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MEANS AND NONREAL INTERSECTION

POINTS OF TAYLOR POLYNOMIALS

ALAN HORWITZ

Abstract. Suppose that f ∈Cr+1(0,∞) , and let Pc denote the Taylor polynomial to f of order
r at x = c ∈ [a,b] . In [2] it was shown that if r is an odd whole number and f (r+1)(x) �= 0 on
[a,b] , then there is a unique x0 , a < x0 < b , such that Pa(x0) = Pb(x0) . This defines a mean
Mr

f (a,b) ≡ x0 . In this paper we discuss the real parts of the pairs of complex conjugate nonreal
roots of Pb−Pa . We prove some results for r in general, but our most significant results are for
the case r = 3 . We prove in that case that if f (z) = zp , where p is an integer, p /∈ {0,1,2,3} ,
then Pb −Pa has nonreal roots x1 ± iy1 , with a < x1 < b for any 0 < a < b . This defines the
countable family of means M3

zp (a,b) , where p = n ∈ Z−{0,1,2,3} . We construct a cubic
polynomial, g , whose real root gives the real part of the pair of complex conjugate nonreal roots
of Pb − Pa . Instead of working directly with a formula for the roots of a cubic, we use the
Intermediate Value Theorem to show that g has a root in (a,b) .

1. Introduction

Suppose that f ∈ Cr+1(0,∞) , and let Pc denote the Taylor polynomial to f of
order r at x = c > 0. In ([2], Theorem 1.1) it was proved that if r is an odd whole
number and f (r+1)(x) �= 0 on [a,b] , 0 < a < b , then there is a unique real number x0 ,
a < x0 < b , such that Pa(x0) = Pb(x0) . This, of course, defines a mean Mr

f (a,b) ≡ x0 .
Further results and generalizations of the means Mr

f (a,b) were proved in [3], where r
is any positive integer, odd or even. The main purpose of this paper is to discuss the
real parts of the pairs of complex conjugate nonreal roots of Pb−Pa . In Proposition 1
below we show, for any odd whole number, r , and under suitable assumptions on f ,
that Pb−Pa has precisely one real zero x0 , a < x0 < b . We also show that for any even
whole number, r , Pb−Pa has all nonreal zeros. The main question is then:

What can we say about the real parts of the pairs of complex conjugate nonreal
roots of Pb −Pa ? In particular, when do the real parts lie strictly between a and b?
That is, what conditions on f imply that the real parts of the nonreal roots of Pb −Pa

define a mean? We cannot answer that question completely for r in general, but we are
able to prove some results in § 2. If f (r+1)(x) is continuous and has no zeros in [a,b] ,
then the averages of the pairs of complex conjugate nonreal roots of Pb−Pa lie strictly
between a and b for any positive integer r (Proposition 2). This, of course, does not
tell us what happens with the real parts of each specific nonreal root. However, for
r = 2 one gets immediately that if f ′′′(x) �= 0 on [a,b] , and if x1 ± iy1 are the nonreal
roots of Pb−Pa , then a < x1 < b for any 0 < a < b (Corollary 1). Also, if f (z) = zr+1 ,
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then all of the nonreal roots of Pb − Pa have real part given by the arithmetic mean

A(a,b) =
a+b

2
(Proposition 3). Most of the more detailed and complex proofs in this

paper are in § 3, which involves the case r = 3. We prove (Theorem 1) that if f (z) = zp ,
where p is an integer, p /∈ {0,1,2,3} , then Pb −Pa has nonreal roots x1 ± iy1 , with
a < x1 < b for any 0 < a < b . This defines the countable family of means M3

zp(a,b) ,

where p ∈ Z−{0,1,2,3} . For example, if p = −1, one has x1 =
ab(a+b)
a2 +b2 . We have

proven some partial results when p is not an integer, but Theorem 1 does not hold in

general for p ∈ ℜ , p /∈ {0,1,2,3} . For example, let p =
3
2

, a = 1, and b = 36. Then

P36(z)−P1(z) has roots 6,
33
43

± 15
43

√
291i , so that x0 < a . In § 4 we give some alternate

proofs and some partial results, which are perhaps interesting in their own right, and
which also might lead to determining what conditions on f imply that the real parts
of the pairs of complex conjugate nonreal roots of Pb −Pa lie in (a,b) . Finally we
consider possible future research in § 5.

2. General r

A result very similar to Proposition 1(i) below was proved in [4]. Since the proof
is short and we need some functions from that proof to prove Proposition 1(ii) as well
as for some later material, we give the full proof here. Assume that 0 < a < b and that
all functions f are real valued for the rest of the paper.

PROPOSITION 1. Suppose that f (r+1) is continuous in some open interval con-
taining [a,b] and has no zeros in [a,b] . Let Pc denote the Taylor polynomial to f of
order r at x = c.

(i) If r is an odd positive integer, then Pb −Pa has precisely one real zero x0 ,
a < x0 < b.

(ii) If r is an even positive integer then Pb−Pa has all nonreal zeros.

Proof. Let Ec(x) = f (x)−Pc(x) , x ∈ [a,b] . Note that

Pb(x) = Pa(x) ⇐⇒ Eb(x) = Ea(x).

By the integral form of the remainder, we have

Ec(x) =
1
r!

x∫
c

f (r+1)(t)(x− t)rdt,

which implies that

Ea(x) =
1
r!

x∫
a

f (r+1)(t)(x− t)rdt
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Eb(x) = − 1
r!

b∫
x

f (r+1)(t)(x− t)rdt.

Since (Ea −Eb)(x) =
1
r!

b∫
a

f (r+1)(t)(x− t)rdt and Ea(x)−Eb(x) = Pb(x)−Pa(x) , x ∈
[a,b] , we have

(Pb−Pa)(x) =
1
r!

b∫
a

f (r+1)(t)(x− t)rdt. (1)

Since (1) holds for x∈ [a,b] and Pb−Pa is a polynomial, (1) holds for all z∈C = com-
plex plane. We may assume, without loss of generality, that f (r+1)(x) > 0 on [a,b] .

Suppose first that r is odd. Using the formula
∂
∂x

x∫
a

K(x, t)dt =
x∫
a

∂K
∂x

(x,t)dt +K(x,x)

with K(x, t) = f (r+1)(t)(x− t)r−1 , it follows that E ′
a(x) =

1
(r−1)!

x∫
a

f (r+1)(t)(x −
t)r−1dt > 0 for a < x < b , which implies that Ea(x) is strictly increasing on (a,b) .

E ′
b(x) = − 1

(r−1)!

b∫
x

f (r+1)(t)(x− t)r−1dt < 0 for a < x < b , which implies that

Eb(x) is strictly decreasing on (a,b) . Since Ea(a) = Eb(b) = 0, there is a unique
x0 , a < x0 < b , such that Eb(x0)−Ea(x0) = 0, which implies that (Pb −Pa)(x0) = 0.

Now (Pb−Pa)′(x) =
1

(r−1)!

b∫
a

f (r+1)(t)(x− t)r−1dt > 0 for x ∈ ℜ = real line. Hence

Pb−Pa has precisely one real zero. That proves (i).
Now suppose that r is even. Then (Pb−Pa)(x) > 0 for x ∈ ℜ , which implies that

Pb−Pa has no real zeros. That proves (ii). �

(1) gives the following important equivalence: If Pc is the Taylor polynomial to f
of order r at x = c , then

Pb(z) = Pa(z) ⇐⇒
b∫

a

f (r+1)(t)(z− t)rdt = 0,z ∈ C. (2)

We now prove a general result which relates the averages of the real parts of the

roots of Pb−Pa to the center of mass of [a,b] with density function
∣∣∣ f (r+1)(t)

∣∣∣ .
PROPOSITION 2. Suppose that f (r+1) is continuous in some open interval con-

taining [a,b] and has no zeros in [a,b] . Let Pc denote the Taylor polynomial to f of
order r at x = c.

(i) Suppose that r is odd and let s =
r−1

2
. By Proposition 1(ii), Pb − Pa has

precisely one real zero x0 , and r− 1 nonreal zeros, z1, z1, ...,zs, z s . Let xk = Rezk ,
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k = 1, ...,s. Then

x0 +
s
∑

k=1
2Rezk

r
=

b∫
a

t f (r+1)(t)dt

b∫
a

f (r+1)(t)dt

.

(ii) Suppose that r is even and let s =
r
2

. By Proposition 1(ii), Pb −Pa has all

nonreal zeros, z1, z1, ...,zs, z s . Let xk = Rezk , k = 1, ...,s. Then

s
∑

k=1
2Rezk

r
=

b∫
a
t f (r+1)(t)dt

b∫
a

f (r+1)(t)dt

.

