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SOLUTIONS TO FRACTIONAL

DIFFERENTIAL EQUATIONS THAT EXTEND

CHRISTOPHER C. TISDELL

Abstract. This note discusses the question: When do nonlinear fractional differential equations
of arbitrary order have solutions that extend to a maximal interval of existence? We show that a
growth condition on the right-hand side of the equation ensures that solutions will extend. The
method uses a classical approach from analysis, namely the divergence of an infinite series. It
is interesting to note that the growth condition is related to the order of the fractional differen-
tial equation involved. A YouTube video from the author that is designed to complement this
research is available at http://tinyurl.com/Extend-FDE.

1. Introduction

This article discusses the question:
When do nonlinear fractional differential equations of arbitrary order have solutions
that extend to a maximal interval of existence?

In particular, the discussion is centered around the following initial value problem
(IVP) of arbitrary order q > 0

Dq
(
x−T�q�−1[x]

)
= f (t,x); (1.1)

x(0) = A0, x′(0) = A1, . . . , x(�q�−1)(0) = A�q�−1; (1.2)

where: �q� is the integer such that q− 1 < �q� � q ; Dq represents the Riemann–
Liouville fractional differentiation operator of arbitrary order q > 0 (a precise defini-
tion is found in (2.1) a little later); f : I ×D ⊂ R

2 → R ; T�q�−1[x] is the Maclaurin
polynomial of order �q�−1 of x = x(t) ; a > 0 and the Ai are constants.

The left-hand side of (1.1) is known as the Caputo derivative of x of order q > 0,
with the notation CDq(x) := Dq

(
x−T�q�−1[x]

)
also used in the literature. Observe

that the classical derivatives of the function x (from order zero to order �q�−1 each at
t = 0) are present in (1.1) and (1.2). This form was suggested by Caputo [1] responding
to a need for improved accuracy in modelling the initial conditions of phenomena.

Works such as [2, 6, 7, 8, 10, 11, 12, 13, 14, 15] and the monographs [4, 5, 9] have
analyzed qualitative and quantitative aspects of solutions to (1.1), (1.2). The meth-
ods employed in the above literature include: the sequential technique of successive
approximations; and the classical fixed-point approaches of Banach and Schauder.
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In contrast to the aforementioned works the approach herein involves determining
when solutions to (1.1), (1.2) will extend to their maximal interval of existence. The
results in this note advance our cornerstone knowledge of solutions to nonlinear IVPs
involving fractional differential equations and have been motivated by the case q = 1
in [16].

2. Preliminaries

To understand the notation used throughout this short section contains some pre-
liminary definitions and associated notation.

A solution to the IVP (1.1), (1.2) on an interval I is defined to be a q -th (fractio-
nally)-differentiable function x : I ⊆ R → R such that the points (t,x(t)) lie in I ×D
for all t ∈ I ⊆ R and x(t) satisfies: (1.1) for all t ∈ I ; and (1.2).

Define the Riemann–Liouville fractional derivative and integral of order q > 0 of
a function y , respectively, by:

Dqy(t) :=
d�q�

dt�q�
1

Γ(�q�−q)

∫ t

0
(t− s)�q�−1−qy(s) ds; (2.1)

Iqy(t) :=
1

Γ(q)

∫ t

0
(t − s)q−1y(s) ds;

with the Caputo derivative defined via

CDqy(t) := Dq (
y−T�q�−1[y]

)
(t).

Consider the rectangle

R := {(t,u) ∈ [0,a]×R : |u−A0| � b}, a > 0, b > 0

and let M > 0 be a constant such that

| f (t,u)| � M, for all (t,u) ∈ R.

We shall need the following local existence result from [2, Theorem 2.1] which is
proved using Schauder’s fixed-point theorem or using Weierstass’ polynomial approxi-
mation theorem [15].

THEOREM 2.1. If f : R → R is continuous then the IVP (1.1), (1.2) has at least
one solution x on [0,α] such that (t,x(t)) ∈ R for all t ∈ [0,α] with

α := min

{
a,

[
bΓ(q+1)

M

]1/q
}

.
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3. Main Results

In this section the main results are presented. Under certain growth conditions, it
is shown that solutions to fractional IVPs have solutions that extend to intervals of the
type [0,a] or [0,∞) .

THEOREM 3.1. Let f : [0,a]×R → R be continuous. If there is a continuous,
nondecreasing function ϕ : [0,∞) → (0,∞) such that

| f (t,u)| � [ϕ(|u|)]q , for all (t,u) ∈ [0,a]×R;∫ ∞

d

ds
ϕ(s)

= ∞, for some constant d � 0;

then the fractional IVP (1.1), (1.2) has at least one solution x that extends to the interval
[0,a] .

