ny,...,n,. A generating function for the polynomials ¢, . 5, (X1,...,%r) is
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given by
oo tnl t"’
1 r
XlyeeesXp) — oo —
nl”%r_o(bnlp...nr ( 1 >n1! nr!
= Y (X1 11, oy Xy A1) @O X) =P t) o1

Proof. We begin by considering the series

ny

t
Aoy (e irst) i= S Gy, (614 Xp) = (22)
n;=0 :

From Cauchy’s integral formula we have

- lV Z1,X )C)e (21 X2 5 Xr)
7 X ‘Pm(xl,...,x,) % (21,X2,. ,
Qx’l“ {ka( 1oy Xr) e l z o )n:Pl )

where the closed contour Cj in the complex z-plane is a circle (centered at z; =
x1) of sufficiently small radius, which is described in the positive direction (counter-
clockwise), so that we find from (1.6) and (2.2) that

An17~'~~,nr (x17 ~~~,xr7tl)

o Onlts) i a"2+ AR j{Wk(thL aXr)e” gom(zhxz.....,m)dz] pl
- ny y np+1 1
=0 Oxy2...0x)" | 2mi (z1 —x))™

@Pm(x1,--3r) anﬁ o j{llfk 21,X0, e Xy ) € PG X2r) - ( 1 )"ldz
= 1

2mi o OXT 7] —X| =0 \Z1 — X1
B e(Pm(xlv-"vxr) 8”2+~-~+"r /3 21’x27-~-axr) = Om (21220 Xr) 1
= - 7 dzy, <1
2mi 8)62 LLOX zl—(xl—l-n) 71 — X1
an2+...+nr

= e(Pn1(X17~~~,xr) 8xn2 8xnr {V/k (xl + tl 7x27 "'axr) e_(Pm(Xl'Hl ~,X27~'~~,xr)}
IR r

where C is a circle (centered at z; = x| +11) with radius € > 0 in the complex z-plane.
Thus, we get

2 Onrny (31 p) L 2.3)

( ) an2+...+nr (141 )
= PNl N o {ka (X1 +11,X0, ey Xy ) @ OIIHILAZ e }
52...0x;
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n

t
When multiplying both sides of (2.3) by 2—' and then summing both sides, we obtain
np.

o -
tl l‘2
Z ¢n17...,n, ()ﬂ,...,xr) —'_'
ny,np=0 ny! ny!
oo 8n2+...+nr tnz
..... B RS S 2
= 2 e(P"l(Xl, ,xr)ﬁ {Wk (xl +t1,x2, ...,xr)e ‘Pm(xl 1,X2 xr)} - (24)
npy=0 3)C2 ...8)(, -~

Applying the Cauchy’s integral formula again to the right hand-side of (2.4), for suitable

contour C,, we have

oo ny np
o

Z Onp ooy (X15es X)) BT
n1.m=0 ni-np:
eq)m(xl,....,xr) gt Tt f' Wi (xl +t17Z27x37.”7xr)e*‘Pm(lertl712,7x37~-~-7xr) dz

= N 2
2w Oxy...0x) P 2 —(x2+n)
2

(rpreotp) 9T (o 1,02413,35,008)

XY geees X —Qm (X1 +11 X0+ ,X3,...,X,

ze(P’” Lo-e-¥r WWk()ﬂ+t1,x2+t2,)€3’...,x;«)e P (X17H1X2 2,5 r
3 - O0Xp

for Zz?xz < 1. When the above method is applied (r—3) times repeatedly by means
of Cauchy’s integral formula, we obtain

: Mo

Z (Pnl.,m.,nr (X17...,xr)n—l!n—2!...nr_l! (25)

ar _

= ePn(tr) PG {Wk (X1 115y Xy 1 1 X ) € ‘p’"(’”*"""’x'*'*"*"x')} .
X7 ’
nr

t
By multiplying both sides of (2.5) by -+ ' and then summing both sides, we have
ny!

- wom o
1t thr
a2 I
2 Pny,oor (x1,...,xr)n1!n2!...nr!

n,...,ny=0
ny
L

oo 8nr B
:e¢m(x1.,....,xr) Z — {Wk (xl +t17~~~7xr71+tr71,xr)e q)m(xl""tl~,~'~,Xr—1+fr—1~,xr)} ,
8.7(: " n,!

n,=0 r re

in which considering Cauchy’s integral formula in the right hand for suitable contour

C, (centered at z, = x, +1,), we conclude that

oo ny n
12 t.r
1

> Oy (K1, Xr) e r'

ny,...,n=0 nps Nyl
_eOnlar) f{ Wic (X111 oy X 11 2p) € O e 120) dz 2
2mi P zr— (1) A P
r
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which completes the proof. [

Now, we consider many general families of bilateral generating relations for the
polynomials @, _n (x1,...,x,) which are generated by (2.1) without using group-
theoretic (or Lie algebraic) technique but, with the help of the similar method as given
in[2,3,4,5,6,8,9, 10, 14].