In either case, since Pb − Pa has real coefficients, Proposition 2 states that the
average of the real parts of the roots of Pb−Pa is the center of mass of [a,b] , where the

density function is
∣∣∣ f (r+1)(t)

∣∣∣ .
Proof. We may assume, without loss of generality, that f (r+1)(x) > 0 on [a,b] .

Define the monic polynomial Q(z) = r!
(Pb−Pa) (z)

f (r)(b)− f (r)(a)
. Since

(Pb−Pa)(z) =
r

∑
k=0

f (k)(b)(z−b)k − f (k)(a)(z−a)k

k!
,

the coefficient of zr−1 in Q(z) is(
r f (r−1)(b)− rb f (r)(b)

)
−
(
r f (r−1)(a)− ra f (r)(a)

)
f (r)(b)− f (r)(a)

= r

(
f (r−1)(b)−b f (r)(b)

)
−
(

f (r−1)(a)−a f (r)(a)
)

f (r)(b)− f (r)(a)
.

Using Integration by Parts, it is easy to show that

b∫
a

t f (r+1)(t)dt

b∫
a

f (r+1)(t)dt

= −
(

f (r−1)(b)−b f (r)(b)
)
−
(

f (r−1)(a)−a f (r)(a)
)

f (r)(b)− f (r)(a)
.

Thus the coefficient of zr−1 in Q(z) is −r

b∫
a

t f (r+1)(t)dt

b∫
a

f (r+1)(t)dt

.
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Now suppose that r is odd. Since Pb −Pa and Q have the same roots, Q(z) =
(z− x0)(z− z1)(z− z1) · · · (z− zs)(z− z s) . Since the coefficient of zr−1 in Q(z) is also
given by

−x0− (z1 + z1 + · · ·+ zs + z s) = −x0−2
s

∑
k=1

xk,

we have −x0−2
s
∑

k=1
xk = −r

b∫
a

t f (r+1)(t)dt

b∫
a

f (r+1)(t)dt

, which implies that

x0 +
s
∑

k=1
2Rezk

r
=

b∫
a

t f (r+1)(t)dt

b∫
a

f (r+1)(t)dt

.

Now suppose that r is even and write Q(z) = (z− z1)(z− z1) · · · (z− zs)(z− z s) .
Since the coefficient of zr−1 in Q(z) is also given by

−(z1 + z1 + · · ·+ zs + z s) = −2
s

∑
k=1

xk,

we have −2
s
∑

k=1
xk = −r

b∫
a

t f (r+1)(t)dt

b∫
a

f (r+1)(t)dt

, which implies that

s
∑

k=1
2Rezk

r
=

b∫
a

t f (r+1)(t)dt

b∫
a

f (r+1)(t)dt

. �

REMARK 1. Suppose that f (r+1) is continuous and has no zeros in [a,b] . If the
average of the real parts of the nonreal roots of Pb−Pa did not lie in (a,b) , then it would
not be possible for the real parts of all of the nonreal roots of Pb −Pa to lie in (a,b) .
For each r , there are examples, such as f (z) = zr+1 (see Proposition 3 below), where
the real parts of all pairs of complex conjugate roots of Pb −Pa do lie in (a,b) for all
0 < a < b . Of course if r = 3, then there is only one pair of nonreal complex conjugate
roots. As noted above, it is possible that the real parts of that complex conjugate pair do
not lie in (a,b) . For example, f (z) = z3/2 , a = 1, and b = 36. We also have examples
for r = 4 and for r = 5 where only one pair of nonreal complex conjugate roots has
real part lying in (a,b) .

If r = 2, then Pb −Pa has no real roots and only one pair of complex conjugate
nonreal roots. Applying Proposition 2(ii) then yields the following corollary.
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COROLLARY 1. Suppose that f ′′′ is continuous in some open interval containing
[a,b] and has no zeros in [a,b] . Let Pc denote the Taylor polynomial to f of order 2
at x = c. Let x1 ± iy1 denote the nonreal roots of Pb −Pa guaranteed by Proposition
1(ii). Then

x1 =

b∫
a

t f ′′′(t)dt

b∫
a

f ′′′(t)dt

and thus a < x1 < b.

The case r = 1 of Proposition 2 above was given in [2], where

x1 =

b∫
a
t f ′′(t)dt

b∫
a

f ′′(t)dt

is just the x coordinate of the intersection point of tangent lines to a convex or concave
function. This was actually the starting point that led to the generalization to intersec-
tion points of Taylor polynomials. Replacing f ′′′ by f ′′ shows that this yields the same
family of means as for the r = 2 case.

PROPOSITION 3. Let f (z) = zr+1 and let Pc denote the Taylor polynomial to f
of order r at x = c. Then all of the nonreal roots of Pb−Pa have real part given by the

arithmetic mean A(a,b) =
a+b

2
.

Proof. By (2), it suffices to show that
b∫
a

f (r+1)(t)(z− t)rdt = 0 ⇐⇒ Re z =
a+b

2
.

Now
b∫
a

f (r+1)(t)(z− t)rdt = 0 ⇐⇒
b∫
a
(z− t)rdt = 0 ⇐⇒ (z− b)r+1 − (z− a)r+1 =

0 ⇐⇒ z−b = v(z−a) , where v = e2πki/(r+1) is an (r +1)st root of unity. Note that

v �= 1 since a �= b . Thus z =
b− va
1− v

=
−v

1− v
a+

1
1− v

b .

1
1− v

=
1− v

(1− v)(1− v)
=

1− v

1−2Rev+ |v|2

=
1

2(1−Rev)
(1− v),

therefore Re

(
1

1− v

)
=

1
2(1−Rev)

(1−Rev) =
1
2

.

1 =
−v

1− v
+

1
1− v

implies that Re

( −v
1− v

)
= 1 −Re

(
1

1− v

)
=

1
2

. Hence

Rez =
1
2
a+

1
2
b . �
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3. r = 3

We now state our main result for r = 3.

THEOREM 1. Suppose that f (z) = zp , where p is an integer, p /∈ {0,1,2,3} . Let
Pc denote the Taylor polynomial to f of order 3 at x = c. Then for any 0 < a < b,
Pb−Pa has nonreal roots x1± iy1 , with a < x1 < b.

REMARK 2. Theorem 1 defines a countable family of means M3
zp(a,b) = x1 ,

where p ∈ Z−{0,1,2,3} . By Proposition 3 with r = 3, amongst that family of means
is the arithmetic mean.

REMARK 3. Finding z1 such that Pb(z1) = Pa(z1) of course involves solving a
cubic polynomial equation. There are well-known formulas for the solutions of such
equations, but the resulting expressions are complicated and it seems difficult to deter-
mine from such a formula that a < x1 < b . For example, if p = 5 and a = 1, then one
has

x1 =
1
3
· b−1
b+1

· 1
20

3
√

100(b2 +7b+1)(b−1)+150
√

6(b+1)
√

q(b)

−5
2

b2 +4b+1

3
√

100(b2 +7b+1)(b−1)+150
√

6(b+1)
√

q(b)
+2
(
b2 +b+1

)
,

where q(b) = b4 +10b3 +28b2 +10b+1. Furthermore, we want to determine that for
certain classes of functions, f , a < Re(z1) < b . Our proof of Theorem 1 also involves
solving a certain cubic polynomial equation, g(x) = 0 (see (7) below). However, this
time we are looking for a real solution, x1 , of g(x) = 0, with a < x1 < b . That allows
us to use the Intermediate Value Theorem to show that there is such a solution. That
is, we show that for certain classes of functions, f , g(a)g(b) < 0. That avoids actually
working with a formula for the solution of a cubic polynomial equation.

If Pc is the Taylor polynomial to f of order 3 at x = c , then (2) becomes

Pb(z) = Pa(z) ⇐⇒
b∫

a

f ′′′′(t)(z− t)3dt = 0. (3)

For the rest of this section we prove some lemmas and propositions which are used
to prove Theorem 1. Important for our proofs are the following integrals. Let

A =
b∫

a

f ′′′′(t)dt, B =
b∫

a

t f ′′′′(t)dt, C =
b∫

a

t2 f ′′′′(t)dt, D =
b∫

a

t3 f ′′′′(t)dt. (4)

We suppress the dependence of A,B,C , and D on a,b , and on f in our notation. We
now prove a lemma which gives an equivalent condition for Pb(z1) = Pa(z1) to hold
when r = 3.
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LEMMA 1. Let Pc denote the Taylor polynomial to f of order 3 at x = c, and let
z1 = x1 + iy1 with y1 �= 0 . Then Pb(z1) = Pa(z1) if and only if the following system of
equations holds.

