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THE ORDER OF MAGNITUDE FOR HAUSDORFF AND
NORLUND SUMMABILITY OF AN ORTHOGONAL SERIES

K. KALAIVANI AND G. P. YOUVARAIJ

Abstract. In this paper, we estimate the order of magnitude for Hausdorff and N6rlund summa-
bility of an orthogonal series.

1. Introduction

NOTATION. (X,9, u) = Measure space, N = Natural numbers, Z* = NU{0},
R = Real numbers, C = Complex numbers, BV [0, 1] = Set of all functions of bounded
variation on [0, 1].

DEFINITION 1. Let {¢,}}"_, be an orthonormal system in L,(X). We shall con-
sider an orthogonal series

D cit, ey
i=0
where {c;}7>, C C. We define the mth partial sum of the series (1) by
S = Eci¢i~ (2)
i=0
For a complex matrix A = (@ n)mnez+, We define
Om = zam iSi = b uCuPus
i=0 u=0

m
where b, , = Y ay ;.
i=u

Hausdorff matrix. For ® € BV|[0, 1], we define the Hausdorff matrix (h®,), rcz+,
where
1

n .
. / <k> A=) kad(r)  if 0<k<n,
nk
0 .
0 otherwise.
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In particular,

do
(i) if 7 = a(1—r)%~1, then the Hausdorff matrix is a Cesaro (%, o) matrix;
r

dd 1 1!
(i) if = m In (—) , then the Hausdorff matrix is a Holder (H, o) matrix.
r r

(iii) Forz €[0,1], @, : [0,1] — R is defined by

0 if r=0, 0ifo<r<r,
Dy(r) = and @, (r) =
1 if0<r<1 lifr<r<1.

Then the corresponding Hausdorff matrix is a Euler matrix.

1
Note that Hausdorff matrix is regular iff / d®(r) = 1. Since ® = ®| — O, with
0

@, ®, are monotonically increasing on [0, 1] and any Hausdorff matrix is constant
multiple of a regular Hausdorff matrix, we assume that @ is monotonically increasing
on [0, 1] and our Hausdorff matrix is regular.

n
Norlund matrix. Let {g,}; , C R" and Q, = Y gx. We define the No6rlund
k=0

matrix (@, i), rez+, where

9 i o<k<n,
ay | = Qn
0 otherwise.

We assume that (g,);,_ is an increasing sequence of positive real numbers.

In 1922, Rademacher [2] proved that for any (c,);_, € (2(Z"), S, = ox(log(n+
2)) a.e. In 1957, Tandori [4] proved for any (¢,)r_ € ¢2(Z7), 0, = ox(loglog(n+2))
a.e., where o, is ' Cesaro mean of an orthogonal series.

In this paper, we shall estimate the order of convergence of an orthogonal series
with respect to Hausdorff and Norlund means. In particular, our result also holds for
Euler, Holder means.

2. Preliminaries
First we shall state some known results which are needed in the sequel.

THEOREM A. For any (cp);_o € l2(Z7), Sap = ox(log(p+2)) a.e. as p — oo.

THEOREM B. For ¢ >0 3 C,; > 0 such that

=

Y (;) ¢ "(14q) "< Cp, YmeZt.

n=m

Proofs of theorems A and B may be found in [1] and [6].
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3. Helpful Lemmas

LEMMA 1. Let (G n)mpez+ be a Hausdorff matrix. Then for u e Z*, 3C >0
such that

() 1—bzpu—/2< ) PP dD(r)

(11) Z |bm u bm—l u|2 < C;
m=u
m
where by, = Y, ap ;.
i=u

Proof. (1) For 0 < u < 2?7, we consider

(i1) For 0 < i < m, we consider

i — 1§ = 01 (L — )i K’f) - (’"l_ 1) lir} d®(r)
Lo [ Ao
Noting i’zn;r"(l —r)! [(n:_—ll) - r(r:l)] = (T::) #, we obtain
ﬁ(aml A1 i) / it Kn:_—ll) _r<rln)] do(r)
_ / (1—r) (u_ 11>d(1)(r).

Since @ is monotonically increasing on [0, 1], we have

-1
—1

bmu—bm_lu:(’j )u”(l—u)’””[ﬂb(l)—@(O)} for some 1 € (0,1).
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Hence

oo

S bwu—bm-14* <C bytheoremB. O

m=u

LEMMA 2. Let (Gp n)mpez+ be a Norlund matrix. Then for u € VAR

S |1 —baw | <2 where by =Y, ap ;.

pl2P>u i=u
Proof. For 0 <u < 2P, we consider
2P
1—by, = I—Zazpi
20 20

N9 N 9 Qu
B izz{) O Z,’, Ow  QOw '

Thus

1) &1
> l=bwu* = (Qu1)* Y, (—) <I§02—p=2. O

pl2P>u pl2P>u Qo

LEMMA 3. Let {¢y};_ C Lo(X) be an orthonormal system and (c, )y € (2 (Z7).

