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ON SOME FURTHER HYPERGEOMETRIC SERIES

IDENTITIES OBTAINED VIA FRACTIONAL CALCULUS

S. GABOURY AND A. K. RATHIE

Abstract. In this paper we present a generalization of a result obtained recently by Rathie and
Kiliçman (A. K. Rathie and A. Kiliçman, On certain new hypergeometric identities, Preprint
2014) involving hypergeometric identities. The result is obtained by suitably applying fractional
calculus technique to a generalization of a quadratic transformation for the Gauss hypergeometric
function due to Gauss.

1. Introduction

The generalized hypergeometric function pFq with p numerator and q denomina-
tor parameters is defined by (see, e.g. [4, Chapter 4]; see also [20, pp. 71-72])

pFq

[
α1, . . . ,αp;
β1, . . . ,βq;

z

]
= pFq[α1, . . . ,αp;β1, . . . ,βq;z]

=
∞

∑
n=0

(α1)n · · · (αp)n

(β1)n · · · (βq)n

zn

n!
, (1.1)

(
p � q and |z| < ∞; p = q+1 and |z| < 1;

p = q+1, |z| = 1 and ℜ(ω) > 0

)

where

ω :=
q

∑
j=1

bi−
p

∑
j=1

ai

and (α)n denotes the Pochhammer symbol defined in terms of the Gamma function by

(α)n :=
Γ(α +n)

Γ(α)
=

{
α(α +1) · · ·(α +n−1) (n ∈ N;α ∈ C)
1 (n = 0;α ∈ C\ {0}),

N and C being the sets of positive integers and complex numbers, respectively.
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Many years ago, Gauss [2, 4] obtained the following quadratic transformation:

(1− z)−2a
2F1

[
a, b;
2b;

− 4z
(1− z)2

]
= 2F1

[
a, a−b+ 1

2 ;
b+ 1

2 ;
z2

]
, (1.2)

with z ∈ U , where U denotes the open unit disk, that is, U = {z : z ∈ C and |z| < 1} .
The following generalization of the Gauss quadratic transformation formula (1.2)

was given recently by Rakha [17]:

(1− z)−2a
2F1

[
a, b;

2b+ �;
− 4z

(1− z)2

]

=
∞

∑
n=0

D�(n)
(a)n

(
a−b+ 1

2 −
[

�
2

])
n(

b+ 1
2 +

[
�
2

])
n

z2n

n!

+2a
∞

∑
n=0

E�(n)
(a+1)n

(
a−b+ 3

2 −
[

�+1
2

])
n(

b+ 1
2 +

[
�+1
2

])
n

z2n+1

n!
(1.3)

for � = 0, ±1, ±2. Here, [x] denotes the greatest integer less than or equal to x and its
modulus is denoted by |x| . The coefficients D�(n) and E�(n) are given in Table 1.

Table 1: Coefficients D�(n) and E�(n)

� -2 -1 0 1 2

D�(n) 1− 4n(a+n)
(b−1)(2b−2a−3) 1 1 1 1− 4n(a+n)

(b+1)(2b−2a+1)

E�(n) − 1
b−1 − 1

2b−1 0 1
2b+1

1
b+1

REMARK 1. The special cases of (1.3) when � =±1 was also obtained by Rathie
and Kim [19].

A large number of transformation formulas involving hypergeometric functions
were obtained, recently, by using the so-called Beta integral method [3, 8, 11, 25]. The
beta function B(α,β ) is defined by the following integral representation:

B(α,β ) =
Γ(α)Γ(β )
Γ(α + β )

=
∫ 1

0
tα−1(1− t)β−1dt (ℜ(α) > 0, ℜ(β ) > 0). (1.4)

The so-called Beta integral method consists essentially of an integral from 0 to 1 of
expressions which contain terms in the form za(1− z)b to obtain new transformations
formulas.

