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LIPSCHITZ CONDITIONS FOR RANDOM PROCESSES

FROM Lp(Ω) SPACES OF RANDOM VARIABLES

DMYTRO ZATULA

Abstract. In this paper we study the Lipschitz continuity of random processes X = (X(t), t ∈ T)
from Lp(Ω) spaces, where (T, ρ) is some metric space, and provide estimates for the distribu-
tion of sample paths of such processes. Obtained results are used in Analysis in the study of the
rate of approximation of functions by trigonometric polynomials.

1. Introduction

Let (T, ρ) be some metric space. We study conditions under which the sample
paths of random processes X = (X(t), t ∈T) satisfy a Lipschitz condition. In particular,
we consider a function f such that the following inequality holds:

limsup
ε↓0

sup
0<ρ(t,s)�ε

|X(t)−X(s)|

f (ε)
� 1.

This function is a modulus of continuity for the random process X belonging to
the space Lp(Ω) . The main interest for us is to estimate probabilities

P

{
sup

0<ρ(t,s)�v

|X(t)−X(s)|
f (ρ(t,s))

> x

}
.

For Gaussian processes similar results were obtained by Dudley [5]. These re-
sults were generalized for some classes of processes belonging to the Orlitz spaces
by Kozachenko [8, 9], see also Buldygin and Kozachenko [4], Zatula [13]. Lipschitz
continuity of generalized sub-Gaussian processes was studied and estimates for the dis-
tribution of the norms of such processes were provided in [7].

There are applications of Lipschitz continuity of random processes to the study
of the rate of approximation of functions by trigonometric polynomials. In particular,
Kamenshchikova and Yanevich investigated an approximation of stochastic processes
belonging to the spaces Lp(Ω) by trigonometric sums in the space Lq[0,2π ] in [6].

Recently, various analytical properties of processes and fields that are not Gaus-
sian, e.g. sub-Gaussian and Orlicz, were obtained. For example, the almost sure
convergence of weighted sums of ϕ -subgaussian m-acceptable random variables was
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studied by Giuliano Antonini, Kozachenko and Volodin [2], an application to random
Fourier series for ϕ -subgaussian random variables was investigated by Giuliano An-
tonini, Tien-Chung Hu, Kozachenko and Volodin [1], and necessary and sufficient con-
ditions under which a symmetric measurable infinitely divisible process has sample
paths in an Orlicz space Lψ with a function ψ that satisfies Δ2 condition were consid-
ered by Braverman and Samorodnitsky [3]. Krinik and Swift studied different proper-
ties of exponential Orlicz spaces and Fenchel-Orlicz spaces in the book [10]. Stochastic
processes that take values in Orlicz spaces and properties of such processes were inves-
tigated by Rao and Ren [11]. Weber in [12] considered stochastic processes with value
in exponential Orlicz spaces.

In all above-mentioned articles the authors consider spaces for which E|ξ |p exists
for each 1 � p < ∞ , but for Lp(Ω) spaces similar problems haven’t been investigated,

namely the task about the distribution of sup
0<ρ(t,s)�v

|X(t)−X(s)|
f (ρ(t,s)) .

The organization of the article is the following. Necessary technical results for the
proof of the main theorem are introduced in Section 2. The main result (Theorem 2) is
proved in Section 3. Lipschitz conditions for random processes belonging to the spaces
Lp(Ω) are investigated in Section 4. Section 4 also contains an example of applying
proven theorems for particular function σ(h) .

2. Definitions and technical results

Random variable ξ belongs to the space Lp(Ω) , 1 � p < ∞ , if the condition

(E|ξ |p)1/p � ∞

is satisfied.
It is well known that Lp(Ω), 1 � p < ∞ is a space with the norm

‖ξ‖Lp = (E|ξ |p)1/p.

THEOREM 1. Let ξ1, ..., ξn be random variables belonging to the space Lp(Ω) ,
1 � p < ∞ . Denote η = max

1�k�n
|ξk| , a = max

1�k�n
‖ξk‖Lp . Then ∀x > 0 the following

inequality holds

P
{

η > x ·a ·n2/p
}

� 1
nxp .

