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ON MAXIMAL AREA INTEGRAL PROBLEM FOR

ANALYTIC FUNCTIONS IN THE STARLIKE FAMILY

S. K. SAHOO AND N. L. SHARMA

Abstract. For an analytic function f defined on the unit disk |z| < 1 , let Δ(r, f ) denote the area
of the image of the subdisk |z| < r under f , where 0 < r � 1 . In 1990, Yamashita conjectured
that Δ(r,z/ f ) � πr2 for convex functions f and it was finally settled in 2013 by Obradović and
et. al.. In this paper, we consider a class of analytic functions in the unit disk satisfying the
subordination relation z f ′(z)/ f (z)≺ (1+(1−2β)αz)/(1−αz) for 0 � β < 1 and 0 < α � 1 .
We prove Yamashita’s conjecture problem for functions in this class, which provides a partial
solution to an open problem posed by Ponnusamy and Wirths.

1. Introduction, preliminaries, and main result

The univalent function has been the central object in the study of geometric func-
tion theory. Some of its natural geometric families act a prominent role in the theory of
univalent functions [4, 6, 14] and their geometric properties. For instance, the classes
of starlike, convex and close-to-convex, to name just a few. These classes have been
familiarized and studied by many authors. It is interesting to observe that we can obtain
many of their analytic properties by an integrated method. Study of various subclasses
of the class of starlike functions have been appreciated by several authors. The class
of starlike functions of order β (0 � β < 1) was generated by Robertson [16] and has
been then studied by Schild [19] and Merkes [10]. Marx [9] and Strohacker [20] proved
that if f (z) maps the unit disk onto a convex domain, then f (z) is starlike of order 1/2.
Gabriel [5] showed that the class of starlike functions of order 1/2 played an important
role in the solution of differential equations. In 1968, Padmanabhan [13] discussed a
different subfamily for the order of starlikeness. In this paper, we introduce a more
general family than the family studied by Padmanabhan.

Define by Dr := {z ∈ C : |z| < r} , the disk of radius r centred at the origin.
The unit disk is then defined by D := D1 . Let A denote the family of all functions
f (z) analytic in D and normalized so that f (0) = 0 = f ′(0)− 1, i.e. f ∈ A has the
power series representation f (z) = z+∑∞

n=2 anzn . Denote by S , the class of univalent
functions f ∈ A . The Gaussian hypergeometric function 2F1(a,b;c;z) is defined by
the series

1+
∞

∑
n=1

(a)n(b)n

(c)n(1)n
zn, |z| < 1,
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where a,b and c are complex numbers with c is neither zero nor a negative integer.
Clearly, the shifted function z2F1(a,b;c;z) belongs to A . The notation (a)n denotes
the shifted factorial and it is defined by

(a)0 = 1, (a)n = a(a+1) · · ·(a+n−1) =
Γ(a+n)

Γ(a)
, n � 1.

Here, Γ stands for the usual gamma function. If either (or both) of a and b is (are)
zero or a negative integer(s), then the series terminates.

For two analytic functions f and g in D , we say that f is subordinate to g if

f (z) = g(w(z)), |z| < 1,

for some analytic function w in D with w(0) = 0 and |w(z)| < 1. We express this
symbolically by f ≺ g . In particular, if g is univalent in D , f (0) = g(0) and f (D) ⊂
g(D) then f ≺ g . For instance, one can easily see that 1/(1+ z) ≺ (1 + z)/(1− z) ,
z ∈ D .

We denote by S t(β ) , the well-known class of starlike functions of order β . Ana-
lytically, for f ∈S , the starlike functions are characterized by the condition Re(z f ′(z)/
f (z)) > β , where 0 � β < 1, i.e. f has the subordination property,

z f ′(z)
f (z)

≺ 1+(1−2β )z
1− z

, z ∈ D, 0 � β < 1.

The class S t := S t(0) is the class of starlike functions, i.e. f ∈ S is starlike with
respect to the origin, i.e. tw ∈ f (D) whenever t ∈ [0,1] and w ∈ f (D) .

Suppose that f (z) is a function analytic in the unit disk D . For 0 < r � 1, we
denote by Δ(r, f ) , the area of the image of the disk Dr under f (z) . Thus,

Δ(r, f ) =
∫∫

Dr

| f ′(z)|2 dxdy (z = x+ iy).

