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PROBABILITY DISTRIBUTIONS OF EXTREMES

OF SELF–SIMILAR GAUSSIAN RANDOM FIELDS

YURIY KOZACHENKO AND VITALII MAKOGIN

Abstract. We have obtained some upper bounds for probability distributions of extremes of a
self-similar Gaussian random field with stationary rectangular increments, which is defined on
a compact space. In the paper we also present the probability distributions of extremes for
normalized self-similar Gaussian random fields with stationary rectangular increments defined
on R

2
+ . In our work we have used the techniques developed for self-similar fields and based on

the classical series analysis of the supremum distribution for Gaussian fields.

1. Introduction

A self-similar process is a stochastic process that is invariant in distribution under
suitable scaling of time and space. A random process {X(t),t ∈ R} is a self-similar

process with index H > 0 if for all a > 0: {X(t),t ∈ R} d= {a−HX(at), t ∈ R}, where

“
d=” denotes equality of finite-dimensional distributions. We refer to Embrechts and

Maejima [7] and Samorodnitsky and Taqqu [16] for extensive surveys of results and
techniques for self-similar processes.

In this paper we consider self-similar random fields, which generalize the self-
similar random processes. More precisely, we deal with anisotropic self-similar ran-
dom fields, which means that their indexes of self-similarity are different for different
coordinates. We denote R+ = [0,+∞).

DEFINITION 1. A real valued random field {X(t), t = (t1, . . . ,tn) ∈ R
n
+} is a self-

similar field with index H = (H1, . . . ,Hn) ∈ (0,+∞)n if{
X(a1t1, . . . ,antn), t ∈ R

n
+
} d=

{
aH1

1 · · ·aHn
n X(t), t ∈ R

n
+

}
for all a1 > 0, . . . ,an > 0.

An interest to anisotropic self-similar random fields is motivated by applications
coming from climatological and environmental sciences (see [13, 14]). Several authors
have proposed to apply such random fields for modeling phenomena in spatial statistics,
stochastic hydrology and image processing (see [3, 4, 5]).
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DEFINITION 2. A normalized fractional Brownian sheet with Hurst index H =
(H1, . . . ,Hn) , 0 < Hi < 1, i = 1,n, is a centered Gaussian randomfield BH = {BH(t), t∈
R

n
+} with the following covariance function

E(BH(t)BH(s)) = 2−n
n

∏
i=1

(|ti|2Hi + |si|2Hi −|ti− si|2Hi
)
, t,s ∈ R

n
+.

It is a self-similar field with index H = (H1, . . . ,Hn) by Definition 1.
Further in the paper, we assume that the fields under consideration satisfy Defini-

tion 1. Moreover, we shall consider only the case n = 2 since switching to the parameter
of a higher dimension is rather technical.

Denote 0 = (0,0).

DEFINITION 3. Let X = {X(t), t ∈ R
2
+} be a self-similar field with index H =

(H1,H2) ∈ (0,+∞)2. For any u = (u1,u2) ∈ R
2
+ and any v = (v1,v2) ∈ R

2
+ such that

v1 > u1, v2 > u2 let us define

ΔuX(v) = X(v1,v2)−X(u1,v2)−X(v1,u2)+X(u1,u2).

The field X admits stationary rectangular increments if for any u = (u1,u1) ∈ R
2
+

{ΔuX(u+h),h ∈ R
2
+} d= {Δ0X(h),h ∈ R

2
+}.

The fractional Brownian sheet has stationary rectangular increments. The proof of
this property for the R

2
+ case can be found in the paper [2]. A similar property for the

case n > 2 can be easily proved as well.
The aim of the paper is to obtain the upper bound for probability distributions of

extremes of normalized self-similar Gaussian random fields with stationary rectangular
increments. These probabilities can be used for estimation of asymptotic growth of
sample paths of a fractional Brownian sheet. Furthermore, these probabilities can be
applied in investigation of asymptotic behavior of a fractional derivative of a fractional
Brownian motion, which is used in the analysis of a non-standard maximum likelihood
estimate for unknown drift parameter in the stochastic differential equations driven by
the fractional Brownian motion (see Kozachenko et al. [11]).

To achieve this goal we use the results from the theory of extremes for Gaussian
processes (Kozachenko et al. [12]). This theory, in turn, is based on the theory of metric
spaces. To apply these results we need to choose an appropriate compact metric space
(T,ρ) and to estimate the variance of the increments. Since we work with anisotropic
field we expect that chosen metric has different geometric characteristics along different
directions. So, we use two metrics ρ1(t,s) = maxi=1,2 |ti − si| , t , s ∈ T ⊂ R

+
2 and

ρ2(t,s) = ∑i=1,2 |ti − si|Hi , t , s ∈ T ⊂ R
+
2 , where H = (H1,H2) ∈ (0,1)2 is the index

of self-similarity of the corresponding random field. The second metric has played an
important role in studying anisotropic Gaussian fields and self-similar random fields
(see [18]).

There exist many papers devoted to a study of the distribution of the supremum
of Gaussian random processes (for example [1, 15]). Exponential estimates of the tails
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of supremum distributions have been established for certain classes of Gaussian ran-
dom processes ([6, 9]). I this paper we establish some properties of the covariance
functions for considered centered Gaussian self-similar random fields. Thus we obtain
more accurate inequalities for supremum distributions for such fields.