Proof. Consider the general fractional IVP

Dq
(
x−T�q�−1[x]

)
= f (t,x); (3.1)

x(t0) = x0, x′(t0) = x1, . . . , x(�q�−1)(t0) = x�q�−1; (3.2)

where T�q�−1[x] is the Taylor polynomial of order �q�−1 of x = x(t) at t = t0 . (The
definition of Dq in (2.1) will then have the 0 in the integral sign replaced with t0 .) Also
consider the general rectangle

R := {(t,u) ∈ [t0,a]×R : |u− x0| � b}, b > 0.

Let M > 0 be a constant such that

| f (t,u)| � M for all (t,u) ∈ R.

Now, since f is continuous on R , by Theorem 2.1 we know that the problem (3.1),
(3.2) has at least one solution x on [t0,t0 + α] , where

α := min

{
a,

[
bΓ(q+1)

M

]1/q
}

.

Now let’s reconsider (3.1), (3.2) by associating: t0 with 0; x0 with A0 ; each xi

with Ai ; and let’s choose b = 1. We can thus form the rectangle

R0 := {(t,u) : t ∈ [0,a], |u−A0| � 1}
and so |u| � |A0|+1. Consequently, a bound M0 on f over R0 can be obtained via

| f (t,u)| � [ϕ(|u|)]q
� [ϕ(|A0|+1)]q

=: M0.
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Thus, the fractional IVP (3.1), (3.2) has at least one solution x on [t0,t0 + t1] = [0,t1]
with

t1 = min

{
a,

[
Γ(q+1)

[ϕ(|A0|+1)]q

]1/q
}

= min

{
a,

[Γ(q+1)]1/q

ϕ(|A0|+1)

}

such that |x(t)−A0| � 1 for all t ∈ [0,t1] , so |x(t1)| � |A0|+1.
Now we reconsider (3.1), (3.2) by associating: t0 with t1 ; x0 with x(t1) ; each xi

with x(i)(t1) ; and let’s choose b = 1. We can thus form the rectangle

R1 := {(t,u) : t ∈ [t1,a], |u− x(t1)| � 1}

and so |u| � |x(t1)|+ 1 � |A0|+ 2. Consequently, a bound M1 on f over R1 can be
obtained via

| f (t,u)| � [ϕ(|u|)]q
� [ϕ(|x(t1)|+1)]q

� [ϕ(|A0|+2)]q

=: M1.

Thus, the fractional IVP (3.1), (3.2) has at least one solution x on [t1,t1 + t2] with

t2 = min

{
a,

[
Γ(q+1)

[ϕ(|A0|+2)]q

]1/q
}

= min

{
a,

[Γ(q+1)]1/q

ϕ(|A0|+2)

}

such that |x(t)− x(t1)| � 1 for all t ∈ [t1,t1 + t2] , so |x(t1 + t2)| � |A0|+2.
We continue in the above fashion and reconsider (3.1), (3.2) by associating: t0

with t1 + · · ·+ tm−1 ; x0 with x(t1 + t2 + · · ·+ tm−1) ; each xi with x(i)(t1 + t2 + · · ·+
tm−1) ; and choosing b = 1. We can thus form the rectangle

Rm−1 := {(t,u) : t ∈ [0,a], |u− x(t1 + · · ·+ tm−1)| � 1}

and so |u| � |x(t1 + · · ·tm−1)|+1 � |A0|+m . Consequently, a bound Mm−1 on f over
Rm−1 can be obtained via

| f (t,u)| � [ϕ(|u|)]q
� [ϕ(|x(t1 + · · ·+ tm−1)|+1)]q

� [ϕ(|A0|+m)]q

=: Mm−1.
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Thus, the fractional IVP (3.1), (3.2) has at least one solution x on [t1 + · · ·+ tm−1,t1 +
· · ·+ tm] with

tm = min

{
a,

[
Γ(q+1)

[ϕ(|A0|+m)]q

]1/q
}

= min

{
a,

[Γ(q+1)]1/q

ϕ(|A0|+m)

}

such that |x(t)− x(t1 + · · ·+ tm−1)| � 1 for all t ∈ [t1 + · · ·+ tm−1,t1 + · · ·+ tm] , so
|x(t1 + · · ·+ tm)| � |A0|+m .