Computing this area is known as the area problem for the function of type f . The clas-
sical Parseval-Gutzmer formula for a function f (z) = ∑∞

n=0 anzn analytic in Dr states
that

1
2π

∫ 2π

0
| f (reiθ )|2 dθ =

∞

∑
n=0

|an|2r2n.

By means of this formula, since f ′(z) = ∑∞
n=1 nanzn−1 , we find

Δ(r, f ) = π
∞

∑
n=1

n|an|2r2n.

We call f a Dirichlet-finite function if Δ(1, f ) , the area covered by the mapping z →
f (z) for |z| < 1, is finite. Our interest in this paper was originated by the work of
Yamashita [21] and Ponnusamy et. al. [11, 12, 15]. Yamashita [21] initially conjectured
that

max
f∈C

Δ
(

r,
z
f

)
= πr2



MAXIMAL AREA INTEGRAL PROBLEM 75

for each r, 0 < r � 1, and the maximum is attained only by the rotations of the function
l(z) = z/(1− z). Here C denotes the class of convex functions i.e f ∈ S such that
f (D) is convex. This conjecture was recently settled in [11]. In fact the conjecture has
been solved for a wider class of functions (the class of starlike functions of order β ,
0 � β < 1), which includes the class C ; see also Corollary 3.3. In [15], the Yamashita
conjecture problem for the class of φ -spirallike functions of order β (0 � β < 1) and
φ ∈ (−π/2,π/2) have also been settled (see [8] for the definition of φ -spirallike func-
tion). Recent work in this direction can also be found in [12]. There are several other
classes of analytic univalent functions having interesting geometric properties for which
solution of the Yamashita conjecture problem would be of interesting to readers work-
ing in this field.

Our objective in this paper is to give a partial solution to a problem posed in [15]
by considering the following subfamily of the family of starlike functions introduced
by Padmanabhan [13].

DEFINITION 1.1. A function f ∈ A is said to be in S (α) , 0 < α � 1, if∣∣∣∣
(

z f ′(z)
f (z)

−1

)/( z f ′(z)
f (z)

+1

)∣∣∣∣< α, equivalently,
z f ′(z)
f (z)

≺ 1+ αz
1−αz

,

for all z ∈ D .

It is evident to see that S (1) ≡ S t and S (α) ⊂ S t(β ) for all α,β ∈ (0,1)
with β � (1−α)/(1+α) . Also, the function g(z) = z/(1− z) ∈ S t(1/2) guarantees
that this inclusion is proper. One can also verify that kβ (z) := z/(1− z)2(1−β ) belongs
to S t(β ), whereas, the function kα(z) := z/(1− αz)2 ∈ S (α). In this paper, we
prove the Yamashita conjecture for functions in a more general family than S (α) . In
particular, the conjecture will also follow for functions in S (α) . The generalization is
now defined below.

DEFINITION 1.2. A function f ∈ A is said to belong to the class S (α,β ) , 0 <
α � 1, 0 � β < 1, if ∣∣∣∣

(
z f ′(z)
f (z)

−1

)/( z f ′(z)
f (z)

+1−2β
)∣∣∣∣< α,

i.e.,
z f ′(z)
f (z)

≺ 1+(1−2β )αz
1−αz

, (1.1)

for all z ∈ D .

A general form of this definition is earlier introduced by Aouf (see [1, Defini-
tion 2]). Definition of S (α,β ) says that the domain values of z f ′(z)/ f (z) lie in the
disk of radius 2α(1−β )/(1−α2) centred at (1+ α2(1−2β ))/(1−α2) . We see that
if β = 0, then Definition 1.2 turns into Definition 1.1. The function

kα ,β (z) := z(1−αz)−2(1−β ), z ∈ D, 0 < α � 1, 0 � β < 1, (1.2)
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belongs to the family S (α,β ) and in this context it plays the role of extremal function
for S (α,β ) . Also, one notes that

S (α,β )⊂S (α)⊂S t(β )⊂S t; S (1,β )= S t(β ), S (α,0)= S (α) and S (1)= S t.

Consequently,

k1,β (z) = kβ (z), kα ,0(z) = kα(z), k1,0(z) = k1(z) = k(z). (1.3)

In this article, our main aim is to examine the maximum area problem for the func-
tions of type (z/ f ) so-called the Yamashita conjecture problem, when f ∈ S (α,β ) .
By looking into the behavior of z/kα ,β (z) (see Section 3), we expect the following
theorem whose proof is given in Section 3.