The main point in the proofs of this paper is the self-similar property of considered
fields. This yields the similar behavior of sample paths on compact subsets. From the
theory of extremes for Gaussian processes we get the upper bounds for the probabilities
defined on compact sets. Hence we expand R

2
+ into the union of the compact subsets

and apply the inequalities for probabilities in each subset. We use the techniques of the
self-similar fields based on the classical series analysis for finding the upper bound of
the supremum distribution for Gaussian fields. Several results in this paper are obtained
by the optimization procedure.

The paper is organized as follows. In Section 2, we present the probability dis-
tributions of extremes of the Gaussian fields defined on compact spaces and a bound
for the variance of increments in the case of a self-similar field. In Section 3 we estab-
lish the probability distributions of extremes of the fields defined on a compact metric
space (T,ρ1) and derive the upper bounds for such probabilities of the normalized field
defined on R

2
+. In Section 4 we obtain the probability distribution of extremes of the

normalized self-similar Gaussian field defined on a metric space (T,ρ2).

2. Probability distributions of extremes of a Gaussian field defined on a compact
space

Let (Ω,F,P) be a complete probability space satisfying the standard assumptions.
It is assumed that all processes under consideration are defined on this space.

The next theorem follows from Theorem 2.8 of [17] or it could be obtained from
Lemma 3.2 of [12].

THEOREM 2.1. Let (T,ρ) be a compact metric space and X = {X(t), t ∈ T)}
be a separable centered Gaussian process. Suppose there exists such a continuous
monotonically increasing function σ : R+ → (0,+∞) , σ(0) = 0 that the following
inequality holds

sup
ρ(t,s)�h

(
E(X(t)−X(s))2)1/2 � σ(h). (1)

Let

β = σ
(

inf
s∈T

sup
t∈T

ρ(t,s)
)

, γ = sup
u∈T

(
E[X2(u)]

)1/2
. (2)

We denote as N(ε) the minimal number of closed ρ -balls with radius ε needed to
cover the space (T,ρ) . Let r : [1,+∞) → (0,+∞) be such a continuous function that
a function r(et) , t > 0 is convex. If∫ +∞

0
r(N(σ (−1)(u)))du < ∞,
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then for all λ > 0 , 0 < p < 1 , ε > 0

IT(ε) := P
{

sup
t∈T

|X(t)| > ε
}

� 2exp

{
1
2

λ 2γ2

1− p
+ p

λ 2β 2

2(1− p)2 −λ ε
}
×

×r(−1)
(

1
β p

∫ β p

0
r
(
N(σ (−1)(u))

)
du

)
.

(3)

We shall minimize the right-hand side of (3) with respect to λ > 0.

COROLLARY 2.2. Under the conditions of Theorem 2.1 we have

IT(ε) � 2exp

⎧⎨⎩− ε2(1− p)

2
(

γ2 + β 2 p
1−p

)
⎫⎬⎭r(−1)

(
1

β p

∫ β p

0
r
(
N(σ (−1)(u))

)
du

)
. (4)

Proof. Consider the right-hand side of (3). To prove the corollary it is sufficient to
minimize the following value

1
2

λ 2γ2

1− p
+ p

λ 2β 2

2(1− p)2 −λ ε.

Differentiating this expression with respect to λ , we get

d
dλ

(
1
2

λ 2γ2

1− p
+ p

λ 2β 2

2(1− p)2 −λ ε
)

=
λ γ2

1− p
+ p

λ β 2

(1− p)2 − ε.

Then, the minimum is achieved if

λ = λ ∗ = − ε(1− p)

2
(

γ2 + β 2p
1−p

) .

If we replace λ by λ ∗ in (3), we obtain (4). �
Throughout the paper the field X = {X(t), t ∈ R

2
+} is a Gaussian self-similar ran-

dom field with index H = (H1,H2)∈ (0,1)2 and with stationary rectangular increments.
Denote 1 = (1,1). Evidently,

E[X(t)]2 = t2H1
1 t2H2

2 E[X2(1)], t = (t1,t2) ∈ R
2
+.

In what follows we need some auxiliary results.

LEMMA 2.3. For all s = (s1,s2) ∈ R
2
+, t = (t1,t2) ∈ R

2
+ we have

E [X(t)−X(s1,t2)]
2 = |t1 − s1|2H1 t2H2

2 EX2(1), (5)

E [X(s1,t2)−X(s)]2 = |t2 − s2|2H2s2H1
1 EX2(1). (6)
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Proof. Without loss of generality suppose that s1 � t1. It follows from self-similarity
that for any s ∈ R+ : X(s,0) = X(0,s) = 0 a.s. Then the left-hand side of (5) equals

E(X(t)−X(t1,0)−X(s1,t2)+X(s1,0))2 = E(Δs1,0X(t))2 .

Stationarity of the increments implies that

E(Δs1,0X(t))2 = E(Δ0X(t1− s1,t2))
2 = E(X(t1− s1,t2))

2 .

Further, self-similarity implies that

E(X(t)−X(s1,t2))
2 = E(X(t1− s1,t2))

2 = |t1− s1|2H1t2H2
2 EX2(1).

The proof of the equality (6) can be done in a similar way. �

LEMMA 2.4. Assume that EX2(1)= 1. For all s = (s1,s2)∈R
2
+, t= (t1, t2)∈R

2
+

we have (
E [X(t)−X(s)]2

)1/2
� |t1− s1|H1 tH2

2 + |t2− s2|H2sH1
1 . (7)

Proof. Using the Minkowski inequality, we get(
E [X(t)−X(s)]2

)1/2
=
(
E [X(t)−X(s1,t2)+X(s1,t2)+X(s)]2

)1/2

�
(
E [X(t)−X(s1,t2)]

2
)1/2

+
(
E [X(s1, t2)−X(s)]2

)1/2
.

