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SOME SUFFICIENT CONDITIONS FOR THE

UNIVALENCE OF AN INTEGRAL OPERATOR

HALIT ORHAN, DORINA RÃDUCANU AND MURAT ÇAĞLAR

Abstract. Making use of the method of subordination chains, we obtain some sufficient condi-
tions for the univalence of an integral operator. In particular, as special cases, our results imply
certain known univalence criteria. A refinement to a quasiconformal extension criterion of the
main result, is also obtained.

1. Introduction

Denote by Ur (0 < r � 1) the disk of radius r centered at 0 , i.e Ur = {z ∈ C :
|z| < r} and let U = U1 be the unit disk.

Let A denote the class of analytic functions in U which satisfy the usual nor-
malization

f (0) = f ′(0)−1 = 0.

One of the most important univalence criterion for functions in the class A was
obtained by Becker in 1972 [3]. His result was derived by means of Loewner chains and
Loewner differential equation. During the time many extensions of Becker’s criterion
have been given, among them being the results due to Ahlfors [1], Lewandowski [14],
Pascu [19], [20], Ruscheweyh [25], Ovesea [16, 17], Ovesa et. all [18] and Kanas and
Srivastava [13].

In the present paper we use the method of subordination chains to obtain some
sufficient conditions for the univalence of an integral operator. Our results general-
ize certain criteria obtained by Pascu [20], Danikas and Ruscheweyh [7], Moldoveanu
[15], Deniz and Orhan [8], Răducanu et. all [24]. Also, we obtain a refinement to a
quasiconformal extension criterion of the main result.

2. Loewner chains and quasiconformal extensions

Before proving our main theorem we need a brief summary of Loewner chains
and Becker’s method of constructing quasiconformal extensions by means of Loewner
chains and generalized Loewner differential equation.

A function L(z,t) : U × [0,∞) → C is said to be a subordination chain or a
Loewner chain if:
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(i) L(z, t) is analytic and univalent in U for all t � 0.

(ii) L(z, t) ≺ L(z,s) for all 0 � t � s < ∞ , where the symbol “≺” stands for subor-
dination.

The following result, due to Pommerenke, is often used to prove univalence crite-
ria.

THEOREM 2.1. ([22], [23]) Let L(z,t) = a1(t)z+ . . . be an analytic function in
Ur (0 < r � 1) for all t � 0 . Suppose that:

(i) L(z, t) is a locally absolutely continuous function of t ∈ [0,∞) , locally uniform
with respect to z ∈ Ur .

(ii) a1(t) is a complex valued continuous function on [0,∞) such that a1(t) �= 0 ,
limt→∞ |a1(t)| = ∞ and {

L(z,t)
a1(t)

}
t�0

is a normal family of functions in Ur .

(iii) There exists an analytic function p : U × [0,∞) → C satisfying ℜp(z, t) > 0 for
all (z, t) ∈ U × [0,∞) and

z
∂L(z,t)

∂ z
= p(z,t)

∂L(z,t)
∂ t

, z ∈ U , a.e t � 0. (2.1)

Then, for each t � 0 , the function L(z,t) has an analytic and univalent extension
to the whole disk U , i.e L(z,t) is a subordination chain.

Let k be constant in [0,1) . Recall that a homeomorphism f of G ⊂ C is said to
be k -quasiconformal if ∂z f and ∂z f , in the distributional sense, are locally integrable
on G and fulfill |∂z f | � k |∂z f | almost everywhere in G.

An important problem in the theory of univalent functions is to find functions that
have quasiconformal extensions to C .

A method of constructing quasiconformal extension criteria is based on the fol-
lowing result due to Becker (see [3], [4] and also [5]).

THEOREM 2.2. Suppose that L(z,t) is a subordination chain. Consider

w(z,t) =
p(z,t)−1
p(z,t)+1

, z ∈ U , t � 0

where p(z, t) is defined by (2.1). If

|w(z,t)| � k, 0 � k < 1

for all z ∈ U and t � 0 , then L(z,t) admits a continuous extension to U for each
t � 0 and the function F(z, z) defined by
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F(z, z) =

{
L(z,0) , if |z| < 1

L
(

z
|z| , log |z|

)
, if |z| � 1.

is a k-quasiconformal extension of L(z,0) to C .