THEOREM 1.3. (Main Theorem) Let 0 < α � 1 and 0 � β < 1 . If f ∈S (α,β )
and z/ f is a non-vanishing analytic function in D , then we have the maximal area

max
f∈S (α ,β )

Δ
(

ρ ,
z
f

)
= 4πα2(1−β )2ρ2

2F1(2β −1,2β −1;2;α2ρ2), |z| < ρ

=: Aα ,β (ρ)

for all ρ , 0 < ρ � 1 . The maximum is attained only by the rotations of the function
kα ,β (z) defined by (1.2).

This generalizes the main results which are discussed in [11] and [21].
In Section 2, we prepare some basic results and use them to prove our main theo-

rem in Section 3.

2. Preparatory results

If f ∈ S then z/ f (z) is non-vanishing in D . Hence, it can be described as Tay-
lor’s series of the form

z
f (z)

= 1+
∞

∑
n=1

bnz
n, z ∈ D. (2.1)

We first derive a coefficient estimate in series form for a function f of the form
(2.1) when f ∈ S (α,β ).

LEMMA 2.1. Let 0 < α � 1 , 0 � β < 1 , and f ∈ S (α,β ) . If g(z) is a non-
vanishing analytic function in D of the form (2.1) , then it necessarily satisfies the
coefficient inequality

∞

∑
k=1

(
k2 − (k−2(1−β ))2α2) |bk|2 � 4(1−β )2α2.
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Proof. Let g(z) = z/ f (z) be of the form (2.1). Note that the logarithmic derivative
gives

zg′(z)
g(z)

= 1− z f ′(z)
f (z)

.

Since f (z) ∈S (α,β ) , the subordination relation (1.1) says that there exists an analytic
function w : D → D with w(0) = 1 such that

z f ′(z)
f (z)

=
1+ α(1−2β )zw(z)

1−αzw(z)
, z ∈ D,

and hence
g′(z)
g(z)

=
−2α(1−β )w(z)

1−αzw(z)
.

Writing this in series form, we get

∞

∑
k=1

kbkz
k−1 = α

(
−2(1−β )+

∞

∑
k=1

(k−2(1−β ))bkz
k

)
w(z).

After a minor re-arrangement, we obtain

n

∑
k=1

kbkz
k−1 +

∞

∑
k=n+1

kbkz
k−1 = α

(
−2(1−β )+

n−1

∑
k=1

(k−2(1−β ))bkz
k

)
w(z)

+ α

(
∞

∑
k=n

(k−2(1−β ))bkz
k

)
w(z).

By Clunie’s method [2] (see also [3, 17, 18]), we obtain

n

∑
k=1

k2|bk|2ρ2k−2 � α2

(
4(1−β )2 +

n−1

∑
k=1

(k−2(1−β ))2 |bk|2ρ2k

)
,

equivalently,

n

∑
k=1

k2|bk|2ρ2k−2−α2
n−1

∑
k=1

(k−2(1−β ))2|bk|2ρ2k � 4(1−β )2α2. (2.2)

If we take ρ = 1 and allow n → ∞ , then we obtain the desired inequality

∞

∑
k=1

(
k2 − (k−2(1−β ))2α2) |bk|2 � 4(1−β )2α2.

The proof of our lemma is now complete. �
We remark that the special choices α = 1 and β = 0 turned Lemma 2.1 into the

well-known Area Theorem for f ∈ S (see for instance [6, Theorem 11, p. 193 of
Vol-2]).

We now prepare a lemma using a new technique introduced in [11] and this lemma
plays an important role to prove our main theorem in this paper.
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LEMMA 2.2. Let 0 < α � 1 , 0 � β < 1 , and f ∈ S (α,β ) . For |z| < ρ � 1
suppose that

z
f (z)

= 1+
∞

∑
k=1

bkz
k and (1+ αz)2−2β = 1+

∞

∑
k=1

(−1)kckz
k.

Then the relation
N

∑
k=1

k|bk|2ρ2k �
N

∑
k=1

k|ck|2ρ2k (2.3)

is valid for all N ∈ N .

Proof. We divide our proof into three steps.

Step-I: Clunie’s method.
Rewrite (2.2) in the following form:

n−1

∑
k=1

(
k2 − (k−2(1−β ))2α2ρ2) |bk|2ρ2k−2 +n2|bn|2ρ2n−2 � 4(1−β )2α2.