It follows from Lemma 2.3 that

E [X(t)−X(s1,t2)]
2 = |t1− s1|2H1 t2H2

2 ,

and
E [X(s1,t2)−X(s)]2 = |t2 − s2|2H2s2H1

1 .

Hence, inequality (7) holds. �

3. Random fields on space (T,ρ1)

In this section we put ρ(t,s) = ρ1(t,s) = maxi=1,2 |ti− si| , t , s ∈ T ⊂ R
+
2 .

COROLLARY 3.1. Let σ(h) = Chα , 0 < α � 1 , C > 0 and T = [0,T ]2 in Theo-
rem 2.1. Then

I[0,T ]2(ε) � 8exp

⎧⎨⎩− ε2(1− p)

2
(

γ2 + C2T 2α p
22α (1−p)

)
⎫⎬⎭
(

e
p

)2/α
(8)

for all 0 < p < 1 and ε > 0 .
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Proof. We have

β = C

(
T
2

)α
, N(u) �

(
TC1/α

2u1/α +1

)2

.

Put r(v) = vμ , v ∈ R+, 0 < μ < α/2. It follows from Corollary 2.2 that

I[0,T ]2(ε) � 2exp

⎧⎨⎩− ε2

2
(

γ2 + C2T 2α p
22α (1−p)

)
⎫⎬⎭Z(p),

where

Z(p) =
(

1
β p

∫ β p

0

(
N(σ (−1)(u))

)μ
du

)1/μ

. (9)

Since u � β p, we have

TC1/α

2u1/α � TC1/α

2(β p)1/α >
2TC1/α

2TC1/α = 1.

Therefore, we obtain

Z(p) �

⎛⎝ 1
β p

∫ β p

0

(
TC1/α

2u1/α +1

)2μ

du

⎞⎠1/μ

�

⎛⎝ 1
β p

∫ β p

0

(
TC1/α

u1/α

)2μ

du

⎞⎠1/μ

= T 2C2/α 1

(β p)1/μ

(∫ β p

0

(
1

u1/α

)2μ
du

)1/μ

= T 2C2/α 1

(β p)2/α
1

(1−2μ/α)1/μ .

As μ → 0, we have

Z(p) � T 2C2/α 1

(β p)2/α e2/α = 4

(
e
p

)2/α
.

The last inequality completes the proof. �
From now on we denote H = min{H1,H2}, where H = (H1,H2) ∈ (0,1)2 is the

index of self-similarity.

PROPOSITION 3.2. Let T = [0,1]2 , ρ = ρ1, and X = {X(t), t ∈ R
2
+} be a cen-

tered Gaussian self-similar random field of order H = (H1,H2) ∈ (0,1)2 with station-
ary rectangular increments. Then for all 0 < p < 1 we have

P

{
sup

t∈[0,1]2
|X(t)| > ε

}
� 8exp

⎧⎨⎩− ε2(1− p)

2
(
1+ 4p

22H(1−p)

)
⎫⎬⎭
(

e
p

)2/H

, ε > 0. (10)
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Proof. We have from inequality (7) that for all t,s ∈ [0,1]2(
E [X(t)−X(s)]2

)1/2
� |t1− s1|H1 tH2

2 + |t2− s2|H2sH1
1

� |t1 − s1|H1 + |t2− s2|H2 � 2max
i=1,2

|ti− si|Hi � 2max
i=1,2

|ti− si|H = 2[ρ(s, t)]H .

Therefore, it follows from (1) that σ(h) = 2hH and γ = 1, where γ is defined in (2).
Thus, inequality (10) follows from (8), where C = 2, T = 1, α = H. �

Denote ST1T2 = [0,T1]× [0,T2] ⊂ R
2
+ , T1 > 0, T2 > 0. The self-similarity of a

random field gives a correspondence between the probability distributions of extremes
defined on [0,1]2 and in ST1T2 .

COROLLARY 3.3. Under the conditions of Proposition 3.2, we have

P

{
sup

t∈ST1T2

|X(t)|
TH1
1 TH2

2

> ε

}
= P

{
sup

t∈[0,1]2
|X(t)| > ε

}

� 8exp

⎧⎨⎩− ε2(1− p)

2
(
1+ 4p

22H (1−p)

)
⎫⎬⎭
(

e
p

)2/H

,

(11)

where ε > 0 , p ∈ (0,1).

Proof. It follows from self-similarity that
{

T−H1
1 T−H2

2 X (T1t1,T2t2) , t ∈ R+

}
and

{X(t), t ∈ R+} have the same finite dimensional distributions. Therefore,

sup
t∈ST1T2

|X(t)|
TH1
1 TH2

2

d= sup
t∈[0,1]2

|X(t)|.

Hence, inequality (11) follows from Proposition 3.2. �

COROLLARY 3.4. Let ε > 2. Under the conditions of Proposition 3.2 we have

P

{
sup

t∈[0,1]2
|X(t)| > ε

}
� 8e

2
H + 1

2 ε
4
H exp

{
− 3ε2

2(41−H +3)

}
. (12)

Proof.

