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A CLASS OF ANALYTIC FUNCTIONS
INVOLVING THE DZIOK-RAINA OPERATOR

NENG XU AND R. K. RAINA

Abstract. This paper first defines a class of analytic functions which is associated with the Dziok-
Raina operator and related closely with the class of uniformly convex functions. Several char-
acteristics for this class of functions are investigated which include certain inclusion relations,
convolution properties and the order of starlikeness. Several cases and implications of the main
results including the concept of subordinations are discussed and some consequent results are
also pointed out.

1. Introduction

Let o7 be the class of functions f(z) of the form
f@)=z+ a." (1.1)
n=2

which are analytic in the open unit disk U= {z:|z] < 1}. For p < 1, a function f € &/
is said to be starlike of order p in U if

zf'(2)
X f(2)

This class is denoted by .#*(p) (p < 1). For =% < oo < § and p < 1, a function
f € & is said to be o -spirallike of order p in U if

>p (zel). (1.2)

%{ei"‘sz;—g)}>pcosa (ze ). (1.3)

When 0 < p < 1, it is well known that all the starlike functions of order p and o-
spirallike functions of order p are univalent in U. A function f € & is said to be
convex univalentin U if

2f"(2)
ER{I+ 70 }>0 (ze ). (1.4)
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We denote this class by # . Also, let %% (C %) be the class of uniformly convex
functions in U introduced by Goodman [7]. It was shown in [16] that f € & isin %€

if and only if
R Zf”(Z)} zf"(2)
{” o )7 70

For -7 <a < %,0<B <1, afunction f € o/ is said to be B uniformly convex
2f"(2)

a-spiral in U if
we (1055 8

This class is denoted % €. P (o, ). A function f € & is said to be in the class
S P(a,B) if and only if f(z) =z¢'(z) and g € €SP (., ). In [16], Rgnning
investigated the class ., defined by

Ip={f(2) € 77(0) : f(z) =2¢'(z), g(z) e %€}

Note that # ¢ #(0,1) = %€ and ¥ Z(0,1) = #),. The uniformly convex and
related functions have been studied by many authors (see, e.g., [6-9, 11] and the refer-
ences therein).

If

(ze ). (1.5)

(zeU). (1.6)

f@)=z+Y ant" €& and g(z)=z+ Y bud" € A,
n=2 n=2

then the Hadamard product (or convolution) of f(z) and g(z) is given by
(f*8)(@) =z+ Y, anbuz".
n=2

Let a,Aq,---,0p,A, and Bi,By,---, By, By(p,q € N) be positive real parameters
satisfying the inequality:

a p
1+ Y B> Y, An.

m=1 m=1

The Wright generalized hypergeometric function (see [23])

[)qu[(al7A1)7 Tty (apaAp); (ﬁlaBl)a ) (ﬁanq);Z] =p "Pq[((xmaAm)l,p(ﬁmaBm)Lq;Z}
is defined by

oo 14 nA, n
P\Pq[(am7Am)l7p(ﬁm»Bm)l,q;Z] = Z {Hmlr(am nd ) } <

2 _ T(Bu+nB,) | n! eel).

n!
IfA,=1(m=1,---,p) and B,,=1(m=1,---,q), then we have the following obvious
relationship:

G.FTQ[((XHM l)l,p(ﬁma l)l,q;z} =p Fq(ala"'aap;ﬁla' t aﬁq;z)

Y CARCAN
_,EZ) (ﬁl)n"'(ﬁq)n n! (ZEU)7

n=0
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where ,Fy(ou, -+, 0 B1,- -+, Bys2) is the generalized hypergeometric function , (¢), is
the Pochhammer symbol defined by

(1 (n=0),
(c)n = {c(c+1)~"(c+"—1) (neN),

and O is given by

~1
0= (f[()l"(a,@) (ﬁ)r(ﬁ,@) .