Ax3
1−3Bx2

1 +3Cx1−D+3(B−Ax1)y2
1 = 0 (5)

3Ax2
1−6Bx1 +3C−Ay2

1 = 0.

Proof. Using the formulas

Re
(
(z1 − t)3) = (Re(z1)− t)3 −3(Re(z1)− t)Im2 (z1)

Im
(
(z1 − t)3) = 3(Re(z1)− t)2 Im (z1)− (Im (z1))

3 ,

we have

Re

⎛
⎝ b∫

a

f ′′′′(t)(z1 − t)3dt

⎞
⎠=

b∫
a

f ′′′′(t)
[
(x1− t)3 −3(x1− t)y2

1

]
dt

and

Im

⎛
⎝ b∫

a

f ′′′′(t)(z1 − t)3dt

⎞
⎠=

b∫
a

f ′′′′(t)
[
3(x1− t)2 y1− y3

1

]
dt.

Pb(z1) = Pa(z1) ⇐⇒
b∫
a

f ′′′′(t)(z1 − t)3dt = 0 by (3). If y1 �= 0, then
b∫
a

f ′′′′(t)(z1 −
t)3dt = 0 is equivalent to the following two equations:

b∫
a

f ′′′′(t)
[
(x1 − t)3−3(x1− t)y2

1

]
dt = 0 (6)

b∫
a

f ′′′′(t)
[
3(x1− t)2− y2

1

]
dt = 0.

Simplifying (6) shows that (x1,y1) satisfies (6) if and only if (x1,y1) satisfies (5). �

We now define the following very important cubic polynomial, g , which depends
upon the given function, f , as well as on a and b :

g(x) = 8A2x3 −24ABx2 +6(AC+3B2)x+AD−9BC, (7)

where A,B,C , and D are given by (4).

LEMMA 2. Let A �= 0 , B,C ∈ ℜ and not necessarily given by (4). If B2−AC < 0 ,
then g is increasing on ℜ .
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Proof.

g′(x) = 24A2x2−48ABx+6AC+18B2

= 24A2
(

x2 − 2B
A

x+
AC+3B2

4A2

)
= 24A2

((
x− B

A

)2

+
AC−B2

4A2

)
> 0. �

REMARK 4. Let A �= 0, B,C ∈ ℜ . If B2−AC < 0 and x1 ∈ ℜ , then

3x2
1−

6B
A

x1 +
3C
A

= 3

((
x1− B

A

)2

+
AC−B2

A2

)
> 0.

Critical for our proof of Theorem 1 below is the following proposition.

PROPOSITION 4. Suppose that f ′′′′ is continuous in some open interval contain-
ing [a,b] and has no zeros in [a,b] and let Pc denote the Taylor polynomial to f of
order 3 at x = c. Then the polynomial g given by (7) has a unique real zero. In ad-

dition, if x1 ∈ ℜ,y1 =

√
3x2

1−
6B
A

x1 +
3C
A

, and z1 = x1 + iy1 , then g(x1) = 0 ⇐⇒
Pb(z1) = Pa(z1) .

Proof. If f ′′′′ > 0 on [a,b] , then

(
b∫
a
t f ′′′′(t)dt

)2

=
(

b∫
a

√
f ′′′′(t)

(
t
√

f ′′′′(t)
)

dt

)2

<

(
b∫
a

f ′′′′(t)dt

)(
b∫
a

t2 f ′′′′(t)dt

)
by the Cauchy-Bunyakowsky inequality ([6]). Note

that the strict inequality follows since
√

f ′′′′(t) and t
√

f ′′′′(t) cannot be proportional
to one another. Since B2 −AC does not depend on the sign of f ′′′′ , where A,B,C are
given by (4), we have B2 −AC < 0 when f ′′′′ �= 0 on [a,b] . Thus g has a unique real
zero by Lemma 2 and the fact that g is a cubic polynomial. Note that by Remark 4,
y1 is real and positive. By Lemma 1, Pb(z1) = Pa(z1) ⇐⇒ (5) holds. Since A �= 0,
solving the second equation in (5) for y2

1 and substituting into the first equation in (5)

to obtain y2
1 = 3x2

1−
6B
A

x1 +
3C
A

shows that (5) holds if and only if

Ax3
1 −3Bx2

1 +3Cx1−D+3(B−Ax1)
(

3x2
1−

6B
A

x1 +
3C
A

)
= 0 ⇐⇒

(A−9A)x3
1 +(−3B+18B+9B)x2

1+
(

3C−9C−18
B2

A

)
x1−D+

9BC
A

= 0 ⇐⇒

−8Ax3
1 +24Bx2

1−6

(
C+3

B2

A

)
x1 +

9BC
A

−D = 0 ⇐⇒

−8A2x3
1 +24ABx2

1−6(AC+3B2)x1 +9BC−AD = 0 ⇐⇒ g(x1) = 0. �

We now focus on the case where f (z) = zp , p ∈ ℜ−{0,1,2,3} . For the purpose
of proving Theorem 1, it will suffice(as shown in the proof below) to just consider the
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case when a = 1, which we assume from now on. For f (z) = zp , (4) then yields

A = p(p−1)(p−2)
(
bp−3−1

)
, B = p(p−1)(p−3)

(
bp−2−1

)
, (8)

C = p(p−2)(p−3)
(
bp−1−1

)
, D = (p−1)(p−2)(p−3)(bp−1) .

Let g(x) be given by (7), where A,B,C , and D are given by (8). For p ∈ ℜ ,
p �= 0,1, it is more convenient to define the following functions of b :

V (b) =
g(1)

p(p−1)
(9)

W (b) =
g(b)

p(p−1)
.

It is important to note that g is a cubic polynomial in x where the coefficients
involve b . V and W are functions of the variable b .

Using (8) and substituting for A,B,C , and D in (7), yields

g(1) = 8A2−24AB+6(AC+3B2)+AD−9BC

= 8(p(p−1)(p−2))2
(
bp−3−1

)2
−24(p(p−1))2 (p−2)(p−3)

(
bp−3−1

)
(bp−2−1)

+6(p(p−2))2 (p−1)(p−3)
(
bp−3−1

)(
bp−1−1

)
+18(p(p−1)(p−3))2

(
bp−2−1

)2
+((p−1)(p−2))2 p(p−3)

(
bp−3−1

)
(bp−1)

−9(p(p−3))2 (p−1)(p−2)
(
bp−2−1

)(
bp−1−1

)
,

which implies, after some simplification, that

V (b) = 12(p+1)−2(p−2)(p−3)
(
4p2−12p−1

)
b2p−3

+6p(p−3)
(
4p2−16p+13

)
b2p−4−24p(p−1)(p−2)(p−3)b2p−5

+8p(p−1)(p−2)2b2p−6− (p−1)(p−2)2(p−3)bp (10)

+3p(p−2)(p−3)(p−5)bp−1−3p(p−3)
(
p2−9p+2

)
bp−2

+(p−2)(p+1)
(
p2−13p+6

)
bp−3.

g(b) = 8A2b3−24ABb2 +6(AC+3B2)b+AD−9BC

= 8(p(p−1)(p−2))2
(
bp−3−1

)2
b3

−24(p(p−1))2 (p−2)(p−3)
(
bp−3−1

)(
bp−2−1

)
b2

+6(p(p−2))2 (p−1)(p−3)
(
bp−3−1

)(
bp−1−1

)
b

+18(p(p−1)(p−3))2
(
bp−2−1

)2
b

+((p−1)(p−2))2 p(p−3)
(
bp−3−1

)
(bp−1)
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−9(p(p−3))2 (p−1)(p−2)
(
bp−2−1

)(
bp−1−1

)
,

which implies, after some simplification, that

W (b) = 12(p+1)b2p−3 +(p−2)(p+1)
(
p2−13p+6

)
bp

−3p(p−3)
(
p2−9p+2

)
bp−1 +3p(p−2)(p−3)(p−5)bp−2

−(p−1)(p−2)2 (p−3)bp−3 +8p(p−1)(p−2)2b3 (11)

−24p(p−1)(p−2)(p−3)b2+6p(p−3)
(
4p2−16p+13

)
b

−2(p−2)(p−3)
(
4p2−12p−1

)
.

Much of the work in proving Theorem 1 is embodied in the following two propo-
sitions.