Put p = 1/ε2 in (10). Then

P

{
sup

t∈[0,1]2
|X(t)| > ε

}
� 8exp

{
− ε2 −1

2(1+41−H(ε2 −1)−1)

}
e2/Hε4/H

� 8exp

{
− 3ε2

2(3+41−H)

}
e2/Hε4/He

3
2(3+41−H) � 8e

2
H + 1

2 ε
4
H exp

{
− 3ε2

2(41−H +3)

}
.
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The corollary is proved. �
We obtained the upper bound for the probability of exceeding the level ε > 2 by

a self-similar Gaussian random field defined on [0,1]2.
Now we prove the upper bound for such probabilities for normalized fields defined

on R
2
+. Denote x∨ y = max{x,y}.

THEOREM 3.5. Let X = {X(t), t∈ R
2
+} be a centered Gaussian self-similar ran-

dom field with index H = (H1,H2) ∈ (0,1)2 and stationary rectangular increments.
Let a function c : (0,+∞) → (0,+∞) and a sequence {bn, n ∈ N

⋃{0}} satisfy the
following conditions

(i) c is increasing on [1,+∞), c(t) → ∞ , t → ∞, and c
( 1

t

)
= c(t) , t � 1;

(ii) b0 = 1, bn < bn+1 , n ∈ N, bn → ∞ , n → ∞, and

M := inf
k∈0∪N

(
bk

bk+1

)H1+H2

c(bk) > 0;

(iii) for all D > 0 the following series converges

∞

∑
k=1

exp

{
−D

(
bH1+H2

k

bH1+H2
k+1

c(bk)

)}
< +∞.

Then for all ε > 2/M we have

P

{
sup
t∈R2

+

|X(t)|
(t1 ∨ t2)H1+H2c(t1 ∨ t2)

> ε

}

� 16e
2
H + 1

2 ε4/H
∞

∑
k=0

exp

⎧⎨⎩− 3ε2

2(41−H +3)

(
bH1+H2

k

bH1+H2
k+1

c(bk)

)2
⎫⎬⎭
(

bH1+H2
k

bH1+H2
k+1

c(bk)

) 4
H

=: Z̃(ε).
(13)

Proof. Denote

Bk = [0,bk+1]2 \ [0,bk)2, k � 0, B−k =
[
0,

1
bk

]2

\
[
0,

1
bk+1

)2

, k � 1.

Let us remark that T = [0,+∞)2 =
⋃+∞

k=−∞ Bk. Denote

P̃(T,ε) = P
{

sup
t∈T

|X(t)|
(t1∨ t2)H1+H2c(t1∨ t2)

> ε
}

.

Evidently, we get

P̃(R2
+,ε) � P̃(R2

+ \ [0,1)2,ε)+ P̃([0,1]2,ε).
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Firstly, consider P̃(R2
+ \ [0,1)2,ε). Note that, if t ∈ Bk , k � 0 then bk � t1∨ t2 � bk+1

and c(bk) � c(t1 ∨ t2) � c(bk+1) , k � 1. Therefore, we get

P

{
sup

t∈R2
+\[0,1)2

|X(t)|
(t1 ∨ t2)H1+H2c(t1∨ t2)

> ε

}
�

∞

∑
k=0

P

{
sup
t∈Bk

|X(t)|
(t1∨ t2)H1+H2c(t1∨ t2)

> ε

}

�
∞

∑
k=0

P

{
sup
t∈Bk

|X(t)|
bH1+H2

k+1

bH1+H2
k+1

bH1+H2
k c(bk)

> ε

}
�

∞

∑
k=0

P

{
sup

t∈[0,bk+1]2

|X(t)|
bH1+H2

k+1

bH1+H2
k+1

bH1+H2
k c(bk)

> ε

}

�
∞

∑
k=0

P

{
sup

t∈[0,bk+1]2

|X(t)|
bH1+H2

k+1

> ε
bH1+H2

k c(bk)

bH1+H2
k+1

}
.

From corollaries 3.3 and 3.4 we obtain that for ε > 2/M

P̃(R2
+ \ [0,1)2,ε) �

∞

∑
k=0

P

{
sup

t∈[0,1]2
|X(t)| > ε

bH1+H2
k c(bk)

bH1+H2
k+1

}

� 8e
2
H + 1

2 ε4/H
∞

∑
k=0

exp

⎧⎨⎩− 3ε2

2(41−H +3)

(
bH1+H2

k

bH1+H2
k+1

c(bk)

)2
⎫⎬⎭
(

bk

bk+1

)4
H1+H2

H

(c(bk))4/H .

Consider P̃([0,1]2,ε). Note that, if t ∈ B−k,k � 1 then 1
bk+1

� t1 ∨ t2 � 1
bk

and

c(bk) � c(t1∨ t2) = c( 1
t1∨t2

) � c(bk+1), k � 1. Therefore, we have

P

{
sup

t∈[0,1]2

|X(t)|
(t1 ∨ t2)H1+H2c(t1 ∨ t2)

> ε

}
�

∞

∑
k=1

P

{
sup

t∈B−k

|X(t)|
(t1 ∨ t2)H1+H2c(t1∨ t2)

> ε

}

�
∞

∑
k=1

P

{
sup

t∈B−k

|X(t)|
b−H1−H2

k+1

b−H1−H2
k

b−H1−H2
k c(bk)

> ε

}

�
∞

∑
k=1

P

⎧⎨⎩ sup
t∈[0,b−1

k ]2

|X(t)|
b−H1−H2

k

bH1+H2
k+1

bH1+H2
k c(bk)

> ε

⎫⎬⎭
�

∞

∑
k=1

P

⎧⎨⎩ sup
t∈[0,b−1

k ]2

|X(t)|
b−H1−H2

k

> ε
bH1+H2

k c(bk)

bH1+H2
k+1

⎫⎬⎭ .

