
Journal of
Classical

Analysis

Volume 5, Number 2 (2014), 107–113 doi:10.7153/jca-05-09

GROWTH OF THE MAXIMUM MODULUS OF

POLYNOMIALS WITH PRESCRIBED ZEROS

M. S. PUKHTA

Abstract. If p(z) =
n
∑
j=0

aj
j is a polynomial of degree n satisfying p(z) �= 0 in |z| < 1 , then for

R � 1 . Ankeny and Rivlin [1] proved that M(p,R) �
(

Rn+1
2

)
M(p,1) . In this paper we obtain

some results in this direction by considering polynomials of degree n � 2 , having all its zeros
on |z| = k , k � 1 which is an improvement of the result recently proved by M. S. Pukhta (2013)
[Progress in Applied Mathematics, 6 (2), 50–58].

1. Introduction and Statement of Result

For an arbitrary entire function p(z) , let M( f ,r) = max
|z|=r

| f (z)| . Then for a polyno-

mial p(z) of degree n , it is a simple consequence of maximum modulus principle (for
reference see [4, Vol. I, p. 137, Problem III, 269]) that

M(p,R) � RnM(p,1), for R � 1. (1.1)

The result is best possible and equality holds for p(z) = λ zn , where |λ | = 1, R � 1.
If we restrict ourselves to the class of polynomials having no zeros in |z|< 1, then

inequality (1.1) can be sharpened. In fact it was shown by Ankeny and Rivlin [1] that
if p(z) �= 0 in |z| < 1, then (1.1) can be replaced by

M(p,R) �
(

Rn +1
2

)
M(p,1), R � 1 (1.2)

The result is sharp and equality holds for p(z) = α + β zn , where |α| = |β | .
While trying to obtain inequality analogous to (1.2) for polynomials not vanishing

in |z| < k , k � 1, K.K. Dewan and Arty Ahuja [2] proved the following result.

THEOREM A. If p(z) =
n
∑
j=0

a jz j is a polynomial of degree n having all its zeros

on |z| = k , k � 1 , then for every positive integer s

{M(p,R)}s �
(

kn−1(1+ k)+ (Rns−1)
kn−1 + kn

)
{M(p,1)}s, R � 1 (1.3)
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THEOREM B. If p(z) =
n
∑
j=0

a jz j is a polynomial of degree n having all its zeros

on |z| = k , k � 1 , then for every positive integer s

{M(p,R)}s � 1
kn

[
n|an|{kn(1+ k2)+ k2(Rns −1)+ |an−1|{2kn +Rns−1}

2|an−1|+n|an|(1+ k2)

]

×{M(p,1)}s, R � 1 . (1.4)

In this paper, we not only improve Theorem A and Theorem B but also improve
the results recently proved by M.S. Pukhta [7]. More precisely, we prove

THEOREM 1. If p(z) = cnzn + ∑n
ν=μ cn−νzn−ν , 1 � μ < n is a polynomial of

degree n having all its zeros on |z| = k , k � 1 , then for every positive integer s and
R � 1 ,

{M(p,R)}s � kn−2μ+1(1+ kμ)+ (Rns−1)
kn−2μ+1 + kn−μ+1 {M(p,1)}s

− s|a1|
(

Rns−1
ns

− Rns−2−1
ns−2

)
{M(p,1)}s−1, if n > 2 (1.5)

and

{M(p,R)}s � kn−2μ+1(1+ kμ)+ (Rns−1)
kn−2μ+1 + kn−μ+1 {M(p,1)}s

− s|a1|
(

Rns−1
ns

− Rns−1−1
ns−1

)
{M(p,1)}s−1, if n = 2 (1.6)

If we choose μ = 1 in Theorem 1, we get the following result recently proved by
M. S. Pukhta [7].

COROLLARY 1. If p(z) =
n
∑
j=0

a jz j is a polynomial of degree n � 2 having all its

zeros on |z| = k , k � 1 , then for R � 1 ,

{M(p,R)}s � kn−1(1+ k)+ (Rns−1)
kn−1 + kn {M(p,1)}s

− s|a1|
(

Rns−1
ns

− Rns−2−1
ns−2

)
{M(p,1)}s−1, if n > 2 (1.7)

and

{M(p,R)}s � kn−1(1+ k)+ (Rns−1)
kn−1 + kn {M(p,1)}s

− s|a1|
(

Rns−1
ns

− Rns−1−1
ns−1

)
{M(p,1)}s−1, if n = 2 (1.8)

Next we prove the following result which is a refinement of Theorem 1.
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THEOREM 2. If p(z) = cnzn +
n
∑