PROPOSITION 5. Suppose that p = n ∈ N , n /∈ {1,2,3} . Then V (b) = Q(b)(b−
1)5 , where Q is a polynomial with negative nonzero coefficients.

Proof. While the cases n = 4 thru 8 could be absorbed into the proof below, we
find it more convenient to treat those cases separately. n = 4 gives V (b)=−60(b−1)5 ,
n = 5 gives V (b) = −36(13b2 +10b+2)(b−1)5, n = 6 gives V (b) = −12(142b4 +
161b3 +105b2 +35b+7)(b−1)5 , n = 7 gives V (b) = −24(185b6+246b5 +220b4 +
140b3 + 60b2 + 20b + 4)(b − 1)5 , and n = 8 gives V (b) = −36(265b8 + 385b7 +
395b6 +327b5 +210b4 +105b3 +45b2 +15b+3)(b−1)5 , so that Proposition 5 holds
in those cases. So assume now that n � 9. We list the derivatives of V evaluated at
b = 0 (simplified somewhat) and which are required for our proof.

V (0) = 12n+12, V (i)(0) = 0, i = 1, ...,n−4

V (n−3)(0) = (n−2)!(n+1)
(
n2−13n+6

)
V (n−2)(0) = −3(n−2)!(n−3)n

(
n2−9n+2

)
(12)

V (n−1)(0) = 3n!(n−2)(n−3)(n−5)

V (n)(0) = −n!(n−1)(n−2)2 (n−3)

V (i)(0) = 0, i = n+1, ...,2n−7.

Note first that Q(0) = −V(0) < 0, so we only need to show that Q(r)(0) � 0 for r � 1.
Q(b) = (b−1)−5V (b) yields

Q(r)(b) =
dr

dyr

(
(b−1)−5V (b)

)
=

r

∑
j=0

j!

(
r
j

)(−5
j

)
(b−1)−5− j V (r− j)(b),

which implies that Q(r)(0) =
r
∑
j=0

j!

(
r
j

)(−5
j

)
(−1) j+1V (r− j)(0) . Using the identity(−5

j

)
= (−1) j

(
j +4

j

)
yields Q(r)(0) = −

r
∑
j=0

j!

(
r
j

)(
j +4

j

)
V (r− j)(0) or

Q(r)(0) = −V (r)(0)−
r

∑
j=1

(
j−1
∏
i=0

(r− i)
)(

j +4
j

)
V (r− j)(0). (13)



12 ALAN HORWITZ

Case 1: 1 � r � n− 4. By (12), in (13) V (r)(0) = 0 and V (r− j)(0) = 0 for

1 � j � r−1, so we are left with j = r , which yields Q(r)(0) = −(r!)
(

r+4
r

)
V (0) =

−12(r!)
(

r+4
r

)
(n+1) < 0

Case 2: r = n− k , k = 0,1,2,3.
If r = n− 3, then by (12) the only nonzero derivatives which appear in (13) are

−V (r)(0) or when j = r , which gives

Q(n−3)(0) = −V (n−3)(0)− (n−3)!
(

n+1
n−3

)
V (0)

= −(n−2)!(n+1)
(
n2−13n+6

)−12(n−3)!
(

n+1
n−3

)
(n+1),

which implies that

− Q(n−3)(0)
(n+1)(n−3)!

= (n−2)
(
n2−13n+6

)
+

1
2
(n+1)n(n−1)(n−2)

=
1
2

(n−2)(n−4)
(
n2 +6n−3

)
> 0.

Since n2 +6n−3 > 0, n > 1, Q(n−3)(0) < 0.
If r = n− 2, then by (12) the only nonzero derivatives which appear in (13) are

−V (r)(0) or when j = 1 or j = r in (13), which gives

Q(n−2)(0) = −V (n−2)(0)−5(n−2)V(n−3)(0)− (n−2)!
(

n+2
n−2

)
V (0)

= 3(n−2)!(n−3)n
(
n2−9n+2

)−5(n−2)(n−2)!(n+1)
(
n2−13n+6

)
−12(n−2)!

(
n+2
n−2

)
(n+1),

which implies that

Q(n−2)(0)
(n−2)!

= 3(n−3)n
(
n2−9n+2

)−5(n−2)(n+1)
(
n2−13n+6

)
− 1

2
(n+2)(n+1)2n(n−1)

= −1
2

(n−5)(n+2) p(n),

where p(x) = x3 + 10x2 − 27x + 12. p′(x) = 3x2 + 20x− 27 > 0 for x > 2, which
implies that p is increasing on (2,∞) . Since p(2) > 0, p(x) > 0 for x > 2. Thus
Q(n−2)(0) < 0.
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If r = n− 1, then by (12) the only nonzero derivatives which appear in (13) are
−V (r)(0) or when j = 1, j = 2, or j = r , which gives

Q(n−1)(0) = −V (n−1)(0)−5(n−1)V(n−2)(0)−15(n−1)(n−2)V(n−3)(0)

−(n−1)!
(

n+3
n−1

)
V (0)

= −3n!(n−2)(n−3)(n−5)+15(n−1)(n−2)!(n−3)n
(
n2−9n+2

)
−15(n−1)(n−2)(n−2)!(n+1)

(
n2−13n+6

)
−12(n−1)!

(
n+3
n−1

)
(n+1),

which implies that

Q(n−1)(0)
(n−1)!

= −3n(n−2)(n−3)(n−5)+15(n−3)n
(
n2−9n+2

)
−15(n−2)(n+1)

(
n2−13n+6

)− 1
2
(n+3)(n+2)(n+1)2n

= −1
2

(n−1)(n−6)(n+3)
(
n2 +17n−20

)
.

Since n2 +17n−20 > 0, n > 2, Q(n−1)(0) < 0.
If r = n , then by (12) the only nonzero derivatives which appear in (13) are

−V (r)(0) or when j = 1, j = 2, j = 3, or j = r , which gives

Q(n)(0) = −V (n)(0)−5nV (n−1)(0)−15n(n−1)V(n−2)(0)

−35n(n−1)(n−2)V(n−3)(0)−n!

(
n+4

n

)
V (0)

= n!(n−1)(n−2)2 (n−3)−15n(n!)(n−2)(n−3)(n−5)

+45n(n−1)(n−2)!(n−3)n
(
n2−9n+2

)
−35n(n−1)(n−2)(n−2)!(n+1)

(
n2−13n+6

)−12n!

(
n+4

n

)
(n+1),

which implies that

Q(n)(0)
n!

= (n−1)(n−2)2 (n−3)−15n(n−2)(n−3)(n−5)

+45(n−3)n
(
n2−9n+2

)−35(n−2)(n+1)
(
n2−13n+6

)
− 1

2
(n+4)(n+3)(n+2)(n+1)2

= −1
2

(n+4)(n−7) p(n),

where p(x) = x3 + 22x2 − 45x + 30. p′(x) = 3x2 + 44x− 45 > 0 for x > 1, which
implies that p is increasing on (1,∞) . Since p(1) > 0, p(x) > 0 for x > 1. Thus
Q(n)(0) < 0.
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Note that we only need to go up to r = 2n−8 since degQ = 2n−8. Since n > 8,
2n−8 > n .

Case 3: r = n + k , k = 1, ...,n− 8. Note that, by (12), in (13) the only other
nonzero derivatives(not including the 0th derivative) which appear are when r− j =
n− l , l = 0,1,2,3⇒ j = r−n+ l = k+ l for l = 0,1,2,3. So let j = k,k+1,k+2,k+3
and also let j = r in (13) to obtain

Q(n+k)(0) = −
(

k−1

∏
i=0

(n+k−i)

)(
k+4
k

)
V (n)(0)−

(
k

∏
i=0

(n+k−i)

)(
k+5
k+1

)
V (n−1)(0)

−
(

k+1

∏
i=0

(n+k−i)

)(
k+6
k+2

)
V (n−2)(0)−

(
k+2

∏
i=0

(n+k−i)

)(
k+7
k+3

)
V (n−3)(0)

− (n+ k)!
(

n+ k+4
n+ k

)
V (0)

=

(
k−1

∏
i=0

(n+ k− i)

)
n!(n−1)(n−2)2 (n−3)

1
24

(
4

∏
i=1

(k+ i)

)

−3

(
k

∏
i=0

(n+ k− i)

)
n!(n−2)(n−3)(n−5)

1
24

(
5

∏
i=2

(k+ i)

)

+3

(
k+1

∏
i=0

(n+ k− i)

)
(n−2)!(n−3)n

(
n2−9n+2

) 1
24

(
6

∏
i=3

(k+ i)

)

−
(

k+2

∏
i=0

(n+ k− i)

)
(n−2)!(n+1)

(
n2−13n+6

) 1
24

(
7

∏
i=4

(k+ i)

)

− 1
2
(n+ k)!