Proof. It follows from the Chebyshev inequality that for p > 0:

P{|ξ |> x} �
‖ξ‖p

Lp

xp . (1)
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Inequality (1) implies that

P
{

η > x ·a ·n2/p
}

= E1
{

ω : η > x ·a ·n2/p
}

�
n

∑
k=1

E1{η = |ξk|} ·1
{

ω : |ξk| > x ·a ·n2/p
}

� n · max
1�k�n

P
{
|ξk| > x ·a ·n2/p

}

� n · max
1�k�n

‖ξk‖p
Lp

(x ·a ·n2/p)p
� n · max

1�k�n

ap

xp ·ap ·n2 =
1

nxp ,

which finishes the proof. �

Let (T, ρ) be a metric space. The metric massiveness N(u) := N(T,ρ)(u) is the
minimal number of closed balls (defined with respect to the metric ρ ) of radius u that
cover T [4]. Let us give some properties of the metric massiveness.

LEMMA 1. [4] The following statements hold:
1) For any ε > 0 we have N(T,ρ)(ε) � 1 . In this case if ε � diamT = sup

t,s∈T

ρ(t,s)

then N(ε) = 1 .
2) The function N(T,ρ)(ε) is right continuous and non-decreasing as ε decreases.
3) A space T contains a finite number of points if and only if sup

ε>0
N(T,ρ)(ε) < ∞ .

3. Theorem on moduli of continuity of random processes
belonging to the spaces Lp(Ω)

We now prove

THEOREM 2. Let (T, ρ) be a metric compact space. Consider a separable ran-
dom process X = (X(t), t ∈ T) belonging to the space Lp(Ω) , 1 � p < ∞ . Suppose
that there is a monotonically increasing continuous function σ = {σ(h), h � 0} such
that σ(h) > 0 as h > 0 , σ(0) = 0 and the following inequality holds

sup
ρ(t,s)�h

‖X(t)−X(s)‖Lp � σ(h). (2)

Let N(ε) = Nρ(T, ε) be a metric massiveness of the space (T,ρ) . Consider

ε0 = σ (−1)

(
sup
t,s∈T

ρ(t,s)

)
, where σ (−1)(ν) is the inverse function of the function σ(ν) ,

and

g(ε) =

σ(ε)∫
0

(
N(σ (−1)(t))

)4/p
dt < ∞, ε > 0.



62 D. ZATULA

Then for x > 0, ε ∈ (0,ε0) the following inequality holds true

P

{
sup

0<ρ(t,s)�ε

|X(t)−X(s)|
(6+4

√
2)B2/p f (ρ(t,s))+ (5+2

√
6)B4/pg(ρ(t,s))

> x

}

� 2B2 +B
(B2−1)N(ε) · xp ,

where B > 1 is some number, f (ε) =
σ(ε)∫
0

(
N(σ (−1)(t))

)2/p
dt, ε > 0 .

Proof of Theorem 2. Let r ∈ (0,1), {νk, k = 0,1,2, ...} be a sequence such that
ν0 = sup

t,s∈T

ρ(t,s) , νk+1 = min{rνk,δk} with

δk = A inf{ν : N(σ (−1)(ν)) < BN(σ (−1)(νk))}, (3)

where B > 1 and A is a number such that A > 1 and Ar < 1. It follows from the second
statement of Lemma 1 that the function N(σ (−1)(t)) is nondecreasing as t decreases.
Therefore, for every νk there is a ν > νk so that N(σ (−1)(ν)) < BN(σ (−1)(νk)) . Thus,
the infimum exists. For the sequence {νk, k = 0,1,2, ...} we have

νk+1 � rνk, k = 0,1,2, ... (4)

and, hence,

νk � 1
1− r

(νk −νk+1). (5)

The following inequality holds for s < inf{ν : N(σ (−1)(ν)) < BN(σ (−1)(νk))} :

N(σ (−1)(s)) � BN(σ (−1)(νk)).

Thus, from (3), (4) and the last inequality we obtain that

N(σ (−1)(νk+2)) � N(σ (−1)(rνk+1)) � N(σ (−1)(rδk)) � BN(σ (−1)(νk)).