From corollaries 3.3 and 3.4 we obtain that for ε > 2/M

P̃([0,1]2,ε) �
∞

∑
k=1

P

{
sup

t∈[0,1]2
|X(t1,t2)| > ε

bH1+H2
k c(bk)

bH1+H2
k+1

}

� 8e
2
H + 1

2 ε4/H
∞

∑
k=1

exp

⎧⎨⎩− 3ε2

2(41−H +3)

(
bH1+H2

k

bH1+H2
k+1

c(bk)

)2
⎫⎬⎭
(

bk

bk+1

)4
H1+H2

H

(c(bk))4/H .
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The theorem is proved. �
The following corollary is an immediate consequence of Theorem 3.5.

COROLLARY 3.6. Let M = infk∈{0}∪N

(
bk

bk+1

)H1+H2
c(bk) > 0. Denote

u =
3

(41−H +3)
M2

4
and vk =

2
M2

(
bH1+H2

k

bH1+H2
k+1

c(bk)

)2

, k � 0.

If for any H∈ (0,1)2 the series ∑∞
k=0

v
2/H
k
evk converges, then for any ε > 2

M

√
2
3 (41−H +3)

P

{
sup
t∈R2

+

|X(t)|
(t1 ∨ t2)H1+H2c(t1 ∨ t2)

> ε

}
� 16

√
2
( e

2

)2/H
ε4/H

(
∞

∑
k=0

v2/H
k

evk

)
M4/He−uε2

.

(14)

Proof. It is clear that uε2 > 2 and vk > 2, k � 0. Recall that for uε2 , vk > 2 we

have uε2 + vk � uε2vk. It follows from (13) that for ε > 2
M

√
2
3 (41−H +3) > 2

M we
have

Z̃(ε)= 16e
2
H + 1

2 ε4/H
∞

∑
k=0

M4/H

22/H

v2/H
k

exp{uε2vk} � 16
√

2
( e

2

)2/H
ε4/H

(
∞

∑
k=0

v2/H
k

evk

)
M4/He−uε2

.

The corollary is proved. �
Consider an example of applying Corollary 3.6.

EXAMPLE 1. Put bk = ek , k = 0,1, . . . , and c(t) =
√

ln(| ln t|+ e), t � 1 in

Theorem 3.5. Then M = infk∈0∪N

(
bk

bk+1

)H1+H2
c(bk) = e−(H1+H2), and

u =
3

(41−H +3)
s2

4
=

3
4(41−H +3)

e−2(H1+H2),

vk = 2e2(H1+H2) ln(k+ e)
e2(H1+H2) = 2ln(k+ e) , k � 0.

Then inequality (14) has the form

P

{
sup
t∈R2

+

|X(t)|
(t1∨ t2)H1+H2

√
ln(| ln(t1 ∨ t2)|+ e)

> ε

}

� 16
√

2e2/Hε4/H

(
∞

∑
k=0

(ln(k+ e))2/H

(k+ e)2

)
e−4

H1+H2
H exp

{−uε2}
� 16

√
2e2/H−8ε4/H

(
∞

∑
k=0

(ln(k+ e))2/H

(k+ e)2

)
exp

{
− 3ε2

4(41−H +3)
e−2(H1+H2)

}
.
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Thus, we obtain the upper bound for probability distribution of extremes of a normal-
ized self-similar Gaussian random field with stationary rectangular increments, which
is defined on R

2
+ .

4. Random fields on (T,ρ2)

Recall the notation of the metric ρ2(t,s) = ∑i=1,2 |ti − si|Hi , t = (t1,t2) ∈ R
2
+ , s =

(s1,s2) ∈ R
2
+, where H = (H1,H2) ∈ (0,1)2 is the index of self-similarity of a field X .

Now we want to obtain result witch is similar to Proposition 3.2, but with metric ρ2 .
Let us remember that N(u) is the minimal number of closed ρ -balls with radius

u needed to cover a space (T,ρ) . First let us prove the estimate for N(u) in the case
ρ = ρ2 and T = ST1T2 .

LEMMA 4.1. Let ρ = ρ2 and T = ST1T2 . Then

N(u) � 2

(
T1

4K1u
1

H1

+
3
2

)(
T2

4K2u
1

H2

+
3
2

)
,u > 0,

where

K1 =
(

H2

H1 +H2

) 1
H1

, K2 =
(

H1

H1 +H2

) 1
H2

.

Proof. Consider an auxiliary metric ρ3 = {ρ3(x,y) = |y1−x1|
a1

+ |y2−x2|
a2

, x = (x1,x2)
∈R

2, y = (y1,y2)∈R
2}, with a1 > 0, a2 > 0. A closed ρ3 -ball with radius 1 in space

(T,ρ3) is a set Vρ3(1) =
{

x = (x1,x2) ∈ R
2, |x1|

a1
+ |x2|

a2
� 1

}
. The minimum number of

Vρ3(1) needed to cover space (T,ρ3) is less than 2
(

T1+a1
2a1

+1
)(

T2+a2
2a2

+1
)

.