(
4

∏
i=1

(n+ k+ i)

)
(n+1),

which implies that

24Q(n+k)(0)(
k−1
∏
i=0

(n+ k− i)
) = n!(n−1)(n−2)2 (n−3)

(
4

∏
i=1

(k+ i)

)

−3n(n−1)!n(n−2)(n−3)(n−5)

(
5

∏
i=2

(k+ i)

)

+3n(n−1)(n−2)!(n−3)n
(
n2−9n+2

)( 6

∏
i=3

(k+ i)

)

−n(n−1)(n−2)(n−3)!(n−2)(n+1)
(
n2−13n+6

)( 7

∏
i=4

(k+i)

)

−12(n+1)!

(
4

∏
i=1

(n+ k+ i)

)
,
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therefore

24Q(n+k)(0)

(n−3)!
(

k−1
∏
i=0

(n+ k− i)
) = n(n−1)2 (n−2)3 (n−3)

(
4

∏
i=1

(k+ i)

)

−3n2(n−1)(n−2)2 (n−3)(n−5)

(
5

∏
i=2

(k+ i)

)

+3(n−2)(n−3)n2(n−1)
(
n2−9n+2

)( 6

∏
i=3

(k+ i)

)

− (n−2)2 (n+1)n(n−1)
(
n2−13n+6

)( 7

∏
i=4

(k+ i)

)

−12(n+1)n(n−1)(n−2)

(
4

∏
i=1

(n+ k+ i)

)
,

thus

24Q(n+k)(0)

(n!)
(

k−1
∏
i=0

(n+ k− i)
) = (n−1)(n−2)2 (n−3)

(
4

∏
i=1

(k+ i)

)

−3n(n−2)(n−3)(n−5)

(
5

∏
i=2

(k+ i)

)

+3(n−3)n
(
n2−9n+2

)( 6

∏
i=3

(k+ i)

)

− (n−2)(n+1)
(
n2−13n+6

)( 7

∏
i=4

(k+ i)

)

−12(n+1)

(
4

∏
i=1

(n+ k+ i)

)

= −12(n−7− k)(n+ k+4)
(
n3 +2(3k+11)n2

+
(
k2 −7k−45

)
n+(k+5)(k+6)

)
= 12(n−7− k)(n+ k+4)p(n),

where
p(x) = x3 +2(3k+11)x2 +

(
k2 −7k−45

)
x+(k+5)(k+6) .

Since k2 − 7k− 45 > 0 for k � 12, p has all positive coefficients for k � 12, and
hence no roots in N . We now show that p has only one real root when 0 � k � 11.
lim

x→−∞
p(x) = −∞ and p(0) > 0, implies that p has a negative real root. In general, the

polynomial y = x3 +A1x2 +A2x+A3 has all real roots if and only if its discriminant,
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D = 18A1A2A3 +A2
1A

2
2−27A2

3−4A3
2−4A3

1A3 , is non-negative. The discriminant of p ,
after simplifying, is the polynomial in k given by D(k) = 32k6 − 912k5− 22943k4−
175366k3−606963k2−947132k−492060. D has one positive real root by Descarte
rule of signs since there is one sign change in D . Since D(46) < 0 and D(47) > 0,
D(k) = 0 for 46 < k < 47. Since D(0) < 0 and D cannot vanish in [0,11] , D(k) < 0
for 0 � k � 11. Hence p has only one real root when 0 � k � 11. Since that real
root is negative and p(0) > 0, p(n) > 0 for n ∈ N and 0 � k � 11. That proves that

24Q(n+k)(0)

(n!)
(

k−1
∏
i=0

(n+ k− i)
) =−12(n−7− k)(n+ k+4)p(n) < 0 since k < n−7, which in

turn implies that Q(n+k)(0) < 0. �

PROPOSITION 6. Suppose that p is a negative integer. Then V

(
1
b

)
= S(b)(b−

1)5 , where S is a polynomial with positive nonzero coefficients.

Proof. Let p = −n,n ∈ N and let K(b) = V

(
1
b

)
,b > 0. Then by (10),

K(b) = −12(n−1)+8n(n+1)(n+2)2b2n+6−24n(n+1)(n+2)(n+3)b2n+5

+6n(n+3)
(
4n2 +16n+13

)
b2n+4−2(n+2)(n+3)

(
4n2 +12n−1

)
b2n+3

+(n+2)(n−1)
(
n2 +13n+6

)
bn+3−3(n+3)n

(
n2 +9n+2

)
bn+2

+3n(n+2)(n+3)(n+5)bn+1− (n+1)(n+2)2(n+3)bn,

and S(b) =
K(b)

(b−1)5
. As in the proof of Proposition 5, with V (b) replaced by K(b) ,

we have S(r)(0) = −K(r)(0)−
r
∑
j=0

j!

(
r
j

)(
j +4

j

)
K(r− j)(0) or

S(r)(0) = −K(r)(0)−
r

∑
j=1

(
j−1

∏
i=0

(r− i)

)(
j +4

j

)
K(r− j)(0). (14)

It is more convenient to do n = 1 separately. In that case,

V

(
1
b

)
= 72b

(
2b2 +2b+1

)
(b−1)5

and Proposition 6 holds. So assume now that n � 2.
We list the derivatives of K evaluated at b = 0 (simplified somewhat) and which

are required for our proof.

K(0) = −12(n−1); K(i)(0) = 0, i = 1, ...,n−1

K(n)(0) = −(n+3)!(n+2); K(n+1)(0) = 3(n+3)!n(n+5)
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K(n+2)(0) = −3(n+3)!n
(
n2 +9n+2

)
(15)

K(n+3)(0) = (n+3)!(n+2)(n−1)
(
n2 +13n+6

)
K(i)(0) = 0, i = n+4, ...,2n+2.

Note first that S(0) = −K(0) > 0, so we only need to show that S(r)(0) � 0 for
r � 1.

Case 1: 1 � r � n−1
By (15), in (14), K(r)(0) = 0 and K(r− j)(0) = 0 for 1 � j � r−1, so we are left

with S(r)(0) = −(r!)
(

r+4
r

)
K(0) = 12(r!)

(
r+4

r

)
(n−1) > 0

Case 2: r = n+ k , k = 0,1,2
If r = n , then by (15) the only nonzero derivatives which appear in (14) are

−K(n)(0) or when j = r , which gives

S(n)(0) = −K(n)(0)− (n!)
(

n+4
n

)
K(0)

= (n+3)!(n+2)+ (n!)
(

n+4
n

)
12(n−1) > 0.

If r = n+ 1, then by (15) the only nonzero derivatives which appear in (14) are
−K(n+1)(0) , or when j = 1, or j = r , which gives

S(n+1)(0) = −K(n+1)(0)−5(n+1)K(n)(0)− (n+1)!
(

n+5
n+1

)
K(0)

= −3(n+3)!n(n+5)+5(n+3)!(n+2)(n+1)+12(n−1)(n+1)!
(

n+5
n+1

)
,

and thus

S(n+1)(0)
(n+1)!

= −3n(n+2)(n+3)(n+5)+5(n+1)(n+2)2(n+3)

+
1
2
(n−1)(n+5)(n+4)(n+3)(n+2)

=
1
2

(n+11)(n+3)(n+2)(n+1)n > 0.

If r = n+ 2, then by (15) the only nonzero derivatives which appear in (14) are
−K(n+2)(0) , or when j = 1, j = 2, or j = r , which gives

S(n+2)(0) = −K(n+2)(0)−5(n+2)K(n+1)(0)−15(n+2)(n+1)K(n)(0)

− (n+2)!
(

n+6
n+2

)
K(0)

= 3(n+3)!n
(
n2 +9n+2

)−15(n+2)(n+3)!n(n+5)

+15(n+3)!(n+2)2(n+1)+12(n−1)(n+2)!
(

n+6
n+2

)
,
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which implies that

S(n+2)(0)
3(n+3)!

= n
(
n2 +9n+2

)−5n(n+2)(n+5)+5(n+1)(n+2)2

+
1
6
(n−1)(n+6)(n+5)(n+4)

=
1
6
np(n),

where p(x) = x3 + 20x2 + 53x− 2. p has one positive real root by Descarte rule of
signs. Since p(0) < 0 and p(1) > 0, that root lies in (0,1) . Hence p(n) > 0 for n � 1,
which implies that S(n+2)(0) > 0.