Therefore

N(σ (−1)(νk)) � BN(σ (−1)(νk−2)) � B2N(σ (−1)(νk−4)) � ... (6)

Let ε0 = σ (−1)(ν0), ..., εk = σ (−1)(νk) . The sequence {εk, k = 0,1,2, ...} is non-
increasing and εk → 0 as k → ∞ . Let Vεk , k = 0,1,2, ... be a set of the centers of closed
balls of the radius εk that form a minimal covering of the space (T,ρ) . The number

of points in Vεk is equal to N(εk) . Denote V0 =
∞⋃

k=0
Vεk . It follows from (2) using the

Chebyshev inequality that the process X is continuous in probability. Therefore, the
set V0 is a set of separability of the process X . Let αn be the mapping of the set V0

into Vεn , where αn(t) = t if t ∈ Vεn and otherwise αn(t) is a point in Vεn satisfying
ρ(t,αn(t)) < εn .
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It follows from the Chebyshev inequality, (2) and (4) that

P
{
|X(t)−X(αn(t))| > rn/2

}
� E(X(t)−X(αn(t)))2

rn =
‖X(t)−X(αn(t))‖2

L2

rn

� (σ(ρ(t,αn(t))))2

rn � (σ(εn))2

rn =
ν2

n

rn � r2nν2
0

rn = ν2
0 rn.

Therefore
∞

∑
n=1

P
{
|X(t)−X(αn(t))| > rn/2

}
< ∞.

Now it follows from the Borel-Cantelli lemma that X(αn(t)) → X(t) with prob-
ability one as n → ∞ . Since the set V0 is countable then X(αn(t)) → X(t) as n → ∞
with probability one ∀t ∈V0 .

Let us prove two auxiliary results.

LEMMA 2. Suppose that ε ∈ (0,ε0) and take an integer m such that the inequality
εm+1 < ε � εm holds. Then

sup
ρ(t,s)<ε
t,s∈T

|X(t)−X(s)|� 2
∞

∑
k=m+2

max
p∈Vεk

|X(p)−X(αk−1(p))|+

+ max
v,w∈Vεm+1 :

‖X(v)−X(w)‖Lp�σ(ε) 3−r
1−r

|X(v)−X(w)|. (7)

Proof of Lemma 2. Since V0 is a set of separability of the process X , then with
probability one

sup
ρ(t,s)<ε

t,s∈T

|X(t)−X(s)|= sup
ρ(t,s)<ε
t,s∈V0

|X(t)−X(s)|. (8)

Let t,s∈V0 and ρ(t,s)< ε . Let k > m+1. Denote tk = αk(t), tk−1 = αk−1(tk), ...,
tm = αm(tm+1); sk = αk(s), sk−1 = αk−1(sk), ..., sm = αm(sm+1) . Then for any t,s such
that ρ(t,s) < ε we obtain

X(t)−X(s) = (X(t)−X(tk))+
k

∑
l=m+2

(X(tl)−X(tl−1))− (X(s)−X(sk))−

−
k

∑
l=m+2

(X(sl)−X(sl−1))+ (X(tm+1)−X(sm+1)). (9)

It follows from (9) that

X(tm+1)−X(sm+1) = (X(t)−X(s))− (X(t)−X(tk))+ (X(s)−X(sk))−

−
k

∑
l=m+2

(X(tl)−X(tl−1))+
k

∑
l=m+2

(X(sl)−X(sl−1))
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and

‖X(tm+1)−X(sm+1)‖Lp � ‖X(t)−X(s)‖Lp +‖X(t)−X(tk)‖Lp +‖X(s)−X(sk)‖Lp +

+
k

∑
l=m+2

‖X(tl)−X(tl−1)‖Lp +
k

∑
l=m+2

‖X(sl)−X(sl−1)‖Lp

� σ(ρ(t,s))+ σ(ρ(t,tk))+ σ(ρ(s,sk))+

+
k

∑
l=m+2

σ(ρ(tl,tl−1))+
k

∑
l=m+2

σ(ρ(sl ,sl−1)) (10)

� σ(ε)+2σ(εk)+2
k

∑
l=m+2

σ(εl−1) � σ(ε)+2
∞

∑
l=m+2

σ(εl−1)

= σ(ε)+2
∞

∑
l=m+2

νl−1 � σ(ε)+2
∞

∑
l=1

νm+l

� σ(ε)+2
∞

∑
l=1

νm+1 rl−1 = σ(ε)+ νm+1
2

1− r

� σ(ε)
(

1+
2

1− r

)
= σ(ε)

3− r
1− r

.