Corresponding to the function
Zp ‘Pq[(am7Am)l,p; (Bm7Bm)l,q;Z}»
the Dziok-Raina operator ([4], see also, for example [3], [12—15, 18])
W[(amaAm)l,p; (ﬁnﬁBm)l,q} ca — o
is defined by the following Hadamard product:
W[(O‘maAm)l.,p; (ﬁmaBm)Lq}f(Z) = G{Z P "Pf{[(amaAm)17P(ﬁmaBm)l7q;Z]} *f(Z)
We observe that for a function f(z) defined by (1.1) we have
WO Am)1.ps (Brus Bu) 191 (2) = 24 Y, Qul s Brlan?”, (L.7)
n=2

where

T(oy+Ai(n—1))-- -F(OCP —|—Ap(n— 1))

Qn[am;ﬁm} =0 F(ﬂl —|—Bl(n— 1)) ...F(ﬁq+Bq(n — 1))(1’1— 1)' (18)
In order to make the notation simple, we write
W;(Oﬁ)f(z) = W[(O‘maAm)l.,p;(ﬁmaBm)Lq}f(Z)' (1-9)

The linear operator W,? (o) contains the Dziok-Srivastava operator ([5]; see also
[19-21] and [24]) and as its various special cases contain such linear operators as the
Carlson-Shaffer operator [2], the Ruscheweyh derivative operator [17], the Bernardi-
Libera-Livingston integral operator [1], etc. Also, it is worth noting that the linear op-
erator (1.9) would also contain operators in terms of generalized Mittag-Leffler function
and the Bessel-Maitland function (see, for example [13]).

In this paper, we introduce and investigate the following subclass of o7'.

DEFINITION. A function f € <7 is said to be in %/ (c,,B) if it satisfies the
condition

(Wi (o) f(z))

THEANE —1| (zeU), (1.10)
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where

—g<a<g and 0< B <1. (1.11)

REMARK 1. The function f € o7 defined by

Z

Wi(ou)f(z) = (1= ba)eoonct

(1.12)

isin W, (ou,a,B), if and only if

1

< —. 1.1
6] 1+28 (1.13)
In fact, for f(z) defined by (1.12), we have

2(Wi(ou)f(2) i z
—Wg(al)f(z) =1+2e COS 0t e

From (1.10), we know that f(z) € #,(ou, o, ), if and only if

bz
1—-bz

EKl—i—bz>2ﬂ‘

b ‘ (ze ). (1.14)

Letting z — —|b|/b in (1.14), we get (1.13). Conversely, if the inequality (1.13)
holds, then
bz

1—bz

1+ bz < 1 —|bz]
1—bz” |1—by
This completes the proof.

>2ﬂ' ‘ (ze ).

REMARK 2. For specific values assigned to the parameters of the class defined by
(1.10), the following relationships are easy to verify:

Vi (1o, B) = S P(a,B) and #(2,0.B) = %CS P (a,B)

with A =1.
Throughout this paper we assume, unless otherwise stated, that o and 3 satisfy
(1.11).

2. Subordination Theorem

Let f(z) and g(z) be analytic in U. We say that the function f(z) is subordinate
to g(z) in U, and we write f(z) < g(z), if there exists an analytic function w(z) in U
such that

w(z)| <z and f(z) =g(w(z)) (z€U).

If g(z) is univalentin U, then

f(z) < g(z) & f(0) =g(0) and f(U) C g(U).
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THEOREM 1. A function f € </ isin #} (o, 0, B), if and only if

o 2W () /(@)

W)/ (2) < hg(z)cos o +isina, (2.1)
where
i L 1 l+\/2 20/m 1—\/2 20/n 5 U -
PO o (1—\/2) +<1+\/2) iy EEDe B
o =arccosB(0< B <1), when B =1,
2
hdz)zl—k%(logitﬁ) (zeU). (2.3)
Proof. Let us define w(z) = u+iv by
o ZWp () /()" _ st
e Wil /) (z)cosa+isino (z€U), (2.4)

then (1.9) in conjunction with (1.7) readily gives w(0) = 1.
When 0 < 8 < 1, the inequality (1.10) can be rewritten as u > B+/(u— 1)2+v2,
which is equivalent to

u? > B2 —2B%u+ B>+ BH7?

and 5
u> m
That is 2ﬁ2 [32 ﬁz
u2+1_ﬁ2—1_ﬁ2v2> -2
and 5
u> m
Hence, we have 5 )
B* B’ B
<u+1_ﬂ2> —1_ﬁ2v2><1_ﬁ2> (2.5)
and
u> % (2.6)

