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PROBABILITY DISTRIBUTIONS OF EXTREMES

OF SELF–SIMILAR GAUSSIAN RANDOM FIELDS

YURIY KOZACHENKO AND VITALII MAKOGIN

Abstract. We have obtained some upper bounds for probability distributions of extremes of a
self-similar Gaussian random field with stationary rectangular increments, which is defined on
a compact space. In the paper we also present the probability distributions of extremes for
normalized self-similar Gaussian random fields with stationary rectangular increments defined
on R

2
+ . In our work we have used the techniques developed for self-similar fields and based on

the classical series analysis of the supremum distribution for Gaussian fields.
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