It follows from (9) and (10) that ∀t,s ∈ T such that ρ(t,s) < ε we have

|X(t)−X(s)| �
k

∑
l=m+2

|X(tl)−X(tl−1)|+
k

∑
l=m+2

|X(sl)−X(sl−1)|+ |X(t)−X(tk)| +

+|X(s)−X(sk)|+ |X(tm+1)−X(sm+1)|

� 2
k

∑
l=m+2

max
p∈Vεl

|X(p)−X(αl−1(p))|+ |X(t)−X(tk)|+ |X(s)−X(sk)| +

+ max
v,w∈Vεm+1 :

‖X(v)−X(w)‖Lp�σ(ε) 3−r
1−r

|X(v)−X(w)|.

Now tending k → ∞ we obtain that with probability one

|X(t)−X(s)|� 2
∞

∑
l=m+2

max
p∈Vεl

|X(p)−X(αl−1(p))|+ max
v,w∈Vεm+1 :

‖X(v)−X(w)‖Lp�σ(ε) 3−r
1−r

|X(v)−X(w)|.

(11)
The claim of the lemma follows from inequalities (8) and (11). �

LEMMA 3. Suppose that ε ∈ (0,ε0) and choose the same integer m as in Lemma
2. Denote ck = σ(εk−1) · (N(εk))2/p , k = m+2,m+3, ..., and let bm(ε) = 3−r

1−r σ(ε) ·
(N(εm+1))4/p . Then

2
∞

∑
k=m+2

ck +bm(ε) � 2(1+ r)
r(1− r)

B2/p f (ε)+
3− r

r(1− r)
B4/pg(ε), (12)
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where f (ε) =
σ(ε)∫
0

(
N(σ (−1)(t))

)2/p
dt , g(ε) =

σ(ε)∫
0

(
N(σ (−1)(t))

)4/p
dt .

Proof of Lemma 3. Let us obtain a bound for the sum

∞

∑
k=m+2

ck =
∞

∑
k=m+2

σ(εk−1) · (N(εk))2/p.

Split the sum into two parts:

∞

∑
k=m+2

ck =
∞

∑
k=m+2

νk−1 · (N(εk))2/p = A1 +A2,

where

A1 = ∑
k∈D1(m)

νk−1 · (N(εk))2/p, A2 = ∑
k∈D2(m)

νk−1 · (N(εk))2/p,

D1(m) = {k � m+2 : νk = rνk−1} , D2(m) = {k � m+2 : νk = δk−1}.
Inequalities (4) and (5) imply that

A1 =
1
r ∑

k∈D1(m)
νk ·
(
N(σ (−1)(νk))

)2/p

� 1
r(1− r)

∞

∑
k=m+2

(νk −νk+1) ·
(
N(σ (−1)(νk))

)2/p

� 1
r(1− r)

∞

∑
k=m+2

νk∫
νk+1

(
N(σ (−1)(t))

)2/p
dt

=
1

r(1− r)

νm+2∫
0

(
N(σ (−1)(t))

)2/p
dt. (13)

Since N(σ (−1)(δk)) < BN(σ (−1)(νk)) , (4) and (5), we obtain

A2 = ∑
k∈D2(m)

νk−1 ·
(
N(σ (−1)(δk−1))

)2/p

� ∑
k∈D2(m)

νk−1 ·
(
BN(σ (−1)(νk−1))

)2/p

� 1
1− r

∞

∑
k=m+2

(νk−1 −νk) ·
(
BN(σ (−1)(νk−1))

)2/p

� B2/p

1− r

νm+1∫
0

(
N(σ (−1)(t))

)2/p
dt. (14)
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Since νm+2 < νm+1 < σ(ε) it follows from (13) and (14) that

2
∞

∑
k=m+2

ck � 2(1+ r)
r(1− r)

B2/p

σ(ε)∫
0

(
N(σ (−1)(t))

)2/p
dt.