Put

a1 = 2

(
H2

H1 +H2

) 1
H1

ε
1

H1 = 2K1ε
1

H1 ,

a2 = 2

(
H1

H1 +H2

) 1
H2

ε
1

H2 = 2K2ε
1

H2 .

It is not hard to prove that Vρ3(1) ⊂Vρ2(ε). Hence,

Nρ2(ε) � Nρ3(1) � 2

(
T1

4K1ε
1

H1

+
3
2

)(
T2

4K2ε
1

H2

+
3
2

)
. �

To prove the next statement, we need some notation. Denote

Tη = max{TH1
1 ,TH2

2 }, H = min{H1,H2}, Q =
1
H1

+
1
H2

,

N1 =
(

H1 +H2

H2

) 1
H1

+3, N2 =
(

H1 +H2

H1

) 1
H2

+3.
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PROPOSITION 4.2. Let (T,ρ) = (ST1T2 ,ρ2) , T1 � 1 , T2 � 1 and X = {X(t), t ∈
R

2
+} be a centered self-similar Gaussian random field with stationary rectangular in-

crements. Under the conditions of Theorem 2.1, for all 0 < p < 1 we have

IT(ε) = P
{

sup
t∈T

|X(t)| > ε
}

� N1N2

(
e
p

)Q

exp

⎧⎨⎩− ε2(1− p)

2
(
T 2H1
1 T 2H2

2 + p
1−p41−HT 4

η

)
⎫⎬⎭, ε > 0. (15)

Proof. Recall that ρ2(s, t) = |s1 − t1|H1 + |s2 − t2|H2 , s = (s1,s2) , t = (t1, t2) , t ,
s ∈ T. From Lemma 2.4 we get

sup
ρ(s,t)�h

(
E(X(t)−X(s))2

)1/2
� sup

ρ(s,t)�h

(
tH2
2 |s1 − t1|H1 + tH1

1 |s2 − t2|H2

)
� Tηh.

Thus, we can put σ(h) = Tηh in Theorem 2.1. From (2) we have

β = σ

((
T1

2

)H1

+
(

T2

2

)H2
)

= Tη

((
T1

2

)H1

+
(

T2

2

)H2
)

.

It is clear that

γ2 = sup
t∈T

EX2(t) = T 2H1
1 T 2H2

2 EX2(1) = T 2H1
1 T 2H2

2 .

From Lemma 4.1 we have

N(u) � 2

(
T1

4K1u
1

H1

+
3
2

)(
T2

4K2u
1

H2

+
3
2

)
,

and therefore

N(σ−1(u)) � 2

⎛⎝ T1Tη
1

H1

4K1u
1

H1

+
3
2

⎞⎠⎛⎝ T2Tη
1

H2

4K2u
1

H2

+
3
2

⎞⎠ .

It follows from β > β p � u that

1 <

((
T1

2

)H1

+
(

T2

2

)H2
) 1

Hi T
1
Hi

η

u
1
Hi

, i = 1,2.

Recall that 0 < Hi < 1 and

Ti

2
=

((
Ti

2

)Hi
) 1

Hi

�
((

T1

2

)H1

+
(

T2

2

)H2
) 1

Hi

, i = 1,2.
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Then ⎛⎝ TiTη
1
Hi

4Kiu
1
Hi

+
3
2

⎞⎠ � TiTη
1
Hi

4Kiu
1
Hi

+

((
T1

2

)H1

+
(

T2

2

)H2
) 1

H1 3(Tη)
1
Hi

2u
1
Hi

�
((

T1

2

)H1

+
(

T2

2

)H2
) 1

Hi T
1
Hi

η

u
1
Hi

(
1

2Ki
+

3
2

)
.

Therefore, we have the following inequality for Z(p), where Z(p) is defined in (9).
For each 0 < μ < 1/Q we obtain

Z(p) �

⎛⎝ 1
β p

∫ β p

0

⎛⎝((
T1

2

)H1

+
(

T2

2

)H2
)Q

TQ
η

uQ

N1N2

2

⎞⎠μ

du

⎞⎠1/μ

= 2N1N2

((
T1

2

)H1

+
(

T2

2

)H2
)Q

TQ
η

(β p)1/μ

(∫ β p

0

1
uQμ

)1/μ

=
N1N2

2

((
T1

2

)H1

+
(

T2

2

)H2
)Q

TQ
η

(β p)Q

(
1

1−Qμ

)1/μ
.

As μ → 0, we have

Z(p) � N1N2

2

((
T1

2

)H1

+
(

T2

2

)H2
)Q

TQ
η

(β p)Q eQ =
N1N2

2

(
e
p

)Q

.

Finally, from (4) we obtain

IT(ε) � N1N2

(
e
p

)Q

exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− ε2(1− p)

2

(
T 2H1
1 T 2H2

2 + p
1−pT 2

η

((
T1
2

)H1
+
(

T2
2

)H2
)2

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

� N1N2

(
e
p

)Q

exp

⎧⎨⎩− ε2(1− p)

2
(
T 2H1
1 T 2H2

2 + p
1−p41−HT 4

η

)
⎫⎬⎭. �

COROLLARY 4.3. Under the conditions of Proposition 4.2 we have

P
{

sup
t∈T

|X(t)| > ε
}

� N1N2ε2Q exp

{
Q+

3

2T 2H1
1 T 2H2

2 (3+41−H)

}

×exp

⎧⎨⎩− 3ε2

2
(
3T 2H1

1 T 2H2
2 +41−HT 4

η

)
⎫⎬⎭, ε > 2.