With the help of this technique in conjunction with formula (1.3), Rathie and
Kiliçman [18] obtained a generalization of a result due to Krattenthaler and Rao [11].
In particular, they obtained the following theorem:
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THEOREM 1. Let a or d be a non-positive integer. Then, the following general-
ization of Krattenthaler-Rao formula holds true:

4F3

[
a, b, d, e;

2b+ �, 1
2d + 1

2e, 1
2d + 1

2e+ 1
2 ;

1

]

=
Γ(1− e)Γ(1− e−d+2a)
Γ(1− e−d)Γ(1− e+2a)

·
∞

∑
n=0

D�(n)
n!

(a)n
(
a−b+ 1

2 −
[

�
2

])
n

(
1
2d

)
n

(
1
2d + 1

2

)
n(

b+ 1
2 +

[
�
2

])
n

(
1
2 − 1

2e+a
)
n

(
1− 1

2e+a
)
n

+
2ad

1− e+2a

·
∞

∑
n=0

E�(n)
n!

(a+1)n
(
a−b+ 3

2 −
[

�+1
2

])
n

( 1
2d +1

)
n

( 1
2d + 1

2

)
n(

b+ 1
2 +

[
�+1
2

])
n

(
1− 1

2e+a
)
n

( 3
2 − 1

2e+a
)
n

(1.5)

for � = 0, ±1,±2 . The coefficients D�(n) and E�(n) are those given in Table 1.

The purpose of this work is to obtain a more general hypergeometric identity which
contains, as a special case, the relationship (1.5) proved by Rathie and Kiliçman [18].
This is done by using the fractional calculus method which was applied by the authors
[6, 5, 7] to succesfully obtain new hypergeometric identities more general than those
obtained by the use of the Beta integral method. Several special cases are also obtained.

2. Pochhammer contour integral representation for fractional derivative

The most familiar representation for the fractional derivative of order α of zp f (z)
is the Riemann-Liouville integral [10] (see also [1, 9, 14]), that is,

Dα
z {zp f (z)} =

1
Γ(−α)

∫ z

0
f (ξ )ξ p(ξ − z)−α−1dξ (2.1)

(
ℜ(α) < 0; ℜ(p) > 1

)
,

where the integration is carried out along a straight line from 0 to z in the complex
ξ -plane. By integrating by part m times, we obtain

Dα
z {zp f (z)} =

dm

dzm

{
Dα−m

z {zp f (z)}
}

. (2.2)

This allows us to modify the restriction ℜ(α) < 0 to ℜ(α) < m (see [14]).
Another representation for the fractional derivative is based on the Cauchy integral

formula. This representation, too, has been widely used in many interesting papers (see,
for example, the works of Osler [21, 24, 23, 22]).

The relatively less restrictive representation of the fractional derivative according
to parameters appears to be the one based on the Pochhammer’s contour integral intro-
duced by Tremblay [13, 16].
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Figure 1: Pochhammer’s contour

DEFINITION 1. Let f (z) be analytic in a simply-connected region R of the com-
plex z-plane. Let g(z) be regular and univalent on R and let g−1(0) be an interior
point of R . Then, if α is not a negative integer, p is not an integer, and z is in
R \{g−1(0)} , we define the fractional derivative of order α of g(z)p f (z) with respect
to g(z) by

Dα
g(z){[g(z)]p f (z)} =

e−iπ pΓ(1+ α)
4π sin(π p)

∫
C(z+,g−1(0)+,z−,g−1(0)−;F(a),F(a))

· f (ξ )[g(ξ )]pg′(ξ )
[g(ξ )−g(z)]α+1 dξ . (2.3)

For non-integers α and p , the functions g(ξ )p and [g(ξ )− g(z)]−α−1 in the inte-
grand have two branch lines which begin, respectively, at ξ = z and ξ = g−1(0) , and
both branches pass through the point ξ = a without crossing the Pochhammer con-
tour P(a) = {C1 ∪C2 ∪C3 ∪C4} at any other point as shown in Figure 1. Here F(a)
denotes the principal value of the integrand in (2.3) at the beginning and the ending
point of the Pochhammer contour P(a) which is closed on the Riemann surface of the
multiple-valued function F(ξ ) .