Let us estimate bm(ε) . Since νm+1 = min{rνm,δm} let us consider two cases:
νm+1 = rνm and νm+1 = δm . If νm+1 = rνm then for εm+1 < ε � εm (νm+1 < σ(ε) �
νm ):

σ(ε) ·
(
N(σ (−1)(νm+1))

)4/p
= σ(ε) ·

(
N(σ (−1)(rνm))

)4/p

� σ(ε) ·
(
N(σ (−1)(rσ(ε)))

)4/p

�
σ(ε)∫
0

(
N(σ (−1)(rv))

)4/p
dv

=
1
r

rσ(ε)∫
0

(
N(σ (−1)(t))

)4/p
dt

� 1
r

σ(ε)∫
0

(
N(σ (−1)(t))

)4/p
dt.

If νm+1 = δm then it follows from (3)

σ(ε) ·
(
N(σ (−1)(νm+1))

)4/p
= σ(ε) ·

(
N(σ (−1)(δm))

)4/p

� σ(ε) ·
(
BN(σ (−1)(νm))

)4/p

� σ(ε) ·
(
BN(σ (−1)(σ(ε)))

)4/p

� B4/p

σ(ε)∫
0

(
N(σ (−1)(t))

)4/p
dt.

Therefore

bm(ε) � 3− r
r(1− r)

B4/p

σ(ε)∫
0

(
N(σ (−1)(t))

)4/p
dt.
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Thus, we have the following estimation

2
∞

∑
k=m+2

ck +bm(ε) � 2(1+ r)
r(1− r)

B2/p

σ(ε)∫
0

(
N(σ (−1)(t))

)2/p
dt +

+
3− r

r(1− r)
B4/p

σ(ε)∫
0

(
N(σ (−1)(t))

)4/p
dt,

which is the desired statement. �

Let us continue the proof of Theorem 2. Consider 0 < ε � ε0 and choose the same
integer m as in Lemma 2.

Denote
ξk = max

t∈Vεk
|X(t)−X(αk−1(t))|,

ηm(ε) = max
v,w∈Vεm+1 :

‖X(v)−X(w)‖Lp�σ(ε) 3−r
1−r

|X(v)−X(w)|.

Lemma 2 implies that the inequality

sup
ρ(t,s)<y
t,s∈T

|X(t)−X(s)|� 2
∞

∑
k=m+2

ξk + ηm(y) (15)

holds with probability one for any εm+1 < y � εm . Let

G(y)=
2(1+ r)
r(1− r)

B2/p

σ(y)∫
0

(
N(σ (−1)(t))

)2/p
dt+

3− r
r(1− r)

B4/p

σ(y)∫
0

(
N(σ (−1)(t))

)4/p
dt.

It follows from (15) and Lemma 3 that

sup
0<ρ(t,s)�ε

|X(t)−X(s)|
G(ρ(t,s))

� sup
0<y�ε

[
sup

0<ρ(t,s)�y

|X(t)−X(s)|
G(y)

]

� sup
l�m+1

sup
εl+1<y�εl

2
∞
∑

p=l+1
ξp + ηl(y)

2
∞
∑

p=l+1
cp +bl(y)

.

Therefore, for any x > 0 the following inequality holds:

P

{
sup

0<ρ(t,s)�ε

|X(t)−X(s)|
1

r(1−r) (2(1+ r)B2/p f (ρ(t,s))+ (3− r)B4/pg(ρ(t,s)))
> x

}

�
∞

∑
k=m+2

P

{
ξk

ck
> x

}
+

∞

∑
l=m+1

P

{
sup

εl+1<v�εl

ηl(v)
bl(v)

> x

}
, (16)



68 D. ZATULA

where f (ε) =
σ(ε)∫
0

(
N(σ (−1)(t))

)2/p
dt , g(ε) =

σ(ε)∫
0

(
N(σ (−1)(t))

)4/p
dt .

