
Journal of
Classical

Analysis

Volume 5, Number 1 (2014), 15–24 doi:10.7153/jca-05-02

AN ASYMPTOTIC EXPANSION FOR THE

GENERALISED QUADRATIC GAUSS SUM REVISITED

R. B. PARIS

Abstract. An asymptotic expansion for the generalised quadratic Gauss sum

SN (x,θ ) =
N

∑
j=1

exp(πix j2 +2πi jθ ),

where x , θ are real and N is a positive integer, is obtained as x → 0 and N → ∞ such that
Nx is finite. The form of this expansion holds for all values of Nx+ θ and, in particular, in the
neighbourhood of integer values of Nx+θ . A simple bound for the remainder in the expansion
is derived. Numerical results are presented to demonstrate the accuracy of the expansion and the
sharpness of the bound.

1. Introduction

We consider the asymptotic expansion of the generalised quadratic Gauss sum

SN(x,θ ) =
N

∑
j=1

f ( j), f (t) := exp(π ixt2 +2π iθ t), 0 < x < 1, − 1
2 � θ � 1

2 , (1.1)

where N is a positive integer, as x → 0 and N → ∞ , such that the quantity Nx is finite.
Applications of the above exponential sum arise in various number-theoretic contexts
and in the study of disorder in dynamical systems.

The sum SN(x,θ ) has a long history that goes back to Gauss, who evaluated the
sum corresponding to x = 2/N when θ = 0. The results of Gauss were generalised for
rational x = M/N , where M and N are relatively prime, into the well-known Cauchy-
Kronecker formula [1]

SN(x,0) =
eπ i/4
√

x
SM

(
−1

x
,0

)
(x = M/N, MN even).

When its terms are regarded as unit vectors in the complex plane, the patterns produced
by the partial sums of (1.1) for fixed x as N → ∞ often result in a superposition of
spirals (or “curlicues”) that can be highly intricate; see [2, 3, 4, 9]. The scalings of this
hierarchy of spirals are found to depend delicately on the arithmetic nature of x [3].
When x = p/q , where p and q are relatively prime, and θ = 0 the trace is relatively
simple: when pq is even the spiral pattern is regular and ‘diffuses’ in the complex
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plane away from the origin in blocks, whereas when pq is odd the pattern is periodic
and repeats itself indefinitely as N → ∞ . When x is irrational a more complicated
pattern emerges that seems to exhibit a random-walk behaviour; see [3, 12].

Estimates for the growth of SN(x,θ ) when N is large and x is fixed in the range
0 < x < 1 are obtained by employing a renormalisation process based on the approxi-
mate functional relation [7]

SN(x,θ ) =
e−π iθ2/x+π i/4

√
x

S�Nx�

(
−1

x
,

θ
x

)
+O

(
1+ |θ |√

x

)
. (1.2)

This transformation shows that the sum SN(x,θ ) over N terms can be approximated
by a similar sum taken over �Nx� terms with the variable x replaced by −1/x and θ
by θ/x . Repeated application of (1.2), making use of the simple symmetry properties
satisfied by (1.1) to maintain x in the interval 0 < x < 1 at each stage, enables the
representation of SN(x,θ ) in terms of a steadily decreasing number of terms. In this
way it was shown in [7] that SN(x,θ ) = o(N) for any irrational x , with more precise
order estimates depending on the detailed arithmetic structure of x .

The problem that concerns us here is the asymptotic estimation of SN(x,θ ) for
x → 0 when N → ∞ such that Nx is finite. An early paper dealing with estimates for
SN(x,θ ) when 0 < x < 1 is that of Fiedler et al. [6], and more recently that in [8, §2.2],
but their error terms are too large for our purposes when x → 0. Following on from
the gross estimates in [9], the leading terms in the expansion in the case θ = 0 were
obtained in [13] when Nx < 1. An expansion for SN(x,0) valid as x → 0 and finite
Nx was obtained in [3] and [5, Theorem 4], although the remainder term was left as an
order estimate.