(i) For 2P <m <2PH with p € Z*, let (a5, ) pucz+ be a complex matrix with
2) 3
is in

(i) If (b%, Vnez+ is a complex matrix with 'Y |b*, ,|*> < Cs, C2 >0, Y u. Then
mn/mne mu

2P
z aZP Jn, uCu ¢“

u=

oo

Y a3l <C1, €1 >0, Vu. Then F = { >

pl2P>u p=0

20

Lry(X) and lim | ¥, &5, . ,Ccu®u(x)| =0 a.e.
P—|,—0 M,

m=u
1
o |'m 2) 2
G:=4¢ Z bl Cudu €Ly (X)
m=0 |u=0
and
2pr+l1 m 2
lim Y by ucudu(x)| =0 ace.
P7% m=2p 41 |u=0

Proof. (1) Using Parseval’s identity, we have
2

=

%/

P:OX

oo

2 2 ‘aZPmu| |CM‘2

p=0u=0

2 a21’ m, ucu¢u(

=

<Y Y a5l \Cu|2<Clz\cu\ < oo,

u=0p[2P>u
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Thus F € L,(X) and

2r

2 aZI’ Jn, ucM(Pu V( )

lim =0 ae.

p—oo

(i1) Again by Parseval’s identity, we have

2 2
muCM(PM [,L()C) = Z 2 ‘bm u| ‘CM|
m=0u=
= 3 3 Willed”
u=0m=u
<G Y el < oo
u=0
Hence G € L,(X) and
op+1 2
lim me LCubu(x)] =0 ae. O
P 2P 41 |u=

4. Main Theorems

185

THEOREM 1. If A = (ay i)y kez+ is @ Hausdorff matrix and (c,);_o € l2(Z7),

then

1S2r — O2r| = 0x(V2P) a.e. as p — oo.

Proof. First we observe that

Sap(x) — o2 (x) = ;2”6(1 = bor w)cudu(x)
 Srl-ont) 20 U=b2) ),
By lemma 1 (i) and 3 (i), with aipﬁmm = %7 we obtain
;grgo ;pr %cuq)u(x) =0a.e.

Using (4) in (3), we obtain

[S2p — 02p| = 0x(V2P) ae. as p — . [J

3)

“)
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THEOREM 2. If (@ k), xez+ is a Hausdorff matrix and (c,);_o € £2(Z7), then

max |0y, — 0| = 0x(V2P) a.e. as p — oo.
2”<m<2”+1

Proof. For 2P < m < 2T with p € Z*, we have

op+1

‘Gm_621’| g 2 ‘Gm_cm—l‘
m=2P+1
2rH+l m
= 2 E(bmu_bmfl u)cu(Pu
m=2P+1 |u=0
op+l m 2 %
< (bm u—bm-1 u)cu¢u V2P
m=2P+1 |u=0
1
or+1 m 2) 2
= max |0, — Ow| < bmu—bm—1u)C V2r.
2p<meapt] m 2/’| X m=§+1 uga( mu m—1 u) u¢u
(%)
= bwu—bn_1 .4, We obtain

By lemmas 1 (ii) and 3 (ii), with b}, ,,
2

or+1 m
(6)

lim N (B w—bm—1 u)cudu(x)| =0ae.
P2 =2p+1 |u=0

Using (6) in (5), we see that

|Om — 0| = 0x(V/2P) ae.as p —oo. [

max
2P <m2p !

THEOREM 3. If A = (an k)pkez+ is a Hausdorff matrix and (cn)y_ € l2(Z7),

then
0, = ox(v/nloglog(n+2)) a.e. as n — oo.

Proof. For 27 < n < 2Pt with p € Z*, we have

(o (x) = Sw (x) + (Gn (x) — Oop (x)) + (Gzp (x) — Sy (x))
‘ Oop (x) —Sop (x) '

|0 (x)] o ' Sar(x) ' I C o))
|v/nloglog(n+2)| ~ |y/nloglog(n+2)| |y/nloglog(n+2)| |/nloglog(n+2)
Sar(x) ’ 0 (x) — Or () Oor (x) — Sor ()
V2rlog(p+2)| | v2rlog(p+2)

<
V2Plog(p+2)

— 0 ae.asp—oo

by theorems A, [ and 2. [
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THEOREM 4. If (ay )y kez+ is a Norlund matrix and (¢, )y € £2(Z7"), then

|S2p — O2p| = 0x(1) a.e. as p — oo.

Proof. Note that
or

S2r(x) = 020 (x) = 3 (1= b u)cudu(x)-

u=0

By lemmas 2 and 3 (i), with az,,’m# =1— by ,, we obtain

2P
N (1= bor )cudu(x)

u=0

lim =0 ae.

p—roo

Hence
[S2p — Oap| = 0x(1) ae. as p— 0. O
THEOREM 5. If (G )y iez+ is a Norlund matrix and (c,)y_ € (2(Z"), then for
2P <m < 2P with p € Z+ we have

|G — Oar| = 0x(1) a.e. as p — oo.
Proof. For 2P < m <2P*! with p € Z*, we have

Gm( ) 6213 2 bm ucu¢u 2 b21’ ucu¢u )

2r

= Z (bm u—Dbap u)cu¢u(x) + Z bm uCu(Pu()C).
u=0

u=2°+1
Thus
P
‘Gm(x)_GZP(X)I < E(b b21’ u)cu¢u 2 bm ucu¢u( ) . (7)
u=0 u=2r+1
Using Parseval’s identity, we have
1
2/ 2 bmucu¢u 2 2 ( — ) ‘M|2
:OX u=2P+1 p=0u=2P+1
o op+1
2 2 |Cu‘ = E‘Cu‘2~
p=0u=2P+1 u=2
Hence
hm Z b ucudu(x)| =0 ace. (8)

u=2P+1
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Using lemmas 2, 3 (i), with a3, ,, , = by u — bor 4, and (8) in (7), we obtain for 2¥ <
m < 2p-&-17

|Om — 0or| = 0x(1) ae. as p — . O

THEOREM 6. If (ay )y kez+ is a Norlund matrix and (c,)p_o € (2(Z7"), then
Om = ox(loglog(m+-2)) a.e. as m — oo.

Proof. For 2P < m < 2P*! with p € Z*, we have
Om = Sor + (O — O2p ) + (020 — Sop).

Thus

Om
loglog(m+2)

Oy, — Oop
log(p+2)

Oop — Szp
log(p+2)

Sop '

log(p+2)
— Qa.e.asp — oo

<

by theorems A, 4 and 5. [J
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