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ON THE ASYMPTOTICS OF A SEQUENCE OF

LACUNARY BINOMIAL–TYPE POLYNOMIALS

R. B. PARIS

Abstract. We examine the asymptotics of a sequence of lacunary binomial-type polynomials
℘n(z) as n → ∞ that have arisen in the problem of the expected number of independent sets
of vertices of finite simple graphs. We extend the recent analysis of Gawronski and Neuschel
by employing the method of steepest descents applied to an integral representation. The case
of complex z with |z| < 1 is also considered. Numerical results are presented to illustrate the
accuracy of the resulting expansions.

1. Introduction

The sequence of lacunary binomial-type polynomials defined by

℘n(z) =
n

∑
k=0

(
n
k

)
zk(k−1)/2 (1.1)

has been encountered by Brown et al. [1] in connection with the problem of the ex-
pected number of independent sets of vertices of finite simple graphs. These authors
obtained upper and lower bounds for the values of ℘n(z) for 0 < z < 1 and, based
on analytic results and numerical computations, made the following conjecture on its
asymptotic behaviour as n → ∞

℘n(1/y) ∼ 1√
w(n)

exp

(
w(n)2 +2w(n)

2log y

)
(1.2)

when y > 1. Here, w(n) = W (n
√

y log y) , where W (a) denotes the Lambert W -
function which, for a > 0, is defined as the positive solution of the equation tet = a [4,
p. 111].

Recently, Gawronski and Neuschel [3] considered an integral representation for
℘n(z) and employed a path displacement argument in the complex plane combinedwith
a non-standard version of the saddle-point method to obtain the asymptotic formula
when y > 1

℘n(1/y) =
1√
r(n)

exp

(
r(n)2 +2r(n)

2log y

)
{Θ(y)+o(1)} (1.3)
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as n → ∞ , where

Θ(y) = 1+2
∞

∑
k=1

e−2π2k2/ log y cos

(
2πkr(n)

log y

)
(1.4)

and the quantity r(n) is defined as the positive solution of the equation

t(et +
√

y) = n
√

y log y.

It was established in [3] that the expression in front of the curly braces in (1.3) is
asymptotically equivalent to the conjectured approximation in (1.2) in the limit n→ ∞ .

In this paper, we consider the same integral representation for ℘n(z) as derived in
[3] and employ the method of steepest descents to determine a more accurate expansion
for moderately large values of n . We also discuss the case of complex z satisfying |z|<
1. We present numerical computations to demonstrate the accuracy of our expansion
and the approximation in (1.3).

2. An integral representation and saddle-point structure when z < 1

For convenience in presentation we set throughout z = 1/x2 , where |x| > 1 with
|arg x| � 1

2 π . Substituting the standard result (cf. [4, Eq. (7.7.3)])

x−k2
=

1
2
√

π log x

∫ ∞

−∞
exp

(
− s2

4 log x
+ iks

)
ds (|x| > 1)

into (1.1), followed by an interchange in the order of summation and integration and
use of the binomial theorem, we obtain the integral representation derived in [3]

℘n(x−2) =
1

2
√

π log x

∫ ∞

−∞
exp

( −s2

4 log x

)
(1+ xeis)nds

=
1

2
√

π log x

∫ ∞

−∞
e−nψ(s)ds, (2.1)

where

ψ(s) =
s2

4n log x
− log(1+ xeis). (2.2)

We proceed in Section 3 with the determination of the asymptotics of the integral in
(2.1) for n → ∞ and finite real x by application of the method of steepest descents.
In Section 4 we extend these considerations to complex x . Before doing this we first
examine the saddle-point structure of the phase function ψ(s) when x is real and x > 1.

The saddle points sk of ψ(s) are given by ψ ′(s) = 0, or

ske
−isk(1+ xeisk) = 2inx log x. (2.3)

There is a single saddle situated on the imaginary axis together with two infinite strings
of saddles symmetrically positioned about Re(s) = 0 resulting from the periodicity of
the function eis . If we write

sk = σk +2πk (2.4)
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for integer k we have from (2.3), with α := 2x log x ,

log(σk +2πk)− iσk + log(1+ xeiσk) = log(inα).

A straightforward perturbative solution of this equation for large n can be obtained
by putting σk = i log n− ε , where |ε| � log n , to find

ε � i(loglog n− log α)+ i log

(
1− i(2πk− loglog n)

log n

)
.