Evaluate the probabilities in (16). It follows from Theorem 1 that ∀x > 0:

P

{
ξk

ck
> x

}
= P

{
max
t∈Vεk

|X(t)−X(αk−1(t))| > x ·σ(εk−1) · (N(εk))2/p

}
� 1

N(εk) · xp ;

(17)

P

{
sup

εl+1<v�εl

ηl(v)
bl(v)

> x

}
= P

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup
εl+1<v�εl

max
v,w∈Vεl+1 :

‖X(v)−X(w)‖Lp�σ(ε) 3−r
1−r

|X(v)−X(w)|

3−r
1−r σ(ε) · (N(εl+1))4/p

> x

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
v,w∈Vεl+1 :

‖X(v)−X(w)‖Lp�σ(ε) 3−r
1−r

|X(v)−X(w)| > x · 3− r
1− r

σ(ε) · (N(εl+1))4/p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

� 1
N2(εl+1) · xp . (18)

Finally, we obtain

P

{
sup

0<ρ(t,s)�ε

|X(t)−X(s)|
1

r(1−r) (2(1+ r)B2/p f (ρ(t,s))+ (3− r)B4/pg(ρ(t,s)))
> x

}

�
∞

∑
k=m+2

1
N(εk)

· 1
xp +

∞

∑
l=m+1

1
N2(εl+1)

· 1
xp :=

R(m)
xp ,

where f (ε) =
σ(ε)∫
0

(
N(σ (−1)(t))

)2/p
dt , g(ε) =

σ(ε)∫
0

(
N(σ (−1)(t))

)4/p
dt .

Inequalities (6) imply that

R(m) =
∞

∑
k=m+2

1
N(εk)

+
∞

∑
l=m+1

1
N2(εl+1)

� 1
N(εm+2)

∞

∑
p=0

1
Bp +

1
N2(εm+2)

∞

∑
p=0

1
B2p

=
B

(B−1)N(εm+2)
+

B2

(B2−1)N2(εm+2)
� 1

N(ε)
·
(

B
B−1

+
B2

B2−1

)

=
1

N(ε)
· 2B2 +B

B2−1
.

Since inf
0<r<1

2(1+r)
r(1−r) = 6 + 4

√
2 and inf

0<r<1

3−r
r(1−r) = 5 + 2

√
6 then for x > 0, ε ∈

(0,ε0) :

P

{
sup

0<ρ(t,s)�ε

|X(t)−X(s)|
(6+4

√
2)B2/p f (ρ(t,s))+(5+2

√
6)B4/pg(ρ(t,s))

>x

}
� 2B2+B

(B2−1)N(ε) · xp .
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The proof of Theorem 2 is completed. �

Since B4/p > B2/p for B > 1, 1 � p < ∞ , the following inequality holds for x > 0,
ε ∈ (0,ε0) :

P

{
sup

0<ρ(t,s)�ε

|X(t)−X(s)|
(6+4

√
2) f (ρ(t,s))+ (5+2

√
6)g(ρ(t,s))

> B4/px

}
� 2B2 +B

(B2−1)N(ε) · xp .

Denote y = B4/px . Minimizing the function f (B) = (2B2+B)B4

B2−1
, B > 1, we get

approximately 18.977, which is ≈ f (B0) , where

B0 =
√

33
4

cos

(
1
3

arctan

(
8
√

41
37

))
− 1

8
≈ 1.24044.

Then the following corollary follows from Theorem 2.

COROLLARY 1. Let the assumptions of Theorem 2 hold true. Then for y > 0, ε ∈
(0,ε0) the following inequality holds:

P

{
sup

0<ρ(t,s)�ε

|X(t)−X(s)|
(6+4

√
2) f (ρ(t,s))+ (5+2

√
6)g(ρ(t,s))

> y

}
� C

N(ε) · yp ,

where f (ε) =
σ(ε)∫
0

(
N(σ (−1)(t))

)2/p
dt , g(ε) =

σ(ε)∫
0

(
N(σ (−1)(t))

)4/p
dt , C ≈ 18.977 .

4. Lipschitz conditions for random processes belonging to the spaces Lp(Ω)

We prove

THEOREM 3. Let the assumptions of Theorem 2 hold true. Then with probability
one

limsup
ε↓0

Δ(X ;ε)
(6+4

√
2)B2/p f (ε)+ (5+2

√
6)B4/pg(ε)

� 1,

where
Δ(X ;ε) = sup

t,s∈T

0<ρ(t,s)�ε

|X(t)−X(s)|,

f (ε) =
σ(ε)∫
0

(
N(σ (−1)(t))

)2/p
dt < ∞ , g(ε) =

σ(ε)∫
0

(
N(σ (−1)(t))

)4/p
dt , ε > 0.