Thus, the domain of values of w(z) for z € U is contained in the hyperbolic region
D={w=u+iv:uandv satisty (2.5) and (2.6)},

and we also note that /153(0) = w(0) = 1. In order to prove our theorem, it suffices to
show that the function /g (z) given by (2.2) maps U conformally onto D.
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Consider the transformations

wi=(1-B*w+B> wi= % <W2+L>,

w2

1 1
w3 = wg/c(a =arccosf3), t= 3 <W3 + w—) .
3

It is not difficult to verify that the composite function # = ¢#(w) maps
DT =DN{w=u+iv:v>0}

conformally onto the upper-half plane Im (¢) > 0, so that w = 1 corresponds to ¢ = 1
and w= /(14 B) to t = —1. Making use of the symmetry principle, this function
t =t(w) maps D onto G = {t: |arg(r+1)| < m}. Since

maps U onto G, we see that

w:1+¥{<t+\/ﬂj>0/n+(t+\/ﬂj>_o/n—2}

2(1-B?)
:H—ZSinzG{(l—\/Z) +<1+\/2> -2
= hg(z)

maps U conformally onto D.
When 8 = 1, the inequality (1.10) can be written as u > “5—V2 It is known ([16])

that the function )
1+./z
I~z

2
hi(z) =1+ = <log
maps U conformally onto the parabolic region
Dy ={w=u+iv,u>(’+1)/2}.
Therefore, the proof of the theorem is complete. [J

COROLLARY 1. Let f € #y(ay,,B), and hg(z) be given by (2.2) and (2.3).
Then for z € U,

Wg(azl)f(z) < exp (e—ioc cosa/oz %do (2.7)

and

lhﬁ(—p)—l W;{(al)f(z))eiaseca
exp/o 71) dp < <7

Lhg(p)—1

B

< dp. (2.8
. CXP/O 5 p. (28)
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The bounds in (2.8) are sharp.

Proof. From Theorem 1, we have

e (Z(Wﬁ (01)f(2))
cosa \ Wi(a)f(z)

- 1) <hg(z)—1 (2.9)

for f(z) € #;!(ou, 0, B), where hg(z) is given by (2.2). Since the analytic function
hﬁ (z) — 1 is univalent and starlike (with respect to the origin) in U, therefore, by (2.9)
and the result due to Suffridge [22, Theorem 3], we get

el Woloa)f(z) & 2 (Wi(oa)f(®)) 1 “hg() —1
log 221 /()( p 1 )dl—</07dt.

cos o z ~ cosa Wi(on)f@t) ¢ t
(2.10)

This implies (2.7).
Noting that the univalent function /g (z) maps the disk |z] < p(0 < p < 1) ontoa

region which is convex and symmetric with respect to the real axis, we see that

Uhg(—p) —1 Uhg(pz) — 1 Lhg(p) —1
0 P 0 p 0 P

for z € U. Consequently, the subordination (2.10) leads to

J I (Wﬂal)f(z))“”m“
0 p z

Lh —1
o P

for z € U, which gives (2.8).
Obviously, the bounds in (2.8) are best possible for the function fy(z) € #; (e, @, ),
defined by

Wi(ou)fo(z) = zexp <e"°‘cosoc/0Z M) , (2.11)

t

where hg(z) is given by (2.2). The proof is thus complete. (]

From (1.7)-(1.9), (2.2), (2.3) and (2.10), we have

COROLLARY 2.
(i) If f(z) € #y (o, 0, B) and 0 < B < 1, then

B e %cosar (11 1+ /pw(2) 2olx 1—+/pw(z) 2ol
J(2) =zexp 2sin’ o /0 p (1—\/pw(z)> +<l+\/pw(z) —2(dp

X

o (n=D'C(Bi+Bi(n—1)) - T(By+By(n—1)) TI—y(0m) |
X{”ﬂ; T(on +A1(n—1))--T(op +A,(n—1)) nglr(ﬁm)}’
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(i) If f(z) € #,(ou,,B) and B =1, then
2cos e /11 ( 1+ /pw(z ) }
——— | —[log————= X
0

/o) = ZGXP{ 2 p pw(a)

y {Z+ § (1= DITB+B1(n— 1) Ty +Byn—1)) ., (o)

_ F(ﬁm)}’

= T(a+Ai(n—1))---T(ap+Ay(n—1))

where w(z) is analytic in U with w(0) = 0 and |w(z)| < 1(z € U).