This yields the approximation valid for large n and bounded k given by

σk � i log

(
nα

log n

)
− i log

(
1− i(2πk− loglog n)

log n

)
. (2.5)

The saddle on the imaginary axis corresponding to k = 0 is

s0 = σ0 = ir(n), r(n) � log

(
nα

log n

)
+

log log n
log n

. (2.6)

Provided 2π |k| � log n , the saddles with |k| � 1 have from (2.5) the approximate
location

σk �− 2πk
log n

+ i

{
r(n)− 1

2

(
2πk− loglog n

log n

)2
}

. (2.7)

This last result indicates that the first few saddles situated in the right and left half-
planes have Im(sk)� r(n) for n→∞ . However, the value of n required for the validity
of this approximation is extremely large. When k =±1, the requirement 2π |k|/ log n =
10−1 , for example, yields n = e20π � 2× 1027 . For moderately large n the values of
Im(sk) for |k| � 1 are found to be significantly less than r(n) ; see Table 1.

Table 1: The location of the saddles sk for 0 � k � 5 and their approximate values from (2.5)
when n = 1000 , x = 2 . The saddles s−k = −sk , where the bar denotes the complex conjugate.

k sk Approximate sk

0 6.112742i 6.323089i
1 5.521734+5.839316i 5.382118+5.846300i
2 11.427821+5.387286i 11.372547+5.323709i
3 17.544733+5.019893i 17.536813+4.957375i
4 23.741718+4.737505i 23.757372+4.684147i
5 29.972889+4.513009i 30.002189+4.467837i

The paths of steepest descent, which we denote by Ck , and ascent are given by the
paths on which

Im(ψ(s)−ψ(sk)) = 0.
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The steepest descent paths can terminate either at infinity in the sectors |arg s| < 1
4 π

or at the points where (1 + xeis) = 0; that is, at the logarithmic singularities of ψ(s)
given by

Tk = i log x+(2k+1)π (k ∈ Z). (2.8)

It is found (we omit these details) that as k→±∞ the saddles sk approach the points Tk

in (2.8). Paths of steepest ascent terminate at infinity in the sectors |arg(±is)| < 1
4 π .

An example of the distribution of the saddles and the paths of steepest descent and
ascent is shown in Fig. 1. The case of complex x is deferred to Section 4.
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Figure 1: The steepest descent paths Ck through the saddles sk (heavy dots) with |k| � 2 and
the associated logarithmic singularities Tk given by (2.8) when n = 200 , x = 2 . The steepest
ascent paths pass to infinity parallel to the imaginary s-axis.

3. Derivation of the expansion for x > 1

By a standard application of Cauchy’s theorem we can shift the integration path in
(2.1) from the real s-axis to a parallel line through the points Tk (where the integrand
vanishes), and thence to coincide with the steepest descent paths Ck through the saddles
sk . Our final integration path then takes on a “serpentine” form as it passes over each
saddle in turn. Hence we can write (when x is real)

℘n(x−2) = J0 +2Re
∞

∑
k=1

Jk, (3.1)

where

Jk =
1

2
√

π log x

∫
Ck

e−nψ(s)ds. (3.2)
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We present only the calculation of the expansion of J0 , since the details for Jk

(k � 1) are similar. We define the quantities

λk := xeisk , ak :=
(1+ λk)2

4nλk log x
, ωk :=

2nλk log x
(1+ λk)2 (k � 0), (3.3)

so that

ψ ′′(s0) =
1

2n log x
+

λ0

(1+ λ0)2 =
1+ ω0

2n log x
.

Then application of the method of steepest descents [4, p. 48] produces

J0 ∼ e−nψ(s0)√
2πψ ′′(s0) log x

∞

∑
j=0

Γ( j + 1
2 )d j0

n j+ 1
2

as n → ∞ . The coefficients d j0 (0 � j � 3) are given by [2, p. 119], [5, p. 13]

d00 = 1, d10 =
1

12ψ ′′(s0)
(5p2

3 −3p4),

d20 =
1

864(ψ ′′(s0))2 (385p4
3 −630p2

3 p4 +168p3p5 +105p2
4 −24p6),

d30 =
1

777600(ψ ′′(s0))3 (425425p6
3 −1126125p4

3 p4 +675675p2
3 p2

4 −51975p3
4

+360360p3
3 p5−249480p3p4p5 +13608p2

5 −83160p2
3 p6 +22680p4p6

+12960p3p7−1080p8),

where, for convenience in presentation, we have defined

pr :=
ψ(r)(s0)
ψ ′′(s0)

(r � 3).