Proof. It follows from (7) that with probability one

sup
ρ(t,s)<v
t,s∈T

|X(t)−X(s)|� 2
∞

∑
l=m+2

ξl + ηm(v). (19)
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It follows from (17) that for a sufficiently large l and for x > 0: ξl � xcl with
probability one. From (18) we have that for a sufficiently large m and for x > 0:
ηm(v) � xbm(v) with probability one. Therefore, for a sufficiently large l (or small
enough ε ) and for x > 0 we have

sup
ρ(t,s)<v
t,s∈T

|X(t)−X(s)|� x

(
2

∞

∑
l=m+2

cl +bm(v)

)
(20)

with probability one.
Now it follows from (12) that for a sufficiently small v

sup
ρ(t,s)�v
t,s∈T

|X(t)−X(s)|� (6+4
√

2)B2/p f (v)+ (5+2
√

6)B4/pg(v)

with probability one. �

The following corollary follows from Theorem 3.

COROLLARY 2. For a small enough v the following inequality holds

sup
ρ(t,s)�v

|X(t)−X(s)|� (6+4
√

2)B2/p f (v)+ (5+2
√

6)B4/pg(v)

with probability one.

EXAMPLE 1. Let σ(h) = dhc, h,c,d > 0 .

The inverse function of the function σ(h) is σ (−1)(h)= c
√

h
d . Therefore, functions

f (ε) and g(ε) take the following form:

f (ε) =

σ(ε)∫
0

(
N(σ (−1)(t))

)2/p
dt =

dεc∫
0

(
N

(
c

√
t
d

))2/p

dt;

g(ε) =

σ(ε)∫
0

(
N(σ (−1)(t))

)4/p
dt =

dεc∫
0

(
N

(
c

√
t
d

))4/p

dt.

In accordance with Theorem 2, for ε ∈ (0,ε0) , ε0 = σ (−1)

(
sup
t,s∈T

ρ(t,s)

)
, B > 1

and ∀x > 0 the following inequality holds:

P

{
sup

0<ρ(t,s)�ε

|X(t)−X(s)|
γB(ρ(t,s))

> x

}
� 2B2 +B

(B2−1)N(ε) · xp ,
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where

γB(ε) = (6+4
√

2)B2/p

dεc∫
0

(
N

(
c

√
t
d

))2/p

dt+(5+2
√

6)B4/p

dεc∫
0

(
N

(
c

√
t
d

))4/p

dt.

Moreover, according to Theorem 3, with probability one the following holds:

limsup
ε↓0

sup
0<ρ(t,s)�ε

|X(t)−X(s)|

γB(ε)
� 1.

Now let consider a space T = [0,T ] . Since the metric massiveness N(u) denotes
the minimal number of elements in an u–covering of the set T (in this case, the segment
[0, T ]), then T

2u � N(u) � T
2u +1. It implies that for the function σ (−1)(u) :

N

(
c

√
u
d

)
= N

(
σ (−1)(u)

)
� T

2σ (−1)(u)
+1 =

T

2 c
√ u

d

+1 =
T
2

c

√
d
u

+1.

Therefore we evaluate functions f (ε) and g(ε) :

f (ε) =
dεc∫
0

(
N

(
c

√
t
d

))2/p

dt �
dεc∫
0

(
T
2

c

√
d
t

+1

)2/p

dt;

g(ε) =
dεc∫
0

(
N

(
c

√
t
d

))4/p

dt �
dεc∫
0

(
T
2

c

√
d
t

+1

)4/p

dt.

The last integral is finite if c > 4
p . In accordance with Theorem 2, for ε ∈ (0,ε0) ,

B > 1, c > 4
p and ∀x > 0 the following inequality holds

P

{
sup

0<ρ(t,s)�ε

|X(t)−X(s)|
γ1,B(ρ(t,s))

> x

}
� 2ε(2B2 +B)

T (B2−1) · xp ,

where

γ1,B(ε)= (6+4
√

2)B2/p

dεc∫
0

(
T
2

c

√
d
t

+1

)2/p

dt+(5+2
√

6)B4/p

dεc∫
0

(
T
2

c

√
d
t

+1

)4/p

dt.

Moreover, according to Theorem 3, the following holds

limsup
ε↓0

sup
0<ρ(t,s)�ε

|X(t)−X(s)|

γ1,B(ε)
� 1

with probability one.
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