3. Inclusion relations

We will need the following lemma on the Briot-Bouquet differential subordination.

LEMMA 1. ([10]) Let h(z) be convex univalent in U, with R(uh(z) +
p(z) is analytic in U, with p(0) = h(0), then

r'(2)

#P( )+y < h(z) = p(z) < h(z).

P+ ——"—

THEOREM 2. Let 0 < |sina| < B < 1 and

o] ﬂz—sinz(x
LIS

Al cosa + /B2 —sin’ a

Wi(on+1,a,B) CHl (o, 0,B).

Then

Proof. For f(z) € #, (a1 + 1,0, ), it follows from Theorem 1 that
PRI
Wy (o +1)f(2)

where hg(z) is given by (2.2).
From (1.7)-(1.9) we have

< hg(z)cosa+isina (z€U),

Wi(en +1)7(0) = (1= 51 ) Wien 1)+ 5083 (en) 1)

that is
Wion+1)f(z) [ A\ | A (2Wi(n)f(2)
Wl (0u)f(2) _<1 061>+061< W (04) )

Differentiating (3.4) logarithmically, we obtain

o ZWy (on +1)f(2)) _ (04—
Wi (o +1)f(z) —1+e%p(z)’

>0. If

(3.1)
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where

is analytic in U, with p(0) = hg(0).
From (3.2) and (3.5), we obtain

zp'(2)

PO+ w
T 1+ep(z)

< hg(z)cosa +isinc.

() Let |sina| < B < 1, hg(z) = u+iv, where hg(z) is given by (2.2). From
the proof of Theorem 1, we find that u > B+/(u—1)2+v2? and u > B That is,

T8 "
v| < %\/uz —B?(u—1)% and u > % Hence, we have
minR {e ®hg(z)} = min{ucosa —vsinatt = min  g(u),
min Ty (@)} = mind F= opin g 8@
where )
g(u) =ucoso— |s1ga| u?—B2(u—1)>2.
Note that

gl(u) _ ﬁCOSOC\/m— |Sina|(ﬂ2+ (1 —ﬁ2)u)
B\ — B2 (u—1)
(1= B?)(B —sin® )’ + 2B (B* — sin’ oJu — B

B BAu— 1P(Beosary/u?— BAu— 12+ [sinat|(B2 + (1 B2)u))

(3.6)

for u > B/(1+ ). Since |sina| < B < 1, it follows from (3.6) that the function g(u)
(u>PB/(1+B)) attains its minimum at u = uy, where

2
o

oo P (e N5

1-B B2 —sin’ o 1+B

Now
sino
g(uo)Zuocosa—‘ B | uy — B2 (uo — 1)

B B2cosa cosa { sin® o
= =

1-B B2 —sin’ o B2 —sin’a

\/ B2 —sin> oo — B2 cos

— e ,
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and therefore,

min R {e~"*(hg(z)cos o +isine) } = g(ug) cos a +sin® ot

lz|=1
\/ B2 —sin’ o
= . (3.7
coso+ /B2 —sin*a

Since the function Q(z) = e~ "*(hg(z)cos & +isina) is convex (and univalent) in

U and
/ P
o o B2 —sin” o
92{—1—1+Q(z)}>A—1—1+ :
! ! coso+ /B2 —sin’ o

it follows from (3.1) and Lemma 1 that

f'(2)

p(z) = PRSI hg(z)cos o +isinar.

(@)

Therefore, f(z) € #,(ou, 0, B) (|sina| < B < 1).
(ii) When 0 < [sina| = 8 < 1, we have

gu) =uy/1—=B>—Jur = B>(u—1)* (u=pB/(1+p)).