Insertion of the values of the derivatives of ψ(s) evaluated at s0 then yields after some
algebra with the help of Mathematica the coefficients in the form

d00 = 1, d10 =
−Q1(a0,λ0)
6(1+2a0)3λ0

,

d20 =
Q2(a0,λ0)

216(1+2a0)6λ 2
0

, d30 =
Q3(a0,λ0)

97200(1+2a0)9λ 3
0

.

The quantities Qj(a0,λ0) are defined in the Appendix in terms of polynomials in λ0 .
From (2.3), (2.6) and (3.3) it is easy to see that

σ0 ∼ log n, eσ0 ∼ 2nx log x
log n

, λ0 ∼ log n
2n log x

a0 ∼ 1
2log n

(n → ∞).
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If we define the coefficients c j0 by

c00 = 1, c10 =
−Q1(a0,λ0)χ
6(1+2a0)3 ,

c20 =
Q2(a0,λ0)χ2

216(1+2a0)6 , c30 =
Q3(a0,λ0)χ3

97200(1+2a0)9 , (3.4)

where we have put χ ≡ log n/(nλ0) , it follows from (A.1) that

c10 ∼− 1
3 log x, c20 ∼ 1

54 (log x)2, c30 ∼ 139
12150 (log x)3

as n → ∞ , and therefore that c j0 = O(1) (1 � j � 3) in this limit. Then we obtain
finally

J0 ∼ e−nψ(s0)√
1+ ω0

∑
j=0

( 1
2 ) jc j0

(log n) j (n → ∞), (3.5)

where ( 1
2 ) j = Γ( j+ 1

2 )/Γ( 1
2 ) is Pochhammer’s symbol and ∑ j=0 means that the sum

is restricted to the first few terms of the series. The quantity ω0 ∼ log n as n → ∞ .
We remark that a full treatment would require a knowledge of the behaviour of the
coefficients in general as n → ∞ to establish the asymptotic nature of (3.5); we do not
carry this out here.

The calculation of the integrals Jk (k � 1) follows the same procedure and we find

Jk ∼ e−nψ(sk)√
1+ ωk

∑
j=0

( 1
2 ) jc jk

(log n) j (n → ∞), (3.6)

where the first few coefficients c jk are defined in (3.4) with a0 and λ0 replaced by ak

and λk . In terms of the quantities σk defined in (2.4), we have

ψ(sk) = ψ(σk)+
π2k2 + πkσk

n log x
.

Then the expansion of ℘n(x−2) when x > 1 is given by the following theorem.

THEOREM 1. For real x satisfying x > 1 we have from (3.1) the expansion

℘n(x−2) ∼ e−nψ(σ0)√
1+ ω0

∑
j=0

( 1
2 ) jc j0

(log n) j

+2Re
∞

∑
k=1

exp

(
−π2k2 + πkσk

log x

)
e−nψ(σk)√

1+ ωk
∑
j=0

( 1
2 ) jc jk

(log n) j (3.7)

as n → ∞ . The coefficients c jk and the quantities σk and ωk are defined in (3.4), (2.4)
and (3.3), respectively.
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From (2.7), the saddles with finite k approximately satisfy σk � ir(n) � i log n
and ωk � log n � r(n) as n → ∞ . Since, with this approximation,

−ψ(σk) � r(n)2

4n log x
+ log

(
1+

r(n)
2n log x

)
� r(n)2 +2r(n)

4n log x
(n → ∞),

it is seen that the leading terms of (3.7) agree with the result (1.3) (with y = x2 ) obtained
by Gawronski and Neuschel [3].

In Table 2 we show the absolute relative error in the computation of ℘n(x−2) for
different n and x using the asymptotic expansion (3.7) as a function of the truncation
index j in the dominant sum (corresponding to k = 0). Table 3 compares the value of
℘n(x−2) with that obtained from (3.7) (with truncation index j = 3 in the dominant
sum) and the approximation (1.3). In each table two terms have been employed in the
sum with k = 1, with the contributions from the sums with k � 2 being negligible
on account of the exp(−π2k2/ log x) dependence. It is seen that for the values of n
chosen (n � 1000) the formula (1.3) gives only a gross approximation, whereas (3.7)
yields very good agreement.