In this paper, we revisit the expansion of SN(x,θ ) as x → 0 and N → ∞ such
that Nx = O(1) obtained in [12]. The sum SN(x,θ ) is expressed exactly as a series
of complementary error functions with argument proportional to x−1/2 , so that in the
small-x limit we may employ the well-known asymptotics of the complementary error
function in the form [11, §7.12(i)]

ez2erfc(z) =
1√
π

n−1

∑
r=0

(−)r Γ(r+ 1
2 )

Γ( 1
2 )

z−2r−1 + T̂n(z) (|z| → ∞), (1.3)

where

|T̂n(z)| �
Γ(n+ 1

2 )
π

|z|−2n−1 (|arg z| � 1
4 π) (1.4)

and n is a positive integer; see also [10, p. 111]. In [12], the coefficients in the resulting
expansion were expressed in terms of even-order derivatives of cotπξ , where ξ =
Nx + θ , which presented a complication when ξ passes through integer values. In
addition, the remainder in the expansion was not expressed as a convenient bound.
Here we remedy these deficiencies and give the expansion in a form with coefficients
that do not present any difficulty in computation in the neighbourhood of integer values
of ξ .

In order to make the paper reasonably self-contained, we repeat in Section 2 the
derivation of the representation of SN(x,θ ) in terms of complementary error functions
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given in [12]. In Section 3, we establish the central result of the paper in the following
theorem.

THEOREM 1. Let SN(x,θ ) be the sum defined in (1.1), where 0 < x < 1 , − 1
2 �

θ � 1
2 and N is a positive integer. Further, let ξ := Nx+ θ , M = [ξ ] be the nearest

integer part of ξ and ε := ξ −M, where − 1
2 < ε � 1

2 . Then, as x → 0 and N → ∞ ,
such that Nx is finite, we have the expansion valid for M � 0 and n � 1

SN(x,θ )− e−π iθ2/x+π i/4
√

x
SM

(
−1

x
,

θ
x

)
− 1

2
( f (N)−1)

− eπ i/4

2
√

x
{E(θ )− f (N)E(ε)}=

1
2π i

n−1

∑
r=0

Γ(r+ 1
2 )

Γ( 1
2 )

( x
π i

)r
Cr +Rn,

(1.5)
where E(t) := e−π it2/x erfc(eπ i/4t

√
π/x) . The coefficients Cr are given by

Cr = f (N)Δ−
r (ε)−Δ−

r (θ ) (r � 0) (1.6)

and the remainder Rn satisfies the bound

|Rn| �
( 1

2 )n

2π

( x
π

)n
(Δ+

n (ε)+ Δ+
n (θ )) (n � 1), (1.7)

where the quantities Δ±
r (λ ) are defined in (3.1) and (3.2).

In Section 4, we present numerical results to demonstrate the accuracy of the above
expansion and also the sharpness of the bound on the remainder term Rn .

2. A representation for SN(x,θ )

Let ξ := Nx + θ , M = [ξ ] , ε = ξ − [ξ ] , where [ξ ] denotes the nearest integer
part of ξ and − 1

2 < ε � 1
2 . Define also the function

E(t) := e−π it2/x erfc(ωt
√

π/x), ω = e−π i/4,

E(0) = 1, E(−t) = 2e−π it2/x −E(t), (2.1)

where erfc is the complementary error function. The reflection formula follows from
the well-known result erfc(z) = 2− erfc(−z) . From (1.3), we have the expansion for
x−1/2t → +∞

E(t) =
1√
π

n−1

∑
r=0

(−)r Γ(r+ 1
2 )

Γ( 1
2 )

(
ix

πt2

)r+ 1
2

+Tn(t) (n = 1,2, . . .), (2.2)
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where from (1.4)

|Tn(t)| �
Γ(n+ 1

2 )
π

( x
πt2

)n+ 1
2
. (2.3)

An application of Cauchy’s theorem shows that

N−1

∑
j=1

f ( j) =
1
2i

∫
C

cot(πt) f (t)dt,

where f (t) is defined in (1.1) and C is a closed path encircling only the poles of the
integrand at t = 1,2, . . . ,N − 1. We deform the path C into a parallelogram with two
sides inclined at 1