REMARK 2. In Definition 1, the function f (z) must be analytic at ξ = g−1(0) .
However, it is interesting to note here that, if we could also allow f (z) to have an
essential singularity at ξ = g−1(0) , then Equation (2.3) would still be valid.

REMARK 3. Since Pochhammer contour never crosses the singularities at ξ =
g−1(0) and ξ = z in (2.3), then we know that the integral is analytic for all p and for
all α and for z in R \{g−1(0)} . Indeed, in this case, the only possible singularities of
Dα

g(z){[g(z)]p f (z)} are α = −1,−2,−3, · · · and p = 0,±1,±2, · · · , which can directly
be identified from the coefficient of the integral (2.3). However, by integrating by parts
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N times the integral in (2.3) by two different ways, we can show that α = −1,−2, · · ·
and p = 0,1,2, · · · are removable singularities (see, for details, [13]) .

It is well known that [15, p. 83, Equation (2.4)]

Dα
z {zp} =

Γ(1+ p)
Γ(1+ p−α)

zp−α (
ℜ(p) > −1

)
. (2.4)

Adopting the Pochhammer based representation for the fractional derivative modifies
the restriction to the case when p is not a negative integer.

3. The well poised fractional calculus operator zOα
β

In this section, we recall some of the important properties of the fractional calculus
operator zOα

β that was introduced by Tremblay [16]:

zO
α
β :=

Γ(β )
Γ(α)

z1−β Dα−β
z

{
zα−1} (β not a negative integer). (3.1)

We chose to simply list them since the proofs are readily obtainable.

1) Linearity

zO
α
β {λ1 f (z)+ λ2 g(z)} = λ1 zO

α
β { f (z)}+ λ2 zO

α
β {g(z)}. (3.2)

2) Identity

zO
α
α = I. (3.3)

3) Reductions

zO
α
β zO

β
γ = zO

α
γ , (3.4)

zO
α
β zO

γ
α = zO

γ
β . (3.5)

4) Elementary cases

zO
α
β {1} = 1, (3.6)

zO
α
β {zn} =

(α)n

(β )n
zn, (3.7)

zO
α
β

{
(1− z)−γ} = 2F1

[
γ, α;
β ;

z

]
. (3.8)
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5) Useful case

zO
α
β

{
zλ f (z)

}
=

Γ(β )Γ(α + λ )
Γ(α)Γ(β + λ )

zλ
zO

α+λ
β+λ { f (z)} . (3.9)

It is worthy to mention that operator zOα
β has a lot more interesting properties and

applications. Tremblay introduced this operator in order to deal with special functions
more efficiently and to facilitate the obtention of new relations such as hypergeometric
transformations.

In this work, one of the most important properties of the operator zOα
β is given by

the following relation:

B(α,β ) =
Γ(α)Γ(β + γ)
Γ(α + β + γ) zO

α+β
β {zγ}

∣∣∣∣
z=1

. (3.10)

This relation shows that the so-called beta integral method consists in a fractional
derivative evaluated at the point z = 1.

4. Main result

The main result of the present paper is contained in the following theorem:

THEOREM 2. The following generalization of the Rathie-Kiliçman formula (1.5)
holds true:

∞

∑
k=0

(a)k(b)k(α)k(−4z)k
2F1

[
γ +2k, α + k;

β + k;
z

]
(2b+ �)k(β )k k!

=
∞

∑
n=0

D�(n)
(α)2n(a)n

(
a−b+ 1

2 −
[

�
2

])
n z2n

2F1

[
γ −2a, α +2n;

β +2n;
z

]
(β )2n

(
b+ 1

2 +
[

�
2

])
n n!