Examples of quasiconformal extension criteria can be found in [1], [2], [6], [12],
[21] and more recently in [9], [10], [11].

3. Univalence criteria

In this section, making use of Theorem 2.1, we obtain certain sufficient conditions
for the univalence of an integral operator.

THEOREM 3.1. Let f ,g,φ ∈A , g(z) �= 0 , φ(z) �= 0 in U . Let also m∈ R+ and
α,β ,γ ∈ C with ℜγ > 0 . If∣∣∣∣∣ (1−|z|(m+1)γ)

γ

[
α

z f ′′(z)
f ′(z)

+ β
(

zg′(z)
g(z)

− zφ ′(z)
φ(z)

)]
− m−1

2

∣∣∣∣∣ � m+1
2

(3.1)

holds z ∈ U , then the function Fα ,β ,γ defined by

Fα ,β ,γ(z) =

⎡
⎣γ

z∫
0

uγ−1 (
f ′(u)

)α
(

g(u)
φ(u)

)β
du

⎤
⎦

1/γ

z ∈ U , (3.2)

where the principal branch is intended, is analytic and univalent in U .

Proof. Let a be a positive real number. We are going to prove that there exists
r ∈ (0,1] such that the function L : Ur × [0,∞)→ C , defined by

L(z, t) =

⎧⎨
⎩γ

e−at z∫
0

uγ−1( f ′(u))α
(

g(u)
φ(u)

)β
du

+(ematγ − e−atγ)zγ ( f ′(e−atz))α
(

g(e−atz)
φ(e−at z)

)β
}1/γ

(3.3)

is analytic in Ur for all t ∈ [0,∞) and satisfies the conditions of Theorem 2.1. Since
f ,g,φ ∈ A , there exists a disk Ur1 , 0 < r1 � 1 in which the function

h(z) = ( f ′(z))α
(

g(z)
φ(z)

)β

is analytic. The powers are considered with their principal branches. The function h(z)
is analytic and does not vanish in Ur1 .
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Consider the function

h1(z,t) = γ
e−at z∫
0

uγ−1h(u)du, z ∈ Ur1 , t � 0.

We can write
h1(z,t) = zγh2(z,t)

where h2(z, t) is analytic in Ur1 for all t � 0. It follows that the function

h3(z,t) = h2(z,t)+ (ematγ − e−atγ)h(e−atz)

is also analytic in Ur1 and
h3(0,t) = ematγ .

Since h3(0,0) = 1, h3(0,t) �= 0 for t � 0 and limt→∞ |h3(0,t)|= ∞ there is a disk Ur2 ,
0 < r2 � r1, in which h3(z,t) �= 0. Therefore we can choose a uniform and analytic
branch of [h3(z, t)]1/γ in Ur2 which will be denoted by h4(z, t) . Now, the function
defined by (3.3) can be rewritten as

L(z,t) = zh4(z,t) = a1(t)z+ ..., z ∈ Ur2 and t � 0 (3.4)

where a1(t) = emat . Moreover L(z,t) is analytic in Ur2 for all t � 0.
Let r3 ∈ (0,r2] and let K = {z ∈ C : |z| � r3} . Since the function L(z,t) is analytic

in Ur2 , there exists M > 0 such that∣∣∣∣L(z,t)
a1(t)

∣∣∣∣ � M for z ∈ K and t � 0.

Thus,
{

L(z,t)
a1(t)

}
t�0

forms a normal family in Ur2 .

From (3.4) we obtain that
{

∂L(z,t)
∂ t

}
is analytic in Ur2 . It follows that

∣∣∣ ∂L(z,t)
∂ t

∣∣∣ is

bounded on [0,T ] for any fixed T > 0 and z ∈ Ur2 . Therefore, the function L(z, t) is
locally absolutely continuous on [0,∞) , locally uniform with respect to Ur2 .

For 0 < r � r2 and t � 0, consider the function p : Ur × [0,∞) → C defined by

p(z,t) = z
∂L(z,t)

∂ z
�

∂L(z, t)
∂ t

.