ν=μ
cn−νzn−ν , 1 � μ < n is a polynomial of de-

gree n having all its zeros on |z| = k , k � 1 , then for every positive integer s and
R � 1 ,

{M(p,R)}s � 1
kn−μ+1

[
(

n|cn|{kn−μ+1(kμ−1 + k2μ)+ k2μ(Rns−1)}
+|cn−μ |{μ(kn + kn−μ+1 + kμ−1(Rns−1))}

)

μ |cn−μ |(kμ−1 +1)+n|cn|(kμ−1 + k2μ)

]

×{M(p,1)}s− s|a1|
(

Rns−1
ns

− Rns−2−1
ns−2

)
{M(p,1)}s−1,

if n > 2 (1.9)

and

{M(p,R)}s � 1
kn−μ+1

[
(

n|cn|{kn−μ+1(kμ−1 + k2μ)+ k2μ(Rns−1)}
+|cn−μ |{μ(kn + kn−μ+1 + kμ−1(Rns −1))}

)

μ |cn−μ |(kμ−1 +1)+n|cn|(kμ−1 + k2μ)

]

×{M(p,1)}s

− s|a1|
(

Rns−1
ns

− Rns−1−1
ns−1

)
{M(p,1)}s−1, if n = 2 (1.10)

If we choose μ = 1 in Theorem 2, we get the following result.

COROLLARY 2. If p(z) =
n
∑
j=0

a jz j is a polynomial of degree n � 2 having all its

zeros on |z| = k , k � 1 , then for every R � 1

{M(p,R)}s � 1
kn

[
(

n|cn|{kn(1+ k2)+ k2(Rns−1)}
+|cn−1|{(1+ kn +(Rns−1))}

)

2|cn−1|+n|cn|(1+ k2)

]
{M(p,1)}s

− s|a1|
(

Rns−1
ns

− Rns−2−1
ns−2

)
{M(p,1)}s−1, if n > 2 (1.11)

and

{M(p,R)}s � 1
kn

[
(

n|cn|{kn(1+ k2)+ k2(Rns−1)}
+|cn−1|{(k+ kn + k(Rns−1))}

)

2|cn−μ |+n|cn|(1+ k2)

]
{M(p,1)}s

− s|a1|
(

Rns−1
ns

− Rns−1−1
ns−1

)
{M(p,1)}s−1, if n = 2 (1.12)



110 M. S. PUKHTA

2. Lemmas

For the proof of these theorems, we need the following lemmas.

LEMMA 1. If p(z) = cnzn +
n
∑

ν=μ
cn−νzn−ν , 1 � μ < n is a polynomial of degree

n having all its zeros on |z| = k , k � 1 , then

max
|z|=1

|p′(z)| � n
kn−2μ−1 + kn−μ+1 max

|z|=1
|p(z)| . (2.1)

The above lemma is due to Govil [3].

LEMMA 2. If p(z) = cnzn +
n
∑

ν=μ
cn−νzn−ν , 1 � μ < n is a polynomial of degree

n having all its zeros on |z| = k , k � 1 , then

max |p′(z)| � n
kn−μ+1

[
n|cn|k2μ + |cn−μ |kμ−1

n|cn|(k2μ + kμ−1)+ μ |cn−μ|(kμ−1 +1)

]
max
|z|=1

|p(z)| (2.2)

The above lemma is due to Dewan and Mir [5].

LEMMA 3. If p(z) =
n
∑
j=0

a jz j is a polynomial of degree, then for all R � 1

max
|z|=R

|p(z)| � RnM(p,1)− (Rn−Rn−2)|p(0)|, if n > 1 (2.3)

and

max
|z|=R

|p(z)| � RM(p,1)− (R−1)|p(0)|, if n = 1 (2.4)

The above lemma is due to Frappier, Rahman and Ruscheweyh [6].

3. Proof of the theorems

Proof of Theorem 1. We first consider the case when polynomial p(z) is of degree
n > 2. Since p(z) is a polynomial of degree n having all its zeros on |z| = k , k � 1,
therefore, by Lemma 1, we have

max
|z|=1

|p′(z)| � n
kn−2μ+1 + kn−μ+1 M(p,1) (3.1)

Now applying inequality (1.1) to the polynomial p′(z) which is of degree n− 1 and
noting (3.1), it follows that for all r � 1 and 0 � θ < 2π

|p′(reiθ )| � nrn−1

kn−2μ+1 + kn−μ+1 M(p,1) (3.2)
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Also for each θ , 0 � θ < π and R � 1, we obtain

{p(Reiθ )}s−{p(eiθ )}s =
∫ R

1

d
dt
{p(teiθ )}sdt

=
∫ R

1
s{p(teiθ )}s−1p′(teiθ )eiθ dt .