+
2aα

β

∞

∑
n=0

E�(n)
(α +1)2n(a+1)n

(
a−b+ 3

2 −
[

�+1
2

])
n z2n+1

(β +1)2n
(
b+ 1

2 +
[

�+1
2

])
n n!

· 2F1

[
γ −2a, α +1+2n;

β +1+2n;
z

]
, (4.1)

where |z| < 1 and � = 0, ±1, ±2 . The coefficients D�(n) and E�(n) are those given in
Table 1.

Proof. Multiplying relation (1.3) by (1− z)−γ+2a where γ is a complex number,
expressing 2F1 involved as a series, applying the operator zOα

β and changing the order
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of integration and summation, which is easily seen to be justified due to the uniform
convergence of the involved series, gives

∞

∑
k=0

(a)k(b)k (−4)k

(2b+ �)k k! zO
α
β

{
zk(1− z)−2k−γ

}

=
∞

∑
n=0

D�(n)
(a)n

(
a−b+ 1

2 −
[

�
2

])
n(

b+ 1
2 +

[
�
2

])
n

zOα
β

{
z2n(1− z)−γ+2a

}
n!

+2a
∞

∑
n=0

E�(n)
(a+1)n

(
a−b+ 3

2 −
[

�+1
2

])
n(

b+ 1
2 +

[
�+1
2

])
n

zOα
β

{
z2n+1(1− z)−γ+2a

}
n!

(4.2)

for � = 0, ±1,±2.
With the help of (3.8) and (3.9), we find

zO
α
β

{
zk(1− z)−2k−γ

}
=

(α)k

(β )k
zk

2F1

[
2k+ γ, α + k;
β + k;

z

]
, (4.3)

zO
α
β

{
z2n(1− z)−γ+2a} =

(α)2n

(β )2n
z2n

2F1

[
γ −2a, α +2n;
β +2n;

z

]
(4.4)

and

zO
α
β

{
z2n+1(1− z)−γ+2a}

=
α (α +1)2n

β (β +1)2n
z2n+1

2F1

[
γ −2a, α +1+2n;

β +1+2n;
z

]
, (4.5)

which leads us to the asserted result (4.1) after elementary simplifications. �

5. Corollaries and consequences

This section is devoted to present some corollaries of our main result (4.1). First,
let us show that formula (4.1) reduces to the one of Rathie and Kiliçman (1.5).

Letting z = 1, γ = 0, α = d and β = 1− e in formula (4.1), we obtain

∞

∑
k=0

(a)k(b)k(d)k(−4)k
2F1

[
2k, d + k;

1− e+ k;
1

]
(2b+ �)k(1− e)k k!

=
∞

∑
n=0

D�(n)
(d)2n(a)n

(
a−b+ 1

2 −
[

�
2

])
n 2F1

[ −2a, d +2n;
1− e+2n;

1

]
(1− e)2n

(
b+ 1

2 +
[

�
2

])
n n!

+
2ad

(1− e)

∞

∑
n=0

E�(n)
(d +1)2n(a+1)n

(
a−b+ 3

2 −
[

�+1
2

])
n

(2)2n
(
b+ 1

2 +
[

�+1
2

])
n n!
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· 2F1

[ −2a, d +1+2n;
2− e+2n;

1

]
. (5.1)

where � = 0, ±1,±2.
Let d by a non positive integer. Then, the hypergeometric series appearing in the

left-hand side of (5.1) terminates and, thus, appealing to Gauss summation formula [4]:

2F1

[
a, b;
c;

1

]
=

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

(Re(c−a−b) > 0), (5.2)

we find respectively that

2F1

[
2k, d + k;

1− e+ k;
1

]
=

Γ(1− e+ k)Γ(1− e−d−2k)
Γ(1− e− k)Γ(1− e−d)

, (5.3)

2F1

[ −2a, d +2n;
1− e+2n;

1

]
=

Γ(1− e+2n)Γ(1− e−d+2a)
Γ(1− e+2a+2n)Γ(1− e−d)

, (5.4)

and

2F1

[ −2a, d +1+2n;
2− e+2n;

1

]
=

Γ(2− e+2n)Γ(1− e−d+2a)
Γ(2− e+2a+2n)Γ(1− e−d)

. (5.5)

Replacing the three hypergeometric series involved in (5.1) respectively by (5.3), (5.4)
and (5.5) leads to the asserted result (1.5).