4 π to the real axis; see [12]. The vertices are situated at ±Peπ i/4 ,
N±Peπ i/4 (P > 0) and there are semi-circular indentations of radius δ < 1 around the
points t = 0 and t = N . Then, denoting the upper and lower halves of the contour by
C1 and C2 respectively, we find following the discussion given in [10, p. 290] that

N−1

∑
j=1

f ( j) =
∫ N−δ

δ
f (t)dt +

∫
C1

f (t)
1− e−2π it dt +

∫
C2

f (t)
e2π it −1

dt.

Now let P → ∞ , so that the contributions from the parts of C1 and C2 parallel
to the real axis vanish on account of the exponential decay of the factor exp(π ixt2) ,
and let δ → 0. The integrals around the indentation linking δeπ i/4 with δ and δ with
−δeπ i/4 then tend to − 1

8 f (0) and − 3
8 f (0) , respectively; similarly for the indentation

at t = N the integrals contribute 1
2 f (N) . Thus we obtain

SN(x,θ ) =
N

∑
j=1

f ( j) = 1
2 ( f (N)−1)+ JN + eπ i/4(IN − I0), (2.4)

where the integral

JN :=
∫ N

0
f (t)dt =

eπ i/4

2
√

x
{E(θ )− f (N)E(ξ )} (2.5)

and we have defined

I j :=
∫ ∞

0

Fj(τ)
e2πωτ −1

dτ ( j = 0,N)

with

Fj(τ) := f ( j− τeπ i/4)− f ( j + τeπ i/4) = 2e−πxτ2
f ( j)sinh{2π( jx+ θ )ωτ}.

It now remains to evaluate the integrals I0 and IN . If we expand the factor
(e2πωτ −1)−1 as a finite geometric series together with a remainder we find, for positive
integer K ,

I j =
K

∑
k=1

∫ ∞

0
e−2πkωτFj(τ)dτ +

∫ ∞

0

e−2πKωτFj(τ)
e2πωτ −1

dτ. (2.6)
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The first term on the left-hand side of this expression becomes upon insertion of the
definition of Fj(τ)

2 f ( j)
K

∑
k=1

∫ ∞

0
e−πxτ2−2πkωτ sinh{2π( jx+θ )ωτ}dτ

=
f ( j)
2
√

x

K

∑
k=1

{E(k− jx−θ )−E(k+ jx+θ )}. (2.7)

The remainder term in (2.6) is given by

HK :=
∫ ∞

0

e−2πKωτFj(τ)
e2πωτ −1

dτ = f ( j)
∫ ∞

0
e−πτ(xτ+ω)e−2π(K− jx−θ)ωτ G(τ)dτ,

where
G(τ) := e−2π( jx+θ)ωτ sinh{2π( jx+ θ )ωτ}/sinh(πωτ).

Now G(0) = 2( jx+θ ) and G(τ) ∼ e−πωτ as τ → +∞ . It is also easy to see (we omit
these details) that |G(τ)| � G(0) for τ ∈ [0,∞) . Then, provided K > jx+θ ( j = 0,N )
it follows that

|HK | <
∫ ∞

0
e−2π(K− jx−θ)ωrτ |G(τ)|dτ � 2

1
2 G(0)

2π(K− jx−θ )

where ωr = 1/
√

2, with the result that HK → 0 as K → ∞ . Therefore, from (2.7), we
obtain

I j =
f ( j)
2
√

x

∞

∑
k=1

{E(k− jx−θ )−E(k+ jx+ θ )} ( j = 0,N). (2.8)

From (2.2) we see that the terms in (2.8) are O(k−2) as k → ∞ .
Substitution of (2.8) with j = 0 and j = N into (2.4), together with (2.5), then

yields the desired representation of SN(x,θ ) in terms of complementary error functions.