Combining the above we have thus shown the existence of a solution to (1.1), (1.2)
on the interval [0,Tm] with

Tm := min{a,t1 + · · ·+ tm}, (t0 = 0).

Consider

lim
m→∞

(t1 + · · ·+ tm) =
∞

∑
i=1

[Γ(q+1)]1/q

ϕ(|A0|+ i)
= ∞

where we have applied the integral test for series. Thus

lim
m→∞

Tm = a

and we see that solutions extend to the entire interval [0,a] . �

A pair of corollaries are now presented for special cases of the ϕ from Theorem
3.1.

COROLLARY 3.2. Let f : [0,a]×R → R be continuous. If there is are non-
negative constants C and D such that

| f (t,u)| � [C|u|+D]q , for all (t,u) ∈ [0,a]×R

then the fractional IVP (1.1), (1.2) has at least one solution x that extends to the interval
[0,a] .

Proof. The conditions of Theorem 3.1 hold with ϕ(s) = Cs + D and the result
follows. �

COROLLARY 3.3. Let f : [0,a]×R→R be continuous. If there is a non-negative
constans D1 such that

| f (t,u)| � D1, for all (t,u) ∈ [0,a]×R

then the fractional IVP (1.1), (1.2) has at least one solution x that extends to the interval
[0,a] .
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Proof. The conditions of Theorem 3.1 hold with ϕ(s) = D1/q
1 and the result fol-

lows. �

If f is autonomous (ie, independent of t ) in (1.1) then we can extend solutions
over the half-line by using a similar sequential approach as in the proof of Theorem 3.1.
Consider

Dq
(
x−T�q�−1[x]

)
= f (x); (3.3)

x(0) = A0, x′(0) = A1, . . . , x(�q�−1)(0) = A�q�−1. (3.4)

THEOREM 3.4. Let f : R → R be continuous. If there is a continuous, nonde-
creasing function ϕ : [0,∞) → (0,∞) such that

| f (u)| � [ϕ(|u|)]q , for all u ∈ R;∫ ∞

d

ds
ϕ(s)

= ∞, for some constant d � 0;

then the autonomous fractional IVP (3.3), (3.4) has at least one solution x that extends
to the half-line [0,∞) .

Proof. Consider the general autonomous fractional IVP

Dq
(
x−T�q�−1[x]

)
= f (x); (3.5)

x(t0) = x0, x′(t0) = x1, . . . , x(�q�−1)(t0) = x�q�−1; (3.6)

where T�q�−1[x] is the Taylor polynomial of order �q�−1 of x = x(t) at t = t0 . Also
consider the general interval

R := {u ∈ R : |u− x0| � b}, b > 0.

Let M > 0 be a constant such that

| f (u)| � M for all u ∈ R.

Now, since f is continuous and independent of t , by Theorem 2.1 we know that the
problem (3.1), (3.2) has at least one solution x on [t0,t0 + α] , where

α :=
[
bΓ(q+1)

M

]1/q

.

Rerunning the proof of Theorem 3.1 (the details for omitted for brevity) we obtain
the existence of a solution to (3.3), (3.4) on the interval [0,Tm] with

Tm = t1 + · · ·+ tm, (t0 = 0).

Consider

lim
m→∞

Tm =
∞

∑
i=1

[Γ(q+1)]1/q

ϕ(|A0|+ i)
= ∞
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where we have applied the integral test for series. Thus we see that solutions extend to
the half-line [0,∞) . �

The following two corollaries to Theorem 3.4 provide special cases of ϕ . Their
proofs are very similar to those of the earlier corollaries and so are omitted for brevity.

COROLLARY 3.5. Let f : R → R be continuous. If there is are non-negative
constants C and D such that

| f (t,u)| � [C|u|+D]q , for all u ∈ R

then the autonomous fractional IVP (3.3), (3.4) has at least one solution x that extends
to the interval [0,∞) .

COROLLARY 3.6. Let f : R → R be continuous. If there is a non-negative con-
stant D1 such that

| f (u)| � D1, for all u ∈ R

then the autonomous fractional IVP (3.3), (3.4) has at least one solution x that extends
to the helf-line [0,∞) .

EXAMPLE 3.7. The fractional IVP (3.3), (3.4) with q = 1/2 and

f (u) :=
√
|u|+2

has at least one solution on the half-line [0,∞) .

Proof. We may choose C = 1 and D = 2 so that the conditions of Corollary 3.5
are satisfied. Hence we conclude that our problem has at least one solution that extends
to the half-line [0,∞) . �
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