Furthermore, by specializing � , we recover all the corollaries given by Rathie and
Kiliçman [18].

Let us examine a very interesting special case of formula (4.1). Setting z = −1
and γ = α + β −1, in formula (4.1), we obtain

∞

∑
k=0

(a)k(b)k(α)k 4k
2F1

[
α + β −1+2k, α + k;

β + k;
−1

]
(2b+ �)k(β )k k!

=
∞

∑
n=0

D�(n)
(α)2n(a)n

(
a−b+ 1

2 −
[

�
2

])
n 2F1

[
α + β −1−2a, α +2n;

β +2n;
−1

]
(β )2n

(
b+ 1

2 +
[

�
2

])
n n!

− 2aα
β

∞

∑
n=0

E�(n)
(α +1)2n(a+1)n

(
a−b+ 3

2 −
[

�+1
2

])
n

(β +1)2n
(
b+ 1

2 +
[

�+1
2

])
n n!

· 2F1

[
α + β −1−2a, α +1+2n;

β +1+2n;
−1

]
, (5.6)

where � = 0, ±1,±2.
Letting α be a non positive integer and making use of the following summation formula
due to Kummer [12, p. 134, Entry 1]:

2F1

[
a, b;

a−b+1;
−1

]
=

2−a Γ
( 1

2

)
Γ(a−b+1)

Γ
( 1

2a+ 1
2

)
Γ

( 1
2a−b+1

) (Re(b) < 1), (5.7)
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we have

21−α−β Γ(β )
Γ

(
1
2α + 1

2 β
)

Γ
(

1
2 β − 1

2 α + 1
2

) 3F2

[
a, b, α;

2b+ �, 1
2 α + 1

2β ;
1

]

=
∞

∑
n=0

D�(n)
(α)2n(a)n

(
a−b+ 1

2 −
[

�
2

])
n 2F1

[
α + β −1−2a, α +2n;

β +2n;
−1

]
(β )2n

(
b+ 1

2 +
[

�
2

])
n n!

− 2aα
β

∞

∑
n=0

E�(n)
(α +1)2n(a+1)n

(
a−b+ 3

2 −
[

�+1
2

])
n

(β +1)2n
(
b+ 1

2 +
[

�+1
2

])
n n!

· 2F1

[
α + β −1−2a, α +1+2n;

β +1+2n;
−1

]
, (5.8)

where � = 0, ±1,±2.
Furthermore, if we make the following substitutions � = 1 and a �→ β − 1 with

ℜ(α) < ℜ(β ) in the last result (5.8) and next, if we apply again the Kummer’s sum-
mation formula (5.7), we obtain

21−β

Γ
( 1

2 α + 1
2β

)
Γ

( 1
2β − 1

2α + 1
2

) 3F2

[
β −1, b, α;
2b+1, 1

2 α + 1
2 β ;

1

]

=
1

Γ
(

1
2 α + 1

2

)
Γ

(
β − 1

2 α
) 3F2

[ 1
2 α, β −1, β −b− 1

2 ;
β − 1

2 α, b+ 1
2 ;

1

]

− (β −1)α
(2b+1)Γ

(
1+ 1

2 α
)

Γ
(
β − 1

2 α + 1
2

) 3F2

[ 1
2α + 1

2 , β , β −b− 1
2 ;

β − 1
2 α + 1

2 , b+ 3
2 ;

1

]
.

(5.9)
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