3. The expansion of SN(x,θ ) as x → 0 with Nx finite

We define the quantities for |λ | < 1

Δ+
r (λ ) := ζ (2r+1,1+ λ )+ ζ (2r+1,1−λ ) (r � 1), (3.1)

and

Δ−
r (λ ) :=

⎧⎨
⎩

π cotπλ −λ−1 (r = 0)

ζ (2r+1,1+ λ )− ζ (2r+1,1−λ ) (r � 1),
(3.2)

where ζ (s,a) = ∑∞
k=0(k + a)−s (ℜ(s) > 1) is the Hurwitz zeta function. Note that

Δ−
r (0) = 0 for r � 0 and Δ+

r (0)= 2ζ (2r+1) , where ζ (s) is the Riemann zeta function.
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When j = 0, we have from (2.8)

I0 =
1

2
√

x

∞

∑
k=1

{E(k−θ )−E(k+ θ )}.

In the limit x → 0, the arguments of the complementary error functions contained in
E(k±θ ) have large modulus for k � 1 and phase equal to − 1

4 π , since − 1
2 � θ � 1

2 .
Employing the expansion (2.2), we then obtain

I0 = −eπ i/4

2π

n−1

∑
r=1

Γ(r+ 1
2 )

Γ( 1
2 )

( x
π i

)r
cr(θ )+Rn(θ ) (x → 0), (3.3)

where

cr(θ ) =
∞

∑
k=−∞
k �=0

(k+ θ )−2r−1 =
∞

∑
k=0

(k+1+ θ )−2r−1−
∞

∑
k=0

(k+1−θ )−2r−1

= Δ−
r (θ ). (3.4)

In the case r = 0 the sums must be interpreted in the principal value sense lim
s→∞

∑s
k=−s ak

to yield the evaluation c0(θ ) = π cotπθ − 1/θ . The remainder term Rn(θ ) is given
by

Rn(θ ) =
1

2
√

x

∞

∑
k=1

{Tn(k−θ )−Tn(k+ θ )}

and, from (2.3), therefore satisfies the bound

|Rn(θ )| � ( 1
2 )n

2π

( x
π

)n ∞

∑
k=−∞
k �=0

|k+ θ |−2n−1 =
( 1

2 )n

2π

( x
π

)n
Δ+

n (θ ), (3.5)

where (a)r = Γ(a+ r)/Γ(a) is the Pochhammer symbol.
Proceeding in a similar manner when j = N , we have

IN =
f (N)
2
√

x

∞

∑
k=1

{E(k− ξ )−E(k+ ξ )}

=
f (N)
2
√

x

{
M

∑
k=1

{2e−π i(k−ξ )2/x −E(ξ − k)}+
∞

∑
k=M+1

E(k− ξ )−
∞

∑
k=1

E(k+ ξ )

}
.

Here we have made use of the reflection formula in (2.1) to separate off the error func-
tions in E(k− ξ ) corresponding to k � M (when M � 1). Upon noting that

f (N)e−π i(k−ξ )2/x = e−π iθ2/x e−π ik2/x+2πkiθ/x,

we obtain when M � 1

IN =
e−π iθ2/x
√

x
SM

(
−1

x
,

θ
x

)
− f (N)

2
√

x

{
∞

∑
k=1

E(k+ ξ )+
M

∑
k=1

E(ξ − k)−
∞

∑
k=M+1

E(k− ξ )

}
.

(3.6)
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If we now extract from the second sum in curly braces in (3.6) the error function E(ξ −
k) corresponding to k = M (that is, E(ε)) and use the evaluation of the integral JN in
(2.5), we can write

eπ i/4IN + JN =
e−π iθ2/x+π i/4

√
x

SM

(
−1

x
,

θ
x

)
+

eπ i/4

2
√

x
{E(θ )− f (N)E(ε)}

− eπ i/4 f (N)
2
√

x

{
∞

∑
k=0

E(k+ ξ )+
M−1

∑
k=1

E(ξ − k)−
∞

∑
k=M+1

E(k− ξ )

}
, (3.7)

where the term involving f (N)E(ξ ) from JN has been absorbed into the first sum in
curly braces.