Table 2: The absolute relative error in the computation of ℘n(x−2) for different n and x using
the asymptotic expansion (3.7) as a function of the truncation index j in the dominant sum.

j n = 200, x = 1.10 n = 400, x = 1.05 n = 400, x = 1.50

0 1.338×10−3 6.729×10−4 5.802×10−3

1 1.913×10−5 4.989×10−6 1.716×10−4

2 3.197×10−7 4.340×10−8 2.179×10−6

3 3.053×10−9 2.287×10−10 4.686×10−7

4. The case of complex x

We now consider x to be a complex variable and write x = |x|eiθ , where it will be
sufficient to restrict our attention to values of the phase θ satisfying 0 � θ � 1

2 π . In
terms of the original variable z this corresponds to 0 � arg z � π . When θ > 0, it can
be seen from (2.5) and (2.8) that both the saddles sk and the logarithmic singularities Tk

are displaced to the left1; see Fig. 2. A more significant difference between the θ = 0
and θ > 0 cases, however, is the connectivity of the saddles.

When θ = 0, it is found that Im(ψ(sk)) increases monotonically with k and all
the paths of steepest descent through the saddles sk have their endpoints at their asso-
ciated logarithmic singularities Tk−1 and Tk ; see Fig. 1. When θ > 0, the quantities
Im(ψ(sk)) attain a maximum for a certain k � 1 and thereafter decrease monotoni-
cally with k . This results in a Stokes phenomenon occurring at an infinite sequence of
θ -values when a pair of adjacent saddles connects; see Table 4.

1When θ < 0 the situation is reversed: the saddles and the points Tk are displaced to the right.
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Table 3: The values of ℘n(x−2) compared with the asymptotic expansion (3.7) (with j = 3 in
the dominant sum and j = 2 in the sum with k = 1 ) and the approximation (1.3) for different
values of n and x .

n = 200, x = 1.20 n = 200, x = 2

℘n(x−2) 8.562122063×109 4.398555252×104

Asymptotic 8.562122013×109 4.398536817×104

Eq. (1.3) 7.864432769×109 4.712945605×104

n = 400, x = 1.10 n = 1000, x = 2

℘n(x−2) 9.488964463×1018 2.202064917×107

Asymptotic 9.488964461×1018 2.202060088×107

Eq. (1.3) 7.418083490×1018 2.370080869×107

Table 4: Values of the phase θ when the saddles sk , sk+1 (with 1 � k � 5 ) connect to produce
a Stokes phenomenon.

Saddles n = 200, |x| = 2 n = 100, |x| = 3
θ/π θ/π

s1, s2 0.12796 0.22172
s2, s3 0.05859 0.09844
s3, s4 0.03617 0.06070
s4, s5 0.02534 0.04264
s5, s6 0.01907 0.03220

We illustrate this situation in Fig. 2 for the particular case n = 100, |x| = 3.
Fig. 2(a) shows the topology of the steepest descent paths Ck through the saddles for
0.22172π < θ � 1

2 π . These paths with k � 0 are similar to those in Fig. 1, but the
paths Ck with k � 1 emanate from the logarithmic singularities Tk and pass to infinity
in the direction arg s � θ/(2log |x|) . The contribution to ℘n(x−2) in this case results
only from the saddles with k � 1. Fig. 2(b) shows the critical value θ = 0.22172π
where the saddles s1 and s2 connect to produce a Stokes phenomenon. Fig. 2(c) illus-
trates the topology of the steepest descent paths for θ in the range 0.09844π < θ <
0.22172π , where ℘n(x−2) picks up an additional contribution from the saddle s2 . Fi-
nally, Fig. 2(d) shows the next critical value θ = 0.09844π where the saddles s2 and
s3 connect to produce another Stokes phenomenon. If we denote by K(θ ) the number
of contributing saddles situated in Re(s) > 0, then K(θ ) = 1 for 0.22172π < θ � 1

2 π
and K(θ ) = 2 for 0.09844π < θ < 0.22172π . This process of connecting pairs of
saddles continues as θ approaches zero with the result that progressively more saddles
contribute to the sum ℘n(x−2) . When θ = 0, there are no such connections (K(0) = ∞)
and all the saddles contribute to yield the result in (3.7).
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Figure 2: The steepest descent paths Ck through the saddles sk (heavy dots) with −2 � k � 3
(including s4 in (d)) when n = 100 , x = 3eiθ : (a) θ = 0.30π , (b) θ = 0.22172π , (c) θ = 0.18π ,
(d) θ = 0.09844π . A Stokes phenomenon occurs in (b) and (d) where the two adjacent saddles
s1,s2 and s2,s3 become connected.