We begin by stating the following theorem.

THEOREM 2.2. Corresponding to an identically non-vanishing function Q (y1,
..,¥s) of s complex variables yy,...,ys (s € N) and of complex order [, suppose that

Ay (315 ¥532) 1= > aiQuivi (91,0, )2 (2.6)
=0

(Cll?éo, ,U,VE(C).

and

9“71’7#7\’ ()Cl, ces X Y1y Vst Q)

[n1/p] a .
= 2 m%ﬁpl,nz,...,nr (Xl’~-~,Xr)Qu+vl(YI,-~-’}’s)€ 2.7
=0 :
(n1,p €N).
Then we have
i o C) Xlyeeey Xp3y y,'2 12! (2.8)
nl""nr=0n2!~~~nr! n,p,,v 1yeeesArsVlyeees .\,tfy 1 by by .

provided that each member of (2.8) exists.

Proof. For the proof of Theorem 2.2, we find it to be convenient to denote the first
member of the assertion (2.8) by S. Then, upon substituting for the polynomials

. .n
Onp v xl,...,x,,yl,...,ys,t—p
1

from the definition (2.7) into the left-hand side of (2.8), we obtain

o [n/p] a

S =
ny =0 =0 (m — pl)ny)...

nr! ¢n17pl,n2,....,nr (Xl, ~-~7~xr)

ny—pl.n !
X Quivi(is - ys) PRl

oo oo 1
— [ ny_ ny ny
—E(,)azﬁp+vz(>’1,~-~,yx)n nl,,g’,zoinl!nz!...nr!¢"""""’ (xl,...,x,)t1 P

= AIJ,V(yh <y Yss n)u/k (xl R SR o +tr) e‘Pm(xlwuvxr)_(l)m(xl+tlw~7xr+tr)

which completes the proof of Theorem 2.2. [
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3. Further Remarks and Observations

If we express the multivariable function

Q[.Ur\/l(yla"')y.\') (ZENO7 SEN)

in terms of several relatively simpler functions of one and more variables, Theorem 2.2
can be applied to yield various families of bilateral generating functions. For instance,
if we set

s=r and Qu+vl(y17~-~»yr)—hilyi;j. )(y17 7yr)

in Theorem 2.2, where the multivariable Lagrange-Hermite polynomials h,(qa“
..,xr) [4] are generated by

H{(l_xjtj)_aj} Zh ) () 3.1)

J=1

o) (x17

~1/2

where |t| < min{\x1|_1 |2 vyl 7V7 L, then we obtain the following result

which provides a class of bilateral generating functions for the Lagrange-Hermite mul-
tivariable polynomials and the polynomials ¢y, .., (¥1,...,x-) generated by (2.1).
COROLLARY 3.1. If Ayv(y1,....y132) == %, alh(y1 """ )(yl, Lyr)Z where a; #
1=0
0, v,u € Ny, and

@n,p#,v (X17 XV, ...,y,;g)

[n1/p] a T .
._ (PR
= E{) (nl _pl)!q)nl—pl,nz,...,nr (x17"‘7xl’)h,_1+vl (y17 7yr)g
where ny,p € N. Then we have
< 1 URP
—0 s X3 Y1y s Vs = | By 3.2
nl“%zo nZ'nr' n,p,U,v (xla ;X Y1 s Vr t{)) 1 r ( )

= AIJ7V (yl yees V1S Tl)‘l’k (xl 1y X+ tr) e(Pm(xlv-"w )= O (X111 5o X )

provided that each member of (3.2) exists.