Then in a similar manner to the determination of the expansion of I0 in (3.3) we
find

1
2
√

x

{
∞

∑
k=0

E(k+ ξ )+
M−1

∑
k=1

E(ξ − k)−
∞

∑
k=M+1

E(k− ξ )

}

=
eπ i/4

2π

n−1

∑
r=0

Γ(r+ 1
2 )

Γ( 1
2 )

( x
π i

)r
cr(ε)+Rn(ε), (3.8)

where, recalling that ξ = M + ε , M = [ξ ] ,

cr(ε) =
∞

∑
k=−∞
k �=−M

(k+ ξ )−2r−1 =
∞

∑
k=−∞
k �=0

(k+ ε)−2r−1 = Δ−
r (ε) (3.9)

and the remainder Rn(ε) satisfies the bound

|Rn(ε)| �
( 1

2 )n

2π

( x
π

)n ∞

∑
k=−∞
k �=−M

|k+ ξ |−2n−1 =
( 1

2 )n

2π

( x
π

)n ∞

∑
k=−∞
k �=0

|k+ ε|−2n−1

=
( 1

2 )n

2π

( x
π

)n
Δ+

n (ε). (3.10)

Combination of (3.7) and (3.8) then yields the expansion when M � 1

eπ i/4IN + JN =
e−π iθ2/x+π i/4

√
x

SM

(
−1

x
,

θ
x

)
+

eπ i/4

2
√

x
{E(θ )− f (N)E(ε)}

+
1

2π i

n−1

∑
r=0

Γ(r+ 1
2 )

Γ( 1
2 )

( x
π i

)r
cr(ε)+Rn(ε). (3.11)

In the case M = 0 (when ξ = ε ), the sum SM ≡ 0 and from (3.6) we have

eπ i/4IN + JN =
eπ i/4

2
√

x
{E(θ )− f (N)E(ε)}− eπ i/4 f (N)

2
√

x

{
∞

∑
k=1

E(k+ ε)−
∞

∑
k=1

E(k− ε)

}
.
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It is easily seen that we obtain the same expansion as (3.11).
The form of the coefficients in (3.4) and (3.9) with r � 1 presents no difficulty in

computation in the neighbourhood of integer values of ξ where ε 
 0, in contrast to
those given in [12] which involved even derivatives of cotπξ . Although the coefficients
c0(ε) and c0(θ ) have a removable singularity at ε = 0 and θ = 0 their computation is
straightforward.

If we now define the coefficients Cr and the remainder Rn by

Cr := f (N)cr(ε)− cr(θ ), Rn := eπ i/4{ f (N)Rn(ε)−Rn(θ )},

then we see that
Cr = f (N)Δ−

r (ε)−Δ−
r (θ ) (r � 0) (3.12)

and

|Rn| � |Rn(ε)|+ |Rn(θ )| � ( 1
2 )n

2π

( x
π

)n {Δ+
n (ε)+ Δ+

n (θ )} (n � 1). (3.13)

Combination of (2.4), (3.3) and (3.11), together with the above definitions of Cr and
the bound on Rn , then gives the expansion of SN(x,θ ) stated in Theorem 1. We remark
that the terms E(θ ) and E(ε) have been left unexpanded as x → 0 in (3.11) and in
Theorem 1, since for small values of θ and ε = o(x1/2) these quantities can no longer
be approximated by (2.2).

4. Numerical results and discussion

In order to demonstrate the accuracy of the expansion in Theorem 1, we define the
quantity S by

S := SN(x,θ )− e−π iθ2/x+π i/4
√

x
SM

(
−1

x
,

θ
x

)
− 1

2
( f (N)−1)− eπ i/4

2
√

x
{E(θ )− f (N)E(ε)}.