If r = n+ 3, then by (15) the only nonzero derivatives which appear in (14) are
−K(n+3)(0) , or when j = 1, j = 2, j = 3, or j = r , which gives

S(n+3)(0) = −K(n+3)(0)−5(n+3)K(n+2)(0)−15(n+3)(n+2)K(n+1)(0)

−35(n+3)(n+2)(n+1)K(n)(0)− (n+3)!
(

n+7
n+3

)
K(0)

= −(n+3)!(n+2)(n−1)
(
n2 +13n+6

)
+15(n+3)(n+3)!n

(
n2 +9n+2

)
−45(n+3)(n+2)(n+3)!n(n+5)

+35(n+3)(n+2)(n+1)(n+3)!(n+2)+12

(
n+7
n+3

)
(n−1),

which implies that

S(n+3)(0)
(n+3)!

= −(n+2)(n−1)
(
n2 +13n+6

)
+15(n+3)n

(
n2 +9n+2

)
−45(n+3)(n+2)n(n+5)+35(n+3)(n+2)(n+1)(n+2)

+
1
2
(n+7)(n+6)(n+5)(n+4)(n−1)

=
1
2

(n−1)(n+4) p(n),

where p(x) = x3 + 26x2 + 75x− 6. p has one positive real root by Descarte rule of
signs. Since p(0) < 0 and p(1) > 0, that root lies in (0,1) . Hence p(n) > 0 for n � 1,
which implies that S(n+3)(0) > 0.

Note that we only need to go up to r = 2n+1 since degS = 2n+1. So consider

Case 3: r = n+ k , k = 4, ...,n+1
Note that, by (15), in (14) the only nonzero derivatives which appear in (14) (not

including the 0th derivative) are when r− j = n+ l , l = 0,1,2,3, or when r− j = 0.
That gives j = r−n− l = k− l for l = 0,1,2,3 or j = r . So let j = k,k−1,k−2,k−3
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and also let j = r = n+ k in (14) to obtain

S(n+k)(0) = −
(

k−1

∏
i=0

(n+ k− i)

)(
k+4

k

)
K(n)(0)

−
(

k−2

∏
i=0

(n+k−i)

)(
k+3
k−1

)
K(n+1)(0)−

(
k−3

∏
i=0

(n+k−i)

)(
k+2
k−2

)
K(n+2)(0)

−
(

k−4

∏
i=0

(n+ k− i)

)(
k+1
k−3

)
K(n+3)(0)− (n+ k)!

(
n+ k+4

n+ k

)
K(0)

=

(
k−1

∏
i=0

(n+ k− i)

)(
k+4

k

)
(n+3)!(n+2)

−3

(
k−2

∏
i=0

(n+ k− i)

)(
k+3
k−1

)
(n+3)!n(n+5)

+3

(
k−3

∏
i=0

(n+ k− i)

)(
k+2
k−2

)
(n+3)!n

(
n2 +9n+2

)

−
(

k−4

∏
i=0

(n+ k− i)

)(
k+1
k−3

)
(n+3)!(n+2)(n−1)

(
n2 +13n+6

)

+12(n−1)(n+ k)!
(

n+ k+4
n+ k

)
,

which implies that

24S(n+k)(0)(
k−4
∏
i=0

(n+ k− i)
)

(n+3)!
=

(
k−1

∏
i=k−3

(n+ k− i)

)(
4

∏
i=1

(k+ i)

)
(n+2)

−3

(
k−2

∏
i=k−3

(n+ k− i)

)(
4

∏
i=1

(k−1+ i)

)
n(n+5)

+3(n+3)

(
4

∏
i=1

(k−2+ i)

)
n
(
n2 +9n+2

)

−
(

4

∏
i=1

(k−3+ i)

)
(n+2)(n−1)

(
n2 +13n+6

)

+12(n−1)

(
4

∏
i=1

(n+ k+ i)

)

= 12(n+2− k)(n+ k+1)
(
n3 +(6k+8)n2

+
(
k2 +17k+15

)
n+ k− k2) .

Let q(x) = x3 +(6k+8)x2 +
(
k2 +17k+15

)
x+ k− k2 . Since k � 3, q has one sign

change, so one positive real root by Descarte rule of signs. Since q(0) = k−k2 < 0 and
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q(1) = 24+ 24k > 0, that positive real root lies between 0 and 1. Thus q(n) > 0 for
n � 1 and that proves that S(n+k)(0) > 0 for k � n+1. �

Proof (of Theorem 1). Let z1 = x1+ iy1 . Then we want to prove that
b∫
a

f ′′′′(t)(z1−
t)3dt = 0 with a < Rez1 < b . Theorem 1 will then follow from (3). Given 0 < a < b ,

suppose that
b/a∫
1

f ′′′′(t)(z1 − t)3dt = 0 where 1 < z1 <
b
a

. Then
b/a∫
1

ts(z1 − t)3dt = 0,

where s = p(p− 1)(p− 2)(p− 3) . Letting u = at , we have 0 =
b/a∫
1

ts(z1 − t)3dt =

1
as+1

b∫
a

us
(
z1 − u

a

)3
dt =

1
as+4

b∫
a

us(az1 − u)3du with a < az1 < b . That shows that it

suffices to prove Theorem 1 when a = 1, which we assume for the rest of the proof.
Suppose first that p = n , a positive integer, n /∈ {1,2,3} . By Proposition 5,

V (b) = Q(b)(b− 1)5 , where Q is a polynomial with negative nonzero coefficients.
Thus V (b) > 0 for 0 < b < 1 and V (b) < 0 for b > 1. Now suppose that p = −n,

n ∈ N . By Proposition 6, V

(
1
b

)
= S(b)(b− 1)5 , where S is a polynomial with pos-

itive nonzero coefficients. It follows again that V (b) > 0 for 0 < b < 1 and V (b) < 0
for b > 1. Assuming now that p is an integer, p /∈ {0,1,2,3} , by (10) and (11),

b2p−3V

(
1
b

)
= 12(p+1)b2p−3−2(p−2)(p−3)

(
4p2−12p−1

)
−2(p−2)(p−3)

(
4p2−12p−1

)
+6p(p−3)

(
4p2−16p+13

)
b−24p(p−1)(p−2)(p−3)b2

+8p(p−1)(p−2)2b3− (p−1)(p−2)2(p−3)bp−3

+3p(p−2)(p−3)(p−5)bp−2

−3(p−3)p
(
p2−9p+2

)
bp−1 +(p−2)(p+1)

(
p2−13p+6

)
bp

= W (b).

That is,

W (b) = b2p−3V

(
1
b

)
, b > 0. (16)

Using (16), it then follows immediately that W (b)< 0 for 0 < b< 1 and W (b)> 0
for b > 1. Let g(x) be given by (7), where A,B,C , and D are given by (8). Since
p(p−1) > 0, V (b) < 0 and W (b) > 0 for b > 1 implies, using (9), that g(1) < 0 and
g(b) > 0 for b > 1. By the Intermediate Value Theorem, g(x1) = 0 for some a < x1 <
b . f (z) = zp clearly satisfies the hypotheses of Proposition 4, which then implies that
Pb(z1) = Pa(z1) , where y1 �= 0 is given by Proposition 4 and z1 = x1 + iy1 . �

REMARK 5. Theorem 1 probably holds in the more general case when p ∈ ℜ ,

p > 3 or p < 0. If p =
n
m

is rational, then a proof similar to the proofs of Proposition 5
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or Proposition 6 might work to obtain a similar factorization of V
(
b1/m

)
. After trying

some of the details, it looks somewhat tedious, and a different approach might lead to
proving Theorem 1 for a much larger class of functions, such as f (z) = ez .

4. Alternate proofs and partial results

In this section we give the proof for f (z) = zp and r = 3 which are not covered
by Theorem 1. The results are partial because we either prove that a < x1 for certain
real values of p or that x1 < b for certain real values of p , but not both. We also give
an alternate proof of Theorem 1 when p ∈ N , p � 13 which is somewhat different than
the proof of Theorem 1 given above. First we need the following lemma.