(16)
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Proof. The corollary follows from (15) if we put p = 1/ε2. �

Consider probability distribution of extremes defined on [0,1]2 .

COROLLARY 4.4. Let (T,ρ) = ([0,1]2,ρ2). Under the conditions of Proposition
4.2 for all ε > 2 we have

P

{
sup

t∈[0,1]2
|X(t)| > ε

}
� N1N2ε2Q exp

{
Q+

3
2(3+41−H)

}
exp

{
− 3ε2

2(3+41−H)

}
,

ε > 2.

Proof. In this case T1 = T2 = 1, so the corollary follows from (16). �

We want to find an upper bound for probability distribution of extremes defined
on [1,+∞)2 . For this goal we obtain probabilities defined on [1,2]2.

PROPOSITION 4.5. Let T= [1,2]2 , ρ = ρ2 and X = {X(t), t∈R
2
+} be a centered

self-similar Gaussian random field with stationary rectangular increments. Under the
conditions of Theorem 2.1 for all 0 < p < 1 we have

I[1,2]2(ε) = P

{
sup

t∈[1,2]2
|X(t)| > ε

}

� N1N2

(
e
p

)Q

exp

⎧⎨⎩− ε2(1− p)

2
(
4H1+H2 +

(
1+2|H1−H2|

)2 p
1−p

)
⎫⎬⎭. (17)

Proof. We prove the proposition in the same way as Proposition 4.2. Denote η =
max{H1,H2} and H = min{H1,H2}. It is clear that σ(h) = 2ηh and

β = σ

((
1
2

)H1

+
(

1
2

)H2
)

= 2η (2−H1 +2−H2
)

= 1+2|H1−H2|,

γ2 = 4H1+H2 .

From Lemma 4.1 we have

N(σ−1(u)) � 2

(
2η/H1

4K1u1/H1
+

3
2

)(
2η/H2

4K2u1/H2
+

3
2

)
.

It follows from β > β p � u > 0 that

1 � β 1/H1

u1/H1
=

(
1+2|H1−H2|)1/H1

2u1/H1
.
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Then for i = 1,2(
2η/Hi

4Kiu1/H1
+

3
2

)
� 2η/Hi

4Kiu1/Hi
+

3
(
1+2|H1−H2|)1/Hi

2u1/Hi
�

(
1+2|H1−H2|)1/Hi

u1/Hi

(
1

2Ki
+

3
2

)
.

Further, from definition (9) of Z(p) we get the following inequality:

Z(p) �
(

1
β p

∫ β p

0

((
1+2|H1−H2|

)Q N1N2

2uQ

)μ
du

)1/μ

=
N1N2

2

(
1+2|H1−H2|

)Q 1

(β p)1/μ

(∫ β p

0

1
uQμ

)1/μ

=
N1N2

2pQ

(
1

1−Qμ

)1/μ
.

As μ → 0, we have

Z(p) � N1N2

2

(
e
p

)Q

.

Thus, we obtain

I[1,2]2(ε) � N1N2

(
e
p

)Q

exp

⎧⎨⎩− ε2(1− p)

2
(
4H1+H2 +

(
1+2|H1−H2|

)2 p
1−p

)
⎫⎬⎭. �

As before, denote η = max{H1,H2}.

COROLLARY 4.6. Under the conditions of Proposition 4.5 for ε > 2 we have

I[1,2]2(ε) � N1N2 exp{Q+
1

2(4H1+H2 +1)
}ε2Q exp

{
− 3ε2

2 ·4η (4H3+41−H)

}
. (18)

Proof. The corollary follows from (17), if we put p = 1/ε2. �

THEOREM 4.7. Let T = [1,∞)2 , ρ = ρ2 and X = {X(t), t = (t1,t2) ∈ R
2
+} be

a centered self-similar Gaussian random field with stationary rectangular increments.
Let ϕ : (0,+∞)2 → (0,+∞) be an increasing function in each coordinate. Suppose that
for any D > 0

∞

∑
n=0

∞

∑
m=0

exp{−Dϕ (2n,2m)} < +∞. (19)

Denote

C1 = N1N2 exp{Q+
1

2(4H1+H2 +1)
} and C2 =

3
2 ·4η (4H3+41−H)

.

If ε > 2
ϕ(1) , then

Y (ε) := P

{
sup

t∈[1,+∞)2

|X(t)|
tH1
1 tH2

2 ϕ(t)
> ε

}
� C1ε2Q

∞

∑
n=0

∞

∑
m=0

ϕ2Q (2n,2m)
exp{C2ε2ϕ2 (2n,2m)} . (20)
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Proof. At first, we have the following obvious inequality

P

{
sup

t∈[1,+∞)2

|X(t)|
tH1
1 tH2

2 ϕ(t)
> ε

}
�

∞

∑
n=1

∞

∑
m=1

P

⎧⎪⎪⎨⎪⎪⎩ sup
t1∈[2n−1,2n]
t2∈[2m−1,2m]

|X(t)|
tH1
1 tH2

2 ϕ(t)
> ε

⎫⎪⎪⎬⎪⎪⎭ .