REMARK 3.2. Using the generating function (3.1) and taking ¢; =1, u =0, v=
1, we have

o [n1/p]
Ony—pins,.. (X1, ey X ) 12 T
nh% 2 —pl) 'nz ) TP AR B

Xh[()/l"m )(y17 7yr)nltill o

r

= i (311, ) om0 T (1= )
j=1
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where

(Inf <min{ i~ ol =72, 77 }).
Set
s=1 and Qu+vl()’) =Hyiv )
in Theorem 2.2, where the nth Hermite polynomial H,(x) is generated by
oo n

S H, (x) = exp (2xt —1?). (3.3)

Then, we get the following result which provides a class of bilateral generating func-
tions for Hermite polynomials and the polynomials ¢y, ... (x LyeeesXr) -

COROLLARY 3.3. Let Ay y(yiz) := ¥ aiHyrvi(v)Z where aj #0, v, € No;
=0

and

Gn,lﬁﬂ,v (x17"‘7xr;y;g)
[n1/p)] a l
= 3 G i, (1) ()5

where ny,p € N. Then we get

o | .
Z ———Onppuv (xh...,x,;y;t—p R

! [
ny,..n=0 np!l..n;! 1

:Amv(y;n)‘!/k(xl+11,-~-,Xr+lr)€(pm(x"""’ )= P (X 11 5o X417 (3.4)

provided that each member of (3.4) exists.

REMARK 3.4. If we take q; = 1—1!7 u =20, v=1 and then use the generating
relation (3.3) for Hermite polynomials, we have

1
1 —ph)'npl...n,

[
n’tf‘ P

= I/l
ny znli g ¢"17P17n27~-~7nr (‘xl’ 7xr)Hl(y)l' (n
= exp (21 = 17) Wi (X1 11, ey Xy - 1) @) = On(H ),

We conclude this section by remarking that for each suitable choice of the coeffi-
cients a; (I € Ny), if the multivariable function Q, v/ (y1,...,ys), (s €N), is expressed
as an appropriate product of several simpler relatively functions, the assertion of Theo-
rem 2.2 can be applied to yield many different families of multilateral generating func-
tions for the polynomials ¢,
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In this section, we give some recurrence relations satisfied by the polynomial set
On,....n, (X1,...,x,) for some special choices of the polynomials yy (xq,...x,).

Setting Y (xl, ...xr) = (a1x1 +axxy + ... —|—arxr—|—ar+1)k (al, narr ER, k=
0,1,...) in (1.6), we get

[n|
d

(L (X1, Xp) = 9n(¥1-7) W {(a1x1 +...+ax, +ar+1)ke_¢'"(xl""’x’)} .

| 0xy
4.1

which are generated by

oo t"l tnr

D o(P"l"'"’n’ (X150 %) nl—l'# 4.2)
Ny y=

— O ) =N XA X ) [ () 1)) A @ (X 4 1,) + @ ]

from Theorem 2.1.

For brevity, we need the following notations: for x = (xy, ...,x,) and n= (ny,...,n,),
let denote il il

am om
mf(xl, ...,xr) = ﬁ (.Xl, ...,x,) .

Let ey, ...,e, be the standard basis of R”, that is, the ith coordinate of e; is 1 if i = j,
0ifi+#j.

Now, we can give the following results for these polynomials.

THEOREM 4.1. Let

.
+ Y aj(nj—1)) Pntye)—..~ler—e; (X1 es%7)
o1

(I, b, ..., Iy € No).

Then for the polynomials ¢y, ... n, (x1,-..,xr), we have the following recurrence
relations for 1 <i<r

m—1 B
g e\ (el . P
_ 2 2 <l1)<lr)g(l s )(Xl,...,xr,nl,...,nr)W(pm(xl,...,xr)

p=00+..+l=p

= (a1x1 + ...+ arxr +ari1) Pnre; (X1,-.05%7)

r
+ Z ajnj¢ll+e,-7€j (xl7 "'axr) - aik¢ll (Xl, "'7xr)
=1

where 1 = (I1,1,...,1;) and

m=21, nm=>lLi+1;, i=12,..r
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Proof. Without loss generality, we can assume i = 1. Differentiating each member

of the generating function (4.2) with respect to #; and then using (4.2) again, we find
that

oo

ny np n
ISR SR

n '%,=0¢n1+17n27...,n, (Xl,...,Xr) il 4.3)
o S b ()
= Xlyeood Xpp) —— 0. ——
[Cll ()Cl +tl)+...+ar(xr+tr)+ar+ﬂ npo =0 N yeestty \Ay ooy Ar nl! nr!
J had tI’l [;1’
— a_[l(Pm (xl +t17 -.-a.x"r"'l‘i')nl7 %’,=0¢n17.'.7nr ()Cl, ...,xr) n_llnr'