In order to prove that the function p(z,t) is analytic and has positive real part in U ,
we will show that the function

w(z,t) =
p(z,t)−1
p(z,t)+1

is analytic in U and

|w(z,t)| < 1, for all z ∈ U and t � 0. (3.5)
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Lengthy but elementary calculation gives

w(z,t) =
(1+a)G (z,t)+1−ma
(1−a)G (z,t)+1+ma

, (3.6)

where

G (z,t)=
1
γ

[
α

e−atz f ′′(e−at z)
f ′(e−atz)

+β
(

e−at zg′(e−at z)
g(e−at z)

−e−atzφ ′(e−atz)
φ(e−atz)

)](
1−e−(m+1)atγ

)
(3.7)

for z ∈ U and t � 0.
Inequality (3.5) is therefore, equivalent to∣∣∣∣G (z,t)− m−1

2

∣∣∣∣ <
m+1

2
, z ∈ U , t � 0. (3.8)

For t = 0 the last inequality holds. Define

H (z,t) = G (z,t)− m−1
2

, z ∈ U , t � 0. (3.9)

Since |e−atz| � |e−at |= e−at < 1 for all z ∈ U = {z ∈ C : |z| � 1} and t > 0, we have
that H (z, t) is analytic in U for every t > 0. Making use of the maximum modulus
principle, we obtain that, for each arbitrary fixed t > 0, there exists θ (t) ∈ R such that

|H (z,t)| < max
|z|=1

|H (z,t)| = |H (eiθ , t)| for all z ∈ U .

Let u = e−ateiθ . Then |u| = e−at and e−(m+1)at = (e−at)(m+1) = |u|m+1 . Therefore

|H (eiθ , t)| =
∣∣∣∣∣ (1−|u|(m+1)γ)

γ

[
α

u f ′′(u)
f ′(u)

+ β
(

ug′(u)
g(u)

− uφ ′(u)
φ(u)

)]
− m−1

2

∣∣∣∣∣ .
Inequality (3.1) from hypothesis implies

|H (eiθ ,t)| � m+1
2

. (3.10)

From (3.10) it follows that inequality (3.8) is satisfied for all z ∈ U and t � 0.
Since all the conditions of Theorem 2.1 are satisfied, we obtain that the function

L(z,t) has an analytic and univalent extension to the whole unit disk U , for all t � 0.
If t = 0 we have L(z,0) = Fα ,β ,γ(z) and therefore, our integral operator Fα ,β ,γ is
analytic and univalent in U . �

Making use of Theorem 3.1, we derive another univalence criterion for the integral
operator Fα ,β ,γ .

THEOREM 3.2. Let f ,g,φ ∈ A , g(z) �= 0, φ(z) �= 0 . Let also α,β ,γ ∈ C with
ℜγ > 0 and m ∈ R+, m � 1 . If

1−|z|(m+1)ℜγ

ℜγ

∣∣∣∣α z f ′′(z)
f ′(z)

+ β
(

zg′(z)
g(z)

− zφ ′(z)
φ(z)

)∣∣∣∣ � 1
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holds for z ∈ U then, the function Fα ,β ,γ defined by (3.2) is analytic and univalent in
U .

Proof. It can be proved (see [20]) that for z ∈ U \ {0} , ℜγ > 0 and m ∈ R+∣∣∣∣∣1−|z|(m+1)γ

γ

∣∣∣∣∣ � 1−|z|(m+1)ℜγ

ℜγ
.

For m � 1, we have∣∣∣∣∣1−|z|(m+1)γ

γ

[
α

z f ′′(z)
f ′(z)

+ β
(

zg′(z)
g(z)

− zφ ′(z)
φ(z)

)]
− m−1

2

∣∣∣∣∣
�

∣∣∣∣∣1−|z|(m+1)γ

γ

[
α

z f ′′(z)
f ′(z)

+ β
(

zg′(z)
g(z)

− zφ ′(z)
φ(z)

)]∣∣∣∣∣+ m−1
2

� 1−|z|(m+1)ℜγ

ℜγ

∣∣∣∣α z f ′′(z)
f ′(z)

+ β
(

zg′(z)
g(z)

− zφ ′(z)
φ(z)

)∣∣∣∣+ m−1
2

� 1+
m−1

2
=

m+1
2

.