In view of the above discussion, the expansion of ℘n(x−2) for complex x when
|x| > 1 and 0 � θ � 1

2 π is given by

℘n(x−2) ∼
K(θ)

∑
k=−∞

Jk, (4.1)

where the contributions Jk have the expansions given in (3.5) and (3.6). The upper
limit K(θ ) varies with θ : the precise transitions in K(θ ) as θ decreases from 1

2 π
will depend on the values of n and |x| .

In Table 5 we present the absolute relative error in the computation of ℘n(x−2)
for complex x for different n and |x| using (4.1). In each case we have employed the
truncation index j = 3 in the expansions of Jk . A feature of these calculations that
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Table 5: The absolute relative error in the computation of ℘n(x−2) for different n and complex
x using (4.1).

θ/π n = 200, |x| = 1.20 n = 200, |x| = 1.50 n = 1000, |x| = 2.00

0 5.919×10−9 5.329×10−7 2.206×10−6

0.10 3.391×10−7 1.303×10−6 3.564×10−6

0.20 4.315×10−7 3.413×10−6 3.216×10−6

0.30 3.856×10−7 1.077×10−5 6.450×10−6

0.40 2.808×10−7 7.425×10−6 1.029×10−5

0.50 5.379×10−8 4.089×10−6 2.245×10−6

is worthy of note is the location of the dominant saddles. When θ = 0, the dominant
saddle corresponds to k = 0 and the saddles with k = ±1 yield a very small contribu-
tion. As |x| → 1 and θ → 1

2 π (that is, |z| → 1 and arg z → π ), the dominant saddles
progressively shift to more negative k -values and, moreover, more saddles are found
to make a significant contribution to ℘n(x−2) . This last fact makes the calculation of
℘n(x−2) more difficult to determine in this limit. We illustrate this feature in Fig. 3
where we display examples of the values of log10 |Jk| against the index k .
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Figure 3: Values of log10 |Jk| for k � 1 when n = 200 and θ = 0.40π : (a) |x| = 1.50 and (b)
|x| = 1.10 .

Appendix: The quantities Qj(a0,λ0)

In this appendix we display the quantities Qj(a0,λ0) appearing in the coefficients
c j0 in (3.4) for 1 � j � 3. These have the form

Q1(a0,λ0) = P11(λ0)−3a0P12(λ0),
Q2(a0,λ0) = P21(λ0)−6a0P22(λ0)+3a2

0P23(λ0)−48a3
0P24(λ0),

Q3(a0,λ0) = P31(λ0)+27a0P32(λ0)−9a2
0P33(λ0)+27a3

0P34(λ0)
−432a4

0P35(λ0)+4320a5
0P36(λ0), (A.1)
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where the Pjk(ξ ) (1 � k � 2 j ) are polynomials in ξ of degree 2 j given by

P11(ξ ) = 1+ ξ + ξ 2,

P12(ξ ) = 1−4ξ + ξ 2,

P21(ξ ) = (1+ ξ + ξ 2)2,

P22(ξ ) = 13+5ξ −10ξ 2 +5ξ 3 +13ξ 4,

P23(ξ ) = 67−328ξ +278ξ 2−328ξ 3 +67ξ 4,

P24(ξ ) = 1−26ξ +66ξ 2−26ξ 3 + ξ 4,

P31(ξ ) = 139+417ξ +402ξ 2 +109ξ 3 +402ξ 4 +417ξ 5 +139ξ 6,

P32(ξ ) = 151+378ξ +308ξ 2 +56ξ 3 +308ξ 4 +378ξ 5 +151ξ 6,

P33(ξ ) = 9271−3497ξ −10867ξ 2 +766ξ 3−10867ξ 4−3497ξ 5 +9271ξ 6,

P34(ξ ) = 7349−48668ξ +45007ξ 2−24056ξ 3 +45007ξ 4−48668ξ 5 +7349ξ 6,

P35(ξ ) = 203−5016ξ +18729ξ 2−24392ξ 3 +18729ξ 4−5016ξ 5 +203ξ 6,

P36(ξ ) = 1−120ξ +1191ξ 2−2416ξ 3 +1191ξ 4−120ξ 5 + ξ 6.

The coefficients c jk associated with the k th saddle follow from the expressions
above and (3.4) with a0 and λ0 replaced by ak and λk defined in (3.3).
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