0
Since the Taylor series of the polynomial 5, O (1411, s Xp +1,) At (11,..,8) =
1
(0,...,0) is

Er ( t t)
m (X111, X 1
tl(P 1+

m—1 1 8p+1
-y 3

| 1 9 i+l 1 1, Pm
p=0 I +...+lr=p 1.“‘lr' 33611 3)622...8)6[

1
(TP P L

the equality (4.3) can be written in the form

S o
(al.XI + ...t ax, +Clr+1) ¢n1+1~,7127...,n7 (xl, ”_’xr) %
nyy...,np=0 ny....ny.
S L
+ (it + ... +aty) Ony+1ny,my (X15ees X) ‘7"
— nyl...ny.
=0
had tI'l £
-
:alk 2 ¢"17~-~7nr (XI,...,)C,-)—',,, |
ny,...,nr=0 nysoong

oo m—1 5p+1
—(apx1+ ..+ ax, +ars1) 2 2 2

————— O (X1, .., X)
h+19.Db l (Pm( L
M1 seoetr=0 =0 1, 1.+ 1y—p x| Oxy...0x/

t;’ll + t;z,Jrl,

X Qnyny (X1 ees Xi) PRTRRETR
" e

oo m—1
—(a1t1+...+a,t,) 2 2 2

S h+ly b ol
Bty =0 p=01, 4 +1y—p x| 0x5...0x/

8p+1
O (X1, .00yXr)

l‘i’ll + t;Ir+lr

nl'll'nr‘lr‘ ’

X Qnyny (X1 es Xi)

If we make necessary calculations, we find the desired recurrence relation for i = 1.
Similarly, it can be easily obtained for i =2,3,...rn. U
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Other recurrence relations for the polynomials @y, ..., (X1,...,X,) can be obtained
by differentiating the generating function (4.2) with respect to x;, i = 1,2,...,r as fol-
lows:

m—1

n n ort!
Z Z (ll)...<lr)£2(ll""’l’) (XDy ooy X3Py ooy 1)
p=01+..+L=p \"'1 r

mq)m (X1,5.00yXp)
(U 1) (81, t7) = O (81,0 0) e (51,0
=(ax1+...+axr+a41 axiq),, XlyeeeyXr) — On (X1, .00y Xp aXi(pm X1y eey Xr
—i—ia-n' iq)n,.(xl ey Xr) = On—e (X1 ...x)i(p (X1 ey X)
j:1 J'] 8)(:1' L’j 9 bAdd s 61 9 bAdd s aXi m 9 r
_aikq)n(xl;-"axr)

where

m=21, n>2Li+1;, i=12,...r
The next results can be easily obtained from Theorem 4.1 and Theorem 4.2.

THEOREM 4.3. The polynomials ¢y, ... n, (x1,...,xr) hold that

0
(ar1x1 + ... +amxr+ar41) {¢n+e,- (X1 eeny X)) + On (1, oy Xr) qum (x1,... x,)}
= ian- iq)n, X1y X)) = On—e; (X1, ey X )i(p (X1, s X7 ) —Onre;—e; (X1 5 -ans X7)
j:1 J'] axi ej ’ bt ej I Iy 8)(:1' m ’ r ej—¢ej ’ r

0
+(ax1+ ... Fax, +argr) E% (X1y ey Xr) -
1

For the special case Yy (x1,...,x,) = 1 in (1.6), we have the polynomials

gl B
Onyoomy (X150 X,) = e‘Pn1(x17~..,Xr)m {e q)m(Xlwu,Xr)}. (4.4)
10Xy

which are of degree Ny = (m—1)|n|; |n| = ny + ...+ n,. As a result of Theorems
4.1-4.3, we have following:

.., Xr), we have the following
recurrence relations

m—1 n n,
¢n+e,— (xlv”'vxr) = - 2 2 i i (Pn—llel—...—l,er (xlv”'vxr)
p=01+..4+L=p \'1 r
ap+1

X mq)m (x17~~'7xl’)7
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i(Z)n (X1, e Xr) — O (X1, -0y Xp) i(pm (X1, ey Xr)
8xi 8xi

m—1 +1
n n, L4
= — 2 2 <l1><l >¢nllel~-~1rer (xl,...,x,) W(pm(xl,...,x,),

p=00+..+,=p
(m>=1, m=lLi+1; i=12,..r)

and

d 0
Onte; (X1500s%0) + On (X1, .0, X0) a—Xi(pm (X1 eeyxy) = E% (X1, Xr)

1

for 1 <i<r

5. Some special cases of the polynomials ¢, (xi,....X;)

Under suitable choices, the family of polynomials @y, ..., (x1,...,x) reduce to
several known multivariable polynomials which are products of Hermite or Laguerre
orthogonal polynomials with one variable. Now, let consider some special cases.