Since inequality (3.1) is satisfied, making use of Theorem 3.1, we can conclude that the
function Fα ,β ,γ is analytic and univalent in U . �

EXAMPLE 3.1. Let α,β ,γ be three complex numbers such that ℜγ > 0 and
ℜγ � |α|+ |β | . Then, the function

Fα ,β ,γ(z) = z
[
2F1

(
γ,−(α + β );1+ γ;− z

2

)]1/γ

is univalent in U . The symbol 2F1(a,b;c;z) denotes the well known hypergeometric
function.

Proof. Set f (z) = z+
z2

4
, g(z) = z+

z2

2
, z ∈ U and φ(z) = z, z ∈ U in Theorem

3.2. Making use of triangle inequality, we have

1−|z|(m+1)ℜγ

ℜγ

∣∣∣∣α z f ′′(z)
f ′(z)

+ β
(

zg′(z)
g(z)

− zφ ′(z)
φ(z)

)∣∣∣∣
=

1−|z|(m+1)ℜγ

ℜγ

∣∣∣∣α z
z+2

+ β
(

2z+2
z+2

−1

)∣∣∣∣
� 1−|z|(m+1)ℜγ

ℜγ
|z|

2−|z|(|α|+ |β |) <
1

ℜγ
(|α|+ |β |) � 1.
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The last inequality follows from 1− |z|(m+1)ℜγ < 1,
|z|

2−|z| < 1, z ∈ U and ℜγ �
|α|+ |β | . Since all the conditions of Theorem 3.2 are satisfied, we obtain that the
function

Fα ,β ,γ(z) =

⎡
⎣γ

z∫
0

uγ−1
(
1+

u
2

)α (
1+

u
2

)β
du

⎤
⎦

1/γ

is univalent in U . With the substitution u = tz the function Fα ,β ,γ(z) becomes

Fα ,β ,γ(z) = z

⎡
⎣γ

1∫
0

tγ−1
(
1+ t

z
2

)α+β
dt

⎤
⎦

1/γ

= z
[
2F1(γ,−(α + β );1+ γ;− z

2
)
]1/γ

.

With this, the proof is complete.
Certain particular cases of Theorem 3.1 and Theorem 3.2 respectively, are listed

below. �
If in Theorem 3.1 we consider α = β , g(z) = z and φ = f , we obtain the following

univalence condition.

COROLLARY 3.1. Let f ∈ A and m ∈ R+ . If∣∣∣∣∣α 1−|z|(m+1)γ

γ

[
1+

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

]
− m−1

2

∣∣∣∣∣ � m+1
2

holds z ∈ U then the function Fα ,γ (z) defined by

Fα ,γ (z) =

⎡
⎣γ

z∫
0

uγ−1
(

u f ′(u)
f (u)

)α
du

⎤
⎦

1/γ

(3.11)

is analytic and univalent in U .

If we take α = γ = 1 then, the integral operator Fα ,γ(z) defined by (3.11) reduces
to the integral operator considered by Danikas and Ruscheweyh in [7].

An improvement of Becker’s univalence criterion (see [3]) which was obtained by
Pascu can be derived from Theorem 3.2 for α = 1, g = φ and m = 1.

COROLLARY 3.2. ([20]) Let f ∈ A and γ ∈ C , ℜγ > 0 . If

1−|z|2ℜγ

ℜγ

∣∣∣∣ z f ′′(z)
f ′(z)

∣∣∣∣ � 1, z ∈ U

then the integral operator

Fγ (z) =

⎡
⎣γ

z∫
0

uγ−1 f ′(u)du

⎤
⎦

1/γ

is analytic and univalent in U .
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4. Quasiconformal extension criterion

In this section we will refine the univalence condition given in Theorem 3.1 to a
quasiconformal extension criterion.