LEMMA 3. (i) Let k(x) = 3
r−1

r
xr −1

xr−1 −1
− x , where r � 3

2
. Then k(x) > 2 for

x > 1

(ii) Let l(x) = 3
r−1

r
xr −1

xr−1 −1
−2x−1 , where r < 0 . Then l(x) < 0 for x > 1

Proof. Consider the family of means

Er,s(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
s
r
xr − yr

xs − ys

)1/(r−s)

if r,s �= 0, r �= s, x �= y

(
1
r

xr − yr

logx− logy

)1/r

if r �= 0, s = 0, x �= y

e−1/r

(
xxr

yyr

)1/(xr−yr)

if s = r �= 0, x �= y

√
xy if r = s = 0, x �= y

x if x = y

,

known as the Stolarsky means. It is well known ([5]) that, for fixed x and y , Er,s(x,y)
is increasing in the parameters r and s .

To prove (i), k(x) = 3Er−1,r(x,1)− x > 3E1/2,3/2(x,1)− x =
√

x+1 > 2

To prove (ii), l(x) = 3Er−1,r(x,1)−2x−1 < 3E−1,0(x,1)−2x−1 =
x lnx
x−1

−2x−

1. From lnx < x−1 we have
lnx

x−1
< 1 < 2+

1
x

for x > 1, which implies that
x lnx
x−1

< 2x+1.
We now use Lemma 3 to prove part of the conclusion of Theorem 1 for p ∈ ℜ ,

p � 7
2

or for p ∈ ℜ , p < 2, p �= 0,1. �

THEOREM 2. Suppose that f (z) = zp , p ∈ ℜ , and let Pc denote the Taylor poly-
nomial to f of order 3 at x = c.
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(i) If p � 7
2

, then for any 0 < a < b, Pb −Pa has nonreal roots x1 ± iy1 , with
a < x1 .

(ii) If p < 2 , p �= 0,1 , then for any 0 < a < b, Pb−Pa has nonreal roots x1± iy1 ,
with x1 < b.

Proof. As in the proof of Theorem 1, we may assume that a = 1, so that b > 1.
Let

Q(z) =
6

f ′′′(b)− f ′′′(1)
(Pb(z)−P1(z)) = z3 +a1z

2 +a2z+a3,

where a1 =
3( f ′′(b)−b f ′′′(b)− f ′′(1)+ f ′′′(1))

f ′′′(b)− f ′′′(1)
= −3

p−3
p−2

bp−2−1
bp−3−1

. Note that Q

and Pb −P1 have the same roots. Write Q(z) = (z− x0)(z− z1)(z− z1) , where x0 is
the real root of Q(z) = 0 with 1 < x0 < b guaranteed by Proposition 1(i) with r = 3.

Then x0 +2Rez1 = −a1 = 3
p−3
p−2

bp−2−1
bp−3−1

, which implies that

Rez1 =
1
2

(
3
s−1

s
bs−1

bs−1−1
− x0

)
,

where s = p−2.

To prove (i), since r � 3
2

and x0 < b , Re z1 � 1
2

(
3
s−1

s
bs−1

bs−1−1
−b

)
> 1 by

Lemma 3(i). Thus we have shown that Pb(z1) = P1(z1) with Re z1 > 1. To prove (ii),

since r < 0 and x0 > 1, Rez1 � 1
2

(
3
s−1

s
bs−1

bs−1−1
−1

)
< b by Lemma 3(ii). Thus

we have shown that Pb(z1) = P1(z1) with Rez1 < b . �

We shall now give an alternate proof of Theorem 1 when p ∈ N , p � 13 (the
cases p∈N , p = 4, ...,12 can be checked directly). The method used here is somewhat
different from the proof of Theorem 1 and could possibly lead to a proof for p > 3 in
general. First we need the following lemmas.

LEMMA 4. For any n ∈ N,n � 4 , and j � n−4

n−4

∑
k= j

(8k3 +60k2 +130k+75)
(

n
k+4

)
(−1)k− j

(
k
j

)
=

−1
2

(n+ j +1)
(
n2− (10 j +13)n+ j2+5 j +6

)
.

Proof. One can first derive formulas for
n−4
∑

k= j
ki

(
n

k+4

)
(−1)k− j

(
k
j

)
for i = 0,1,2,3.

We leave the details to the reader. �
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LEMMA 5. For any n ∈ N , n � 13 , define the polynomial of degree n,

M(x) =
n−4

∑
k=0

(8k3 +60k2 +130k+75)
(

n
k+4

)
xk+4.

Then M has exactly one root in the interval (−1,0) .

Proof. M(x) = x4N(x) , where N(x) =
n−4
∑

k=0
(8k3 + 60k2 + 130k + 75)

(
n

k+4

)
xk ,

which avoids the zero of order 4 at x = 0. Note that the number of roots of M and N
in (−1,0) are identical. For j � n−4,

N( j)(x) =
n−4

∑
k=0

(8k3 +60k2 +130k+75)
(

n
k+4

)
( j!)
(

k
j

)
xk− j

= ( j!)
n−4

∑
k= j

(8k3 +60k2 +130k+75)
(

n
k+4

)(
k
j

)
xk− j.

Hence N( j)(0) = ( j!)(8 j3 + 60 j2 + 130 j + 75)
(

n
j +4

)
> 0, which implies that

the sequence
{

N( j)(0)
}n−4

j=0
has 0 sign changes.

N( j)(−1)= ( j!)
n−4
∑

k= j
(8k3+60k2+130k+75)

(
n

k+4

)
(−1)k− j

(
k
j

)
. We now show

that the sequence
{

N( j)(−1)
}n−4

j=0
has 1 sign change. Let

w( j) = n2−13n−10 jn+ j2+5 j +6 = j2 −5(2n−1) j +n2−13n+6.

Then by Lemma 4, N( j)(−1) = −1
2
( j!)(n+ j +1)w( j) , which implies that the

number of sign changes in
{

N( j)(−1)
}n−4

j=0
equals the number of sign changes in

{w( j)}n−4
j=0 .

w′( j) = 2 j−10n+5 � 2(n−4)−10n+5 = −8n−3 < 0, which implies that w
is decreasing for 1 � j � n−4.

w(1) = n2 − 23n+ 12, which is

{
< 0 if 1 � n � 22
> 0 if 23 � n

, and w(n− 4) = −8n2 +

24n+2, which is

{
> 0 if 1 � n � 3
< 0 if 4 � n

.

Case 1: 13 � n � 22. Then w(1) < 0 & w(n−4)< 0, which implies that w( j) < 0
for 1 � j � n−4. Then N( j)(−1) > 0.

Case 2: n � 23. Then w(1) > 0 & w(n− 4) < 0. Since w is decreasing for
1 � j � n− 4, there is a j = j0 such that w( j) > 0 for 1 � j � j0 & w( j) < 0 for
j0 +1 � j � n−4.
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Then N( j)(−1) < 0 for 1 � j � j0 & N( j)(−1) > 0 for j0 +1 � j � n−4. Since
j = 0 gives

N(−1) =
n−4

∑
k=0

(8k3 +60k2 +130k+75)
(

n
k+4

)
(−1)k = −1

2
(n+1)

(
n2−13n+6

)
< 0

for n � 13, there is one sign change in N(−1) , N′(−1) , N′′(−1), ...,N(n−4)(−1) . By
the Fourier Budan Theorem, N has precisely one real root in the interval (−1,0) . �

Alternate Proof of Theorem 1. when p ∈ N , p � 13: The critical step in the proof
of Theorem 1 was showing that V (b) > 0 for 0 < b < 1 and V (b) < 0 for b > 1.
The rest of the proof is exactly the same as in the proof of Theorem 1. First, to show

that V (b) < 0 for b > 1, let L(b) =
V ′(b)

bp−4(p−2)(p−3)
, where V is given in (10). It

follows after some computation and simplification that

L(k)(1) = −2(2p−3)
(
4p2−12p−1

)(k−1

∏
j=0

(p− j)

)

+12p
(
4p2−16p+13

)( k

∏
j=1

(p− j)

)
−24p(p−1)(2p−5)

(
k+1

∏
j=2

(p− j)

)

+16p(p−1)(p−2)

(
k+2

∏
j=3

(p− j)

)
.

Some more simplification yields L(k)(1) = −2(8k3 − 36k2 + 34k + 3)

(
k−1
∏
j=0

(p− j)

)
,

which holds for any p ∈ ℜ , p �= 2,3. Assume now that p = n ∈ N −{0,1,2,3} .