This implies

|{p(Reiθ )}s −{p(eiθ)}s| � s
∫ R

1
|p(teiθ )|s−1|p′(teiθ )|dt (3.3)

Since p(z) is a polynomial of of degree n > 2, the polynomial p′(z) which is of degree
n−1 � 2, hence applying inequality (2.3) of Lemma 3 to p′(z) , we have for r � 1 and
0 � θ < 2π

|p′(reiθ )| � rn−1M(p′,1)− (rn−1− rn−3)|p′(0)| (3.4)

Inequality (3.4) in conjunction with inequalities (3.3) and (1.1), yields for n > 2 and
for R � 1

|{p(Reiθ )}s −{p(eiθ)}s|

� s
∫ R

1
(tnM(p,1))s−1[tn−1M(p′,1)− (tn−1− tn−3)|p′(0)|]dt

= s
∫ R

1
tns−1{M(p,1)}s−1M(p′,1)− (tns−1− tns−3){M(p,1)}s−1|p′(0)|]dt

= s

[
Rns−1

ns
{M(p,1)}s−1M(p′,1)

−
(

Rns−1
ns

− Rns−2

ns−2

)
{M(p,1)}s−1|p′(0)|

]
(3.5)

On applying Lemma 1 to inequality (3.5), we get for n > 2,

|{p(Reiθ )}s−{p(eiθ )}s| � Rns−1
kn−2μ+1 + kn−μ+1 {M(p,1)}s

− s

(
Rns−1

ns
− Rns−2−1

ns−2

)
{M(p,1)}s−1|p′(0)|

This gives

{M(p,R)}s � kn−2μ+1(1+ kμ)+ (Rns−1)
kn−2μ+1 + kn−μ+1 {M(p,1)}s

− s|a1|
(

Rns−1
ns

− Rns−2−1
ns−2

)
{M(p,1)}s−1

This completes the proof of inequality (1.5). �
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The proof of inequality (1.6) follows on the same lines as that of inequality (1.5),
but instead of using inequality (2.3) of Lemma 3 we use inequality (2.4) of Lemma 3.

Proof of Theorem 2. The proof of Theorem 2 follows on the same lines as that of
Theorem 1. But for the sake of completeness we give a brief outline of the proof. We
first consider the case when polynomial p(z) is of degree n > 2, then the polynomial
p′(z) is of degree (n− 1) � 2, hence applying inequality (2.3) of Lemma 3 to p′(z) ,
we have for r � 1 and 0 � θ < 2π

|p′(reiθ )| � rn−1M(p′,1)− (rn−1− rn−3)|p′(0)| (3.6)

Also for each θ , 0 � θ < 2π and R � 1, we obtain

{p(Reiθ )}s−{p(eiθ )}s =
∫ R

1

d
dt
{p(teiθ )}sdt

=
∫ R

1
s{p(teiθ )}s−1p′(teiθ )eiθ dt .

This implies

|{p(Reiθ )}s −{p(eiθ)}s| � s
∫ R

1
|p(teiθ )|s−1|p′(teiθ )|dt (3.7)

Inequality (3.6) in conjunction with inequalities (3.6) and (1.1), yields for n > 2,

|{p(Reiθ )}s −{p(eiθ)}s|

� s
∫ R

1
(tnM(p,1))s−1[tn−1M(p′,1)− (tn−1− tn−3)|p′(0)|]dt

= s
∫ R

1
tns−1{M(p,1)}s−1M(p′,1)− (tns−1− tns−3){M(p,1)}s−1|p′(0)|]dt

= s

[
Rns−1

ns
{M(p,1)}s−1M(p′,1)

−
(

Rns−1
ns

− Rns−2−1
ns−2

)
{M(p,1)}s−1|p′(0)|

]

Which on combining with Lemma 2, yields for n > 2

|{p(Reiθ )}s−{p(eiθ )}s|

� Rns−1
kn−μ+1

[
n|cn|k2μ + |cn−μ |kμ−1

n|cn|(k2μ + kμ−1)+ μ |cn−μ|(kμ−1 +1)

]
{M(p,1)}s

− s

(
Rns−1

ns
− Rns−2−1

ns−2

)
{M(p,1)}s−1|p′(0)|

from which we get the desired result. �

The proof of inequality (1.10) follows on the same lines as that of inequality (1.9),
but instead of using inequality (2.3) of Lemma 3 we use inequality (2.4) of Lemma 3.
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