It is clear that g'(u«) < O for u > B/(1+ ), and so

2
inf  g(u) = gl+es) = ——P—

u=B/(1+B) V1-p2

Hence

‘nllir}ER {e %(hg(z)cos ar+isinar) } = g(+eo)cos ot +sin’ o0 = 0. (3.8)
-

It follows from (3.1) and Lemma 1 that

zf'(2)
(@)

Therefore f(z) € #, (ou,a,B) (0<|sina|=p < 1).
(iii) When B =1, g1 («) =ucosa — |sina|v/2u—1 (u>1/2). Then

in 21(u) 1 1—2sin’ a
min u)= =
u>1/2g1 1\ 2cos? @ 2cos o

p(z) =€ < hg(z)cos o+ isina.
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and hence

min R {e~"*(hy(z)cos o +isine) } = cos o min gy (u) +sin® o = 1/2. (3.9)

lz]=1 u>1/2
It follows from (3.1) and Lemma 1 that

zf'(z)
f(2)

Hence, f(z) € #;' (o, ,1). This completes the proof. [

p(z) =e" < hi(z)cos o+ isina.
THEOREM 3. If 0 < |sino| < B < 1, then qu(al,oc,ﬂ) c S*(p(a, B)), where

B2 —sin’ o

)
coso+ /B2 —sin’ o

p(o,f) =

(3.10)

and the order p(a, ) is sharp.

Proof. Let f(z) € #,!(ou,,B) (|sinet| < B < 1). Then, by (3.7)—(3.9) and The-
orem 1, we conclude that f(z) € S*(p (o, )), where p(c,3) is given by (3.10), and
the order p (o, ) is sharp for the function fy(z) given by (2.11). O

Lastly, we examine the closure properties of the class %} (o,,3) under the
generalized Bernardi-Libera-Livingston integral operator L.(f) which is defied by

_c+1

Lof(2) /OZsz(z)dt (FR(e) > —1). (3.11)

THEOREM 4. Let f(z) € #;(ou,,B) (0 <|sina| < B < 1) and

2 _sin?
R(c) = - prsin o (3.12)

cosa + /B2 —sin’
Then L.f(z) belongsto #,! (o, a,B), where L.f(z) is given by (3.11) and 0 < |sin |
<B<L

Proof. 1t follows from (3.11) that

(c+1)Wi(a)f(z) = cWi(an)Lef(2) +2(Wi(au)Lef(2)), (3.13)

that is
W,?((xl)f(z) ¢ 1 z(Wg(al)ch(z)
Wi(on)Lef(z)  c+1  c+1 Wi(ou)Lef(z)

(3.14)
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Differentiating (3.14) logarithmically, we obtain

i ZWi(on)f(2) @)
e W =q(2)+ cteq(D) (3.15)
where
q(z) = ei“Z(W (o)Lef(2)'

W (ou)Lef(z

)
is analytic in U, with g(0) = h(0). Noting that f(z) € #}!(ou,0,B) (0 < |sino] <
B < 1), hence by Theorem 1 and (3.15), we obtain

4+ zq'(z)

W ‘<hﬁ( )COS(X+iSiH(X,

where hg(z) is given by (2.2) and (2.3).
Since the function Q(z) = e *(h(z)cos o +isin ) is convex (and univalent) in
U and

B2 —sin’a

coso+ /B2 —sin’ o

by (3.7)-(3.9) and (3.12), therefore, by Lemma 1, we have

i 2(Wp (01)Lef(2))"

q(z)=¢ < h(z)coso +isinc,

ng (061 )ch(Z)

thatis L.f(z) € #;!(ou, e, ) on using Theorem 1. This completes the proof. [

R{c+0(2)} > Re+ >0 (zel)

THEOREM 5. Let ¢ = % —1 (> —1). Then f(z) € #;(ou, 0, B) if and only if
Lef(z) € #(oa + 1,0, B).

Proof. If f(z) € #}!(ou, ., B), it follows from Theorem 1 that

io2(Wp (0n)f(2))’ .
% ——————— < hg(z)coso +isina,
[ZICE I
where hg(z ) 1s given by (2.2).
Let ¢ = 71 — 1. It follows from (3.3) and (3.13) that

W) (1) Lef(z) + (Wi (0n)Le f(2))
c+1

Wy(ou)f(z) =

(1 - %) W(on)Lef(2) + %ZWV,? (en)Lef ()

=Wy +1)Lef(z) (z€U).
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Hence

o 2Z(W 1)L ! o 2(W !
WO 4 VLS Q) ot W@ @)
Wp (on +1)Lef(2) Wp (0u)f(2)
and it follows from Theorem 1 that L.f(z) € #,(ou + 1,,B).
Conversely, if L.f(z) € #, (o1 + 1,0, ), then it is easy to verify that f(z) €
Wy (ou,a,PB) also. This completes the proof. [
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