THEOREM 4.1. Let f ,g,φ ∈ A , g(z) �= 0, φ(z) �= 0 . Let also m ∈ R+ , α,β ,γ ∈
C with ℜγ > 0 and k ∈ [0,1) . If∣∣∣∣∣ (1−|z|(m+1)γ)

γ

[
α

z f ′′(z)
f ′(z)

+ β
(

zg′(z)
g(z)

− zφ ′(z)
φ(z)

)]
− m−1

2

∣∣∣∣∣ � k
m+1

2
(4.1)

is true for z ∈ U then, the function Fα ,β ,γ given by (3.2) has a quasiconformal exten-
sion to C .

Proof. In the proof of Theorem 3.1 has been proved that the function L(z,t) given
by (3.3) is a subordination chain in U . Applying Theorem 2.2 to the function w(z, t)
given by (3.6), we obtain that the assumption∣∣∣∣(1+a)G (z,t)+1−ma

(1−a)G (z,t)+1+ma

∣∣∣∣ < l, z ∈ U , t � 0 and l ∈ [0,1) (4.2)

where G (z, t) is defined by (3.7), implies l -quasiconformal extensibility of Fα ,β ,γ .
Lenghty but elementary calculation shows that the last inequality (4.2) is equiva-

lent to∣∣∣∣G (z, t)− a(1+ l2)(m−1)+ (1− l2)(ma2 −1)
2a(1+ l2)+ (1− l2)(1+a2)

∣∣∣∣ � 2al(1+m)
2a(1+ l2)+ (1− l2)(1+a2)

.

(4.3)
It is easy to check that, under the assumption (4.1) we have∣∣∣∣G (z,t)− m−1

2

∣∣∣∣ � k
m+1

2
. (4.4)

Consider the two disks Δ and Δ′ defined by (4.3) and (4.4) respectively, where
G (z,t) is replaced by a complex variable ζ . Our theorem will be proved if we find
the smallest l ∈ [0,1) for which Δ′ is contained in Δ . This will be so if and only if
the distance apart of the centers plus the smallest radius is equal, at most, to the largest
radius. So, we are required to prove that∣∣∣∣a(1+l2)(m−1)+(1−l2)(ma2−1)

2a(1+l2)+(1−l2)(1+a2)
−m−1

2

∣∣∣∣+k
m+1

2
� 2al(1+m)

2a(1+l2)+(1−l2)(1+a2)

or equivalently

(1− l2)|1−a2|
2[2a(1+ l2)+ (1− l2)(1+a2)]

� 2al
2a(1+ l2)+ (1− l2)(1+a2)

− k
2

(4.5)
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with the condition
2al

2a(1+ l2)+ (1− l2)(1+a2)
− k

2
� 0. (4.6)

We will solve inequalities (4.5) and (4.6) for 1−a2 > 0. In a similar way they can
be solved for 1−a2 < 0.

The solutions of the quadratic equation obtained from (4.5), where instead of in-
equality sign we put equal, are:

L1 =
(1−a)2 + k(1−a2)
1−a2 + k(1−a)2 , L2 = − (1+a)2 + k(1−a2)

1−a2 + k(1−a)2 .

Therefore, the solution of inequality (4.5) is l � L2 and L1 � l . Since L2 < 0 it
remains L1 � l .

After similar calculations, from inequality (4.6), we get l � L2 and L1 � l , where

L1 =
−2a+

√
4a2 +(1−a2)2k2

k(1−a)2 , L2 =
−2a−√

4a2 +(1−a2)2k2

k(1−a)2 .

Since L2 < 0 it follows L1 � l .
It can be checked, eventually by using Mathematica program, that L1 � L1 and

thus L1 � l < 1. If a = 1, both inequalities (4.5) and (4.6) reduce to k � l .
Consequently, we proved that the assumption (4.1) implies the existence of an

l -quasiconformal extension of Fα ,β ,γ to C , which is given by

l =

{
(1−a)2+k|1−a2|
|1−a2|+k(1−a)2 , a ∈ (0,∞)\ {1}
k, a = 1.

Therefore L1 � l < 1 and the proof is complete. �
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Faculty of Mathematics and Computer Science

Transilvania University of Braşov
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