Then from monotonicity of ϕ we get for all n,m > 1 :

P

⎧⎪⎪⎨⎪⎪⎩ sup
t1∈[2n−1,2n]
t2∈[2m−1,2m]

|X(t)|
tH1
1 tH2

2 ϕ(t)
> ε

⎫⎪⎪⎬⎪⎪⎭ � P

⎧⎪⎪⎨⎪⎪⎩ sup
t1∈[2n−1,2n]
t2∈[2m−1,2m]

2(1−n)H12(1−m)H2 |X(t)|
ϕ(2n−1,2m−1)

> ε

⎫⎪⎪⎬⎪⎪⎭ .

By self-similarity, we obtain the following equality for all n,m � 1 :

P

⎧⎪⎪⎨⎪⎪⎩ sup
t1∈[2n−1,2n]
t2∈[2m−1,2m]

2(1−n)H12(1−m)H2 |X(t)|
ϕ(2n−1,2m−1)

> ε

⎫⎪⎪⎬⎪⎪⎭ = P

{
sup

t∈[1,2]2

|X(t)|
ϕ(2n−1,2m−1)

> ε

}
.

Thus,

Y (ε) �
∞

∑
n=1

∞

∑
m=1

P

{
sup

t∈[1,2]2

|X(t)|
ϕ(2n−1,2m−1)

> ε

}

=
∞

∑
n=1

∞

∑
m=1

P

{
sup

t∈[1,2]2
|X(t)| > εϕ

(
2n−1,2m−1)} .

It follows from Corollary 4.6 that for ε > 2
ϕ(1) we have

Y (ε) � C1ε2Q
∞

∑
n=0

∞

∑
m=0

ϕ2Q (2n,2m)exp
{−C2ε2ϕ2 (2n,2m)

}
.

This completes the proof. �

COROLLARY 4.8. If for any H ∈ (0,1)2 the series

∞

∑
n=0

∞

∑
m=0

ϕ2Q (2n,2m)

exp
{

2ϕ2(2n,2m)
ϕ2(1)

} < +∞,

then for ε > 2
ϕ(1)

√
2

4η3 (4H3+41−H),

Y (ε) � C1ε2Q exp

{
−ε2

2
ϕ2(1)
C2

} ∞

∑
n=0

∞

∑
m=0

ϕ2Q (2n,2m)

exp
{

2ϕ2(2n,2m)
ϕ2(1)

} . (21)



DISTRIBUTIONS OF EXTREMES OF SELF-SIMILAR GAUSSIAN RANDOM FIELDS 41

Proof. Denote

u =
3

4 ·4η (4H3+41−H)
ϕ2(1) and vn,m = 2

ϕ2(2n,2m)
ϕ2(1)

, n,m � 0.

It can easily be checked that uε2 > 2 and vn,m > 2, n , m � 0. Recall that for uε2 ,
vn,m > 2 we have uε2 + vn,m � uε2vn,m.

It follows from (20) that for ε > 2
ϕ(1)

√
2

4η3 (4H3+41−H) > 2
ϕ(1) we have

Y (ε) � C1ε2Q exp

{
3ε2

4 ·4η (4H3+41−H)
ϕ2(1)

} ∞

∑
n=0

∞

∑
m=0

ϕ2Q (2n,2m)

exp
{

2ϕ2(2n,2m)
ϕ2(1)

} .

The corollary is proved. �
We present the example of applying Corollary 4.8.

EXAMPLE 2. Let ϕ1,ϕ2 be the positive functions from R
2
+ to R such that

ϕ1(x) =
√

(2+ δ )
√

ln(log2 (x1x2)+ e), x = (x1,x2) ∈ R
2
+

and

ϕ2(x) =
√

(2+ δ )
√

ln(e+ log2 x1)+ ln(e+ log2 x1), x = (x1,x2) ∈ R
2
+.

Then
ϕ1(2n,2m) =

√
ln(n+m+ e),n,m ∈ {0}∪N,

ϕ2(2n,2m) =
√

ln(n+ e)+ ln(m+ e),n,m ∈ {0}∪N,

and ϕ1(1) = ϕ2(1) = 1.
Therefore, from (21) we get

∞

∑
n=0

∞

∑
m=0

ϕ2Q
1 (2n,2m)

exp
{

2
ϕ2

1 (2n,2m)
ϕ2

1 (1)

} =
∞

∑
n=0

∞

∑
m=0

(ln(n+m+ e))Q

(n+m+ e)2 ,

∞

∑
n=0

∞

∑
m=0

ϕ2Q
2 (2n,2m)

exp
{

2
ϕ2

2 (2n,2m)
ϕ2

2 (1)

} =
∞

∑
n=0

∞

∑
m=0

(ln(n+ e)(m+ e))Q

(n+ e)2(m+ e)2 .

Hence, from Corollary 4.8 we have

P

{
sup

t∈[1,+∞)2

|X(t)|
tH1
1 tH2

2 ϕ1(t)
> ε

}
� C1ε2Q exp

{
−C2

2
ε2
} ∞

∑
n=0

∞

∑
m=0

(ln(n+m+ e))Q

(n+m+ e)2 ,

P

{
sup

t∈[1,+∞)2

|X(t)|
tH1
1 tH2

2 ϕ2(t)
> ε

}
� C1ε2Q exp

{
−C2

2
ε2
} ∞

∑
n=0

∞

∑
m=0

(ln(n+ e)(m+ e))Q

(n+ e)2(m+ e)2 .

Thus, we obtain probability distributions for extremes of a normalized self-similar
Gaussian random field with stationary rectangular increments defined on [1,+∞)2 .
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