(4.1)
Then from Theorem 1 we have the expansion as x → 0 and N → ∞ such that Nx is
finite

S =
1

2π i

n−1

∑
r=0

Γ(r+ 1
2 )

Γ( 1
2 )

( x
π i

)r
Cr +Rn, (4.2)

where the coefficients Cr are defined in (1.6) and the remainder Rn satisfies the bound
in (1.7). We remark that the bound in (1.7) is explicitly independent of N . In Table 1,
we show the absolute value of the error in the computation of S using the expansion
(4.2) truncated after n terms for two different sets of values of x , θ , summation index
N and different levels n . The exact value of SN(x,θ ) was obtained by high-precision
summation of (1.1). In Table 2, we compare the absolute values of the remainder Rn

calculated from (4.2) and its bound to illustrate the sharpness of (1.7).
In the case of the classical quadratic Gauss sum (θ = 0), we have ξ = Nx = M+ε

with − 1
2 < ε � 1

2 (when M � 1). From (1.5) as x→ 0, N → ∞ such that Nx is finite,
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Table 1: Values of the absolute error in the computation of S by (4.2) for different truncation
index n.

x = 1/(250
√

π) x = 1/(250
√

π) x = 1/(250
√

3)
N = 7300, θ = −0.125 N = 7430, θ = 0.25 N = 6000, θ = 0

n ξ .= 16.349 ξ .= 17.018 ξ .= 6.928

1 2.216×10−4 1.198×10−4 1.386×10−5

2 5.642×10−7 2.527×10−7 1.221×10−8

3 2.346×10−9 8.332×10−10 1.590×10−11

4 1.369×10−11 3.752×10−12 2.708×10−14

6 9.569×10−16 1.509×10−16 1.420×10−19

8 1.334×10−19 1.194×10−20 1.360×10−24

10 3.096×10−23 1.568×10−24 2.082×10−29

Table 2: The absolute values of Rn and the bound in (1.7) for different truncation index n.

x = 1/(250
√

π), θ = −0.125 x = 1/(250
√

π), θ = 0.25
N = 7300, ξ .= 16.349 N = 7430, ξ .= 17.018

n |Rn| Bound |Rn| Bound

1 2.216×10−4 4.062×10−4 1.200×10−4 3.272×10−4

2 5.642×10−7 7.077×10−7 2.527×10−7 4.137×10−7

4 1.369×10−11 1.435×10−11 3.752×10−12 4.309×10−12

6 9.569×10−16 9.691×10−16 1.509×10−16 1.570×10−16

8 1.334×10−19 1.339×10−19 1.194×10−20 1.208×10−20

10 3.096×10−23 3.100×10−23 1.568×10−24 1.574×10−24

we obtain the expansion

SN(x,0) =
eπ i/4
√

x
SM

(
−1

x
,0

)
+

1
2
( f (N)−1)+

eπ i/4

2
√

x
{1− f (N)E(ε)}

+
f (N)
2π i

n−1

∑
r=0

Γ(r+ 1
2 )

Γ( 1
2 )

( x
π i

)r
cr(ε)+R′

n,

(4.3)
where f (N) = exp(π ixN2) . From (1.7) and the fact that I0 ≡ 0 when θ = 0, we have

|R′
n| �

( 1
2 )n

2π

( x
π

)n
Δ+

n (ε). (4.4)

We emphasise that the expansion in (4.3) holds for all finite values of Nx ; see Table
1. When M = [ξ ] = 0 and 0 < ε � 1

2 — that is, when Nx < 1
2 — the sum SM =



24 R. B. PARIS

0 . If, in addition, E(ε) in (4.3) is expanded by means of (2.2) then we obtain an
expansion equivalent to that in [5, Theorem 4], albeit with a bound for the remainder
rather than an order estimate and coefficients cr expressed in a different form. However,
the expansion of E(ε) by (2.2) is only applicable when ε � x1/2 ; that is, when N �
x−1/2 .

Finally, we remark that since Cr ∼ (1−|ε|)−2r−1 for r � 1 (when ε is bounded
away from zero), the optimal truncation index r0 of the sum in (4.2) (corresponding
to truncation at, or near, the term of least magnitude) is given by r0 
 π(1− |ε|)2/x .
This shows that the values of the truncation index n in Table 1 are highly sub-optimal
and also gives an indication of the enormous accuracy that could be obtained from the
expansion (4.2).
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