REMARK 5.1. By getting W (x1,...,x:) = x1...x, and @, (x1,...,x;) :x% +
x2, the family of polynomials given by (1.6) reduces to the following polynomials

2 2 oml 2 2
O (xl, ...,xr) — St m {(xl...xr)e X[~ xr}
| --OXr

+1 +1
B I 2d" Q2 I 2d" 2
= —=<e'l nHe Lo | —zer n+le r
2 dxll 2 dxr’

(_1)n1+...+nr

= #Hnﬁ-l (.Xl)...HnrJ,_l ()Cr); l’ll,...,l’lr:O,l,...,

which are generated by

oo

Z ¢7117...,n, ()ﬁ,...,xr)

g, =0

— (xl +tl) (xr+tr) e—(t12+...+t,2+2x1t1+...+2xrtr)

nj n
now

n!

where H, 11 (x1),....,Hy,+1(x,) are Hermite polynomials of degree n; +1,...,n,+ 1,
respectively. These polynomials satisfy the following orthogonality relation from (1.2)
(see also [7])

2

- Xz v X
//e (et r>¢n1~,...,nr ('xlv"'7xr)¢kl7m,kr (xh...,x,)dxl...dx,

BECTES VIR (ARES DIP 2.7 PR N

where 6, k..., 0n, k, are Kronecker delta.
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REMARK 5.2. If we take @ (X1, ..., %) = X7 + .. 32 + 00 x] + ... + 04X, in (4.4),
we have

(bnl,...,nr (X1, "'axr)

ol )

e—xl—...—x%—oclxl—...—oc,x,
8 1y 8 nr
xl OXy

ny ny

— ex%+a1x1 a e—x%—oclxl ex%-&-arx, a e—x%—arx,
—5 n —8 iy
X1 Xr

_ (e<xl+°;l>zﬂe<xl+?>2) ((—) i ew%)z)

n n
oxy! oxrr

ny+...+nr o
=(-1)""""H,, <x1+71)...H,,, (x,+ ); ety =0, 1, .. (5.1)

:ex%+...+x%+a1x1+...+arx,

0
2

where H,, (x1+ %) ,...,Hy, (x-+ %) are Hermite polynomials of degree ny,...,n,, re-
spectively.
From Theorem 2.1, these polynomials defined by (5.1) are generated by

ni n

P (x x) 4l v e—(tlz+...+t,2+(2x1+a1)t1+...+(2x,+ar)t,)
Ny, Al eeey Ar nl' P
' n,!

and they verify the following orthogonality relation

T R (A
//6 (4 3) = () Ony oy (X1, 00,%r) (s (X150, 7) dxy..d;

=2ttt () () 28 gy Bk -

From Corollary 4.4, they satisfy the following recurrence relations for 1 <i<r

¢H+€,’ (Xl, "'axr) + (le‘ + (xi) ¢Il (xl7 "'axr) + 2ni¢n76i (Xl, "'axr) = Oa

d

3_xi¢n (X105 eeesXr) +20iQn—e; (X1,...,%) =0

and 5
¢n+e,- (-xlw”v-xr) = x(pn (xlw”v-xr) - (zxi+ ai) (pll (-xlv"'vxr)7

which give the results presented by Altin ez.al in [3].

REMARK 5.3. The case of W (x1,...,x,) =x]" .. and @y (x1,...,%:) =x1 +...+
Xy in (1.6) gives

8|n‘ 1 X X
rp Xl oAy
T {x]'..xfre }

8nl ) ( 8nr )
_ X1 n ,—x Xy Ny —Xr
= | € X € .| € X e
17v1 nyr
( ox) oxyr

=nil..nLy, (x1)...Ly, (x); np,.n-=0,1, ...,

¢"1~,'~'~,nr (xl ) ...,)Cr) =Nt
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which verifies the following orthogonality relation from (1.4) (see also [7])

2 2
= n1! ...(l’lr!) 6nl7kl"'6"r7kr

where Ly, (x1),...,Ly, (x-) are Laguerre polynomials of degree nj,...,n,, respectively.

REMARK 5.4. If we take g (x1,....x,) = x|"..x and @y (x1,...,x,) = plx]f' +
..+ ppxfrin (1.6), we have

k [n] Ky k
Bnyooy (X1, ,xr)ze””ll*“*p’x,’qin& {x'fl e (P +_,_+p,x,r)}
ox;'...0x;"
0,0,..0) /..
-y (x;p:k)

where p= (p1,...,pr); k= (k1,....k;) and p;,k; e N for i = 1,2,...,r.
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