Then one can write L(b) = −2
n
∑

k=4
(8k3 − 36k2 + 34k + 3)

(
n
k

)
(b− 1)k , b ∈ ℜ since

L(k)(1) = 0 if k > n . Making a change of variable in the summation yields,

L(b) = −2
n−4

∑
k=0

Ck

(
n

k+4

)
(b−1)k+4, (17)

where Ck = 8k3 +60k2 +130k+75. Note that for real values of p in general the series
∞
∑

k=0
Ck

(
p
k

)
(b−1)k+4 does not converge if |b−1|> 1, which is one of the difficulties

present in using this approach for such values of p . Now

V ′(b)
(n−2)(n−3)

= bn−4L(b) = L(b)

(
n−4

∑
j=0

(
n−4

j

)
(b−1) j

)

=

(
−2

n−4

∑
k=0

Ck

(
n

k+4

)
(b−1)k+4

)(
n−4

∑
j=0

(
n−4

j

)
(b−1) j

)
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= −2
n−4

∑
k=0

n−4

∑
j=0

Ck

(
n

k+4

)(
n−4

j

)
(b−1) j+k+4,

and thus

V ′(b) = −2(n−2)(n−3)
n−4

∑
k=0

n−4

∑
j=0

Ck

(
n

k+4

)(
n−4

j

)
(b−1) j+k+4,

which implies that

V (b) = −2(n−2)(n−3)
n−4

∑
k=0

n−4

∑
j=0

Ck

(
n

k+4

)(
n−4

j

)
(b−1) j+k+5

j + k+5
, (18)

which is a polynomial of degree 2n− 3 in b . Since Ck > 0 for n � 4, it follows
immediately from (18) that V (b) < 0 for b > 1.

Now we show that V (b) > 0 for 0 < b < 1. Since V (k)(1) = 0, k = 0, ...,4,
and V (5)(1) < 0, V is decreasing on some open interval containing b = 1. Since
V (0) = 12(n+ 1) > 0, V must have an even number of roots in (0,1) , multiplicities
included. If V has two or more roots in (0,1) , it then follows that V ′ also must have
two or more roots in (0,1) . One of those roots follows from Rolle’s Theorem, and
the other root follows from the fact that V must have a local maximum at t ∈ (0,1) ,
where t is the largest root in (0,1) . Since V ′(b) = (n− 2)(n− 3)bn−4L(b) , if V has
two or more roots in (0,1) , then L must have two or more roots in (0,1) . By (17),
L(b) = −2M(b− 1) , where M is the polynomial from Lemma 5. This contradicts
Lemma 5, which implies that L has exactly one root in the interval (0,1) . Since V must
have an even number of roots in (0,1) and V cannot have two or more roots in (0,1) ,
V does not vanish in (0,1) . Since V (0) > 0, one has V (b) > 0 for 0 < b < 1. �

5. Future research

5.1. r = 3

It would be nice to prove Theorem 1 for a much larger class of functions than just
certain powers of z . An approach along these lines might be similar to the alternate
proof of Theorem 1 given above. Equivalent to (7), we have

g(x) = 9

⎛
⎝ b∫

a

f ′′′′(t)(x− t)2 dt

⎞
⎠
⎛
⎝ b∫

a

f ′′′′(t)(x− t)dt

⎞
⎠

−
⎛
⎝ b∫

a

f ′′′′(t)(x− t)3 dt

⎞
⎠
⎛
⎝ b∫

a

f ′′′′(t)dt

⎞
⎠ .
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Now let h(b) = g(a) (this is almost identical to V (b) used extensively above). We were
then able to derive the following formula:

h(k)(a) =
k−1

∑
j=4

j−2
∏
l=0

(k−l)

j( j−1)( j−4)!

(
8 j2 − (8 j +1)r+2 j−1

)
f ( j)(a) f (k− j+3)(a).

It is not too hard to show that

8 j2 − (8 j +1)r+2 j−1 < 0

for j � 4. One can then try to use the series expansion h(b) =
∞
∑

k=0
h(r)(a)(b− a)k to

determine when h(b) > 0 for b > a . Of course one has to worry about convergence of

this series. If
∞
∑

k=0
h(r)(a)(b−a)k does converge for all b > a and if f (l)(a) f (m)(a) > 0

for all l,m , then one does obtain h(b) < 0 for b > a . This should work for f (z) = ez ,
say. A similar (but more complicated) formula could then be derived for s(k)(a) , where
s(b) = g(b) (this is almost identical to W (b) used above). One would then try to show
that s(b) > 0 for b > a .

Of course, as noted earlier, Theorem 1 does not hold for all values of p , p �=
0,1,2,3. It probably fails for 0 < p < 3, p �= 0,1,2.

It is also interesting to ask which means arise amongst the class of means given by
Theorem 1. We know that the arithmetic mean arises as the real part of any of the non-
real roots of f (z) = z4 (and as the real part of any of the nonreal roots of f (z) = zr+1

for r in general by Proposition 3). However, it is not clear, even for r = 3, whether the
geometric or harmonic means also arise in this fashion. We believe that the geomet-
ric and harmonic means do not appear, but have no proof of that fact. This contrasts
with the means which arise amongst the class of means Mr

f (a,b) , where r is odd and
Mr

f (a,b) is the unique real root of Pb − Pa in (a,b) . In ([2], Theorem 1.1) it was

proved that if f (x) = xr/2 , then Mr
f (a,b) equals the geometric mean G(a,b) =

√
ab ,

and if f (x) = x−1 , then Mr
f (a,b) equals the harmonic mean H(a,b) =

2ab
a+b

.

5.2. r > 3

First we make the following conjectures.

CONJECTURE 1. Suppose that f ∈Cr+1(0,∞) with f (r+1)(x) �= 0 on [a,b] , and
let Pc denote the Taylor polynomial to f of order r at x = c. Then at least one pair of
complex conjugate roots of Pb−Pa has real part lying between a and b.

CONJECTURE 2. Suppose that f (z) = zn , n ∈ N , n � r + 1 , and let Pc denote
the Taylor polynomial to f of order r at x = c. Then every pair of complex conjugate
roots of Pb−Pa has real part lying between a and b.
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The only part of Conjecture 1 that we have proven so far for general r is when
f (x) = xr+1 . We have proven Conjecture 2 with r = 3 in Theorem 1 with p ∈ N−
{0,1,2,3} .

Conjecture 2 does not hold in general for f (z) = z−n,n ∈ N . The function f (z) =
1
z

seems to be a good source of examples for various values of r . This is perhaps not

surprising since it was shown in [2] that the odd order Taylor polynomials to f (z) =
1
z

always intersect at a point whose x coordinate is the harmonic mean H(a,b) =
2ab
a+b

.

For the focus of this paper, if r = 4, then the two nonreal complex conjugate pairs

of roots of Pb−Pa have real parts x1 =
1
2

(
5+

√
5
) ab(a+b)

2b2 +(1+
√

5)ab+2a2
and x2 =

1
2

(
5−√

5
) ab(a+b)

2b2− (
√

5−1)ab+2a2
. Since x1−a =

1
2

(
1+

√
5
) a
(
b−a+a

√
5
)

(b−a)

2b2+ab+ab
√

5+2a2

> 0 and x1 − b = −1
2

b
(
4b+a+a

√
5
)

(b−a)

2b2 +ab+ab
√

5+2a2
< 0, we have a < x1 < b and thus

m(a,b) =
1
2

(
5+

√
5
) ab(a+b)

2b2 +(1+
√

5)ab+2a2
is a mean. However, if a = 1 and b =

4, then x2 = 5
5−√

5

19−2
√

5
< 1, and thus x2 does not lie in (a,b) . For r = 5, the two non-

real complex conjugate pairs of roots of Pb −Pa have real parts x1 =
(a+b)ab

2(a2−ab+b2)

and x2 =
3(a+b)ab

2(a2 +ab+b2)
. In a similar fashion, one can show that x1 does not lie in

(a,b) , while a < x2 < b . Jumping to r = 7, one can easily show that the reals parts of
two of the nonreal complex conjugate pairs of roots of Pb−Pa have real parts lying in
(a,b) , while the third does not lie in (a,b) .

5.3. Nonreal nodes

One can try to extend some of the results in this paper to the case where Pc is
the Taylor polynomial to f of order r at z = c , and where c can be nonreal. For
example, consider f (z) = z4 , r = 3, a = 2+4i , and b = 4+2i . A simple computation
shows that P2+4i(z)−P4+2i(z) = (8−8i)(−z+2+2i)(−z+3+3i)(−z+4+4i), so
that the roots of P2+4i−P4+2i are z1 = 2+2i , z2 = 3+3i , and z3 = 4+4i . Note that
a � Re z j � b and a � Imz j � b for j = 1,2,3, but there is not a strict inequality in
each case. Also, 3+3i is the arithmetic mean of a = 2+4i and b = 4+2i , something
we saw for the case of real a and b .
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