Multiply by ρ2 on both sides we obtain

n−1

∑
k=1

(
k2− (k−2(1−β ))2α2ρ2) |bk|2ρ2k +n2|bn|2ρ2n � 4(1−β )2α2ρ2. (2.4)

The function b(z) = (1+ αz)2−2β clearly shows that the equality in (2.4) attains with
bk = (−1)kck.

Step-II: Cramer’s Rule.
We consider the inequalities (2.4) for n = 1, . . . ,N , and multiply the n -th coef-

ficient by a factor λn,N for each n . These factors are chosen in such a way that the
addition of the left sides of the modified inequalities is equivalent to the left side of
(2.3). The calculation of the factors λn,N leads to the following system of linear equa-
tions:

k = k2λk,N +
N

∑
n=k+1

λn,N
(
k2 − (k−2(1−β ))2α2ρ2) , k = 1, · · · ,N. (2.5)

Since the matrix of the system (2.5) is an upper triangular matrix with positive integers
as diagonal elements, the solution of the system is uniquely determined. Cramer’s rule
allows us to write the solution of the system (2.5) in the form

λn,N =
((n−1) !)2

(N !)2 Det An,N ,

where An,N is the (N−n+1)× (N−n+1) matrix constructed as follows:

An,N =

⎡
⎢⎢⎢⎣

n n2− (n−2(1−β ))2α2ρ2 · · · n2− (n−2(1−β ))2α2ρ2

n+1 (n+1)2 · · · (n+1)2− (n+1−2(1−β))2α2ρ2

...
...

...
...

N 0 · · · N2

⎤
⎥⎥⎥⎦ .
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Rest of the proof now similarly follows as explained in the proof of [11, Lemma 5].
Indeed, for the sake of completeness we provide the complete proof.

Determinants of these matrices can be found by expanding according to Laplace’s
rule with respect to the last row, wherein the first coefficient is N , the last one is N2 , and
the rest of the entries are zeros. This expansion and a mathematical induction applies
in the following formula. If k � N−1, then

λk,N = λk,N−1 − 1
N

(
1−
(

1−2(1−β )
k

)2

α2ρ2

)
N−1

∏
m=k+1

(
1−
(

1−2(1−β )
m

)2

α2ρ2

)
.

We see that for fixed k ∈ N, N � k , the sequence {λk,N} is a strictly non-increasing
sequence i.e. λk,N −λk,N−1 < 0 with

lim
N→∞

λk,N =
1
k
−
(

1−
(

1−2(1−β )
k

)2

α2ρ2

)
∞

∑
n=k+1

1
n

n−1

∏
m=k+1

((
1−2(1−β )

m

)2

α2ρ2

)
.

(2.6)
Set λk := limN→∞ λk,N . To show that λk,N > 0 for all N ∈ N , k ∈ [1,N] , it is enough to
show that λk � 0 for k ∈ N . This will be completed in Step III. But, before we proceed
for the next step, we note that the proof of the said inequality is adequate for the proof
of the assertion of the result, since, as we observed in Step-I, equality is obtained for
bk = (−1)kck .

Step-III: Positivity of the Multipliers.
Let for an abbreviation

Sk =
∞

∑
n=k+1

1
n

n−1

∏
m=k+1

((
1− 2(1−β )

m

)2

α2ρ2

)
, k ∈ N.

We now show that

Sk � 1

k

(
1−
(
1− 2(1−β )

k

)2
α2ρ2

) .

From the equation (2.6), we get

λk =
1
k
−Sk +

(
1− 2(1−β )

k

)2

α2ρ2Sk.

Again set for an abbreviation

Tk =
1
k

+
(

1− 2(1−β )
k

)2

α2ρ2Sk.

It is enough to prove that

Tk � 1

k

(
1−
(
1− 2(1−β )

k

)2
α2ρ2

) . (2.7)



80 S. K. SAHOO AND N. L. SHARMA

To prove (2.7) we use the inequality

1

n

(
1−
(
1− 2(1−β )

n

)2
α2ρ2

) >
1

(n+1)
(

1−
(
1− 2(1−β )

n+1

)2
α2ρ2

) (2.8)

and the identity

1

n

(
1−
(
1− 2(1−β )

n

)2
α2ρ2

) =
1
n

+

(
1− 2(1−β )

n

)2
α2ρ2

n

(
1−
(
1− 2(1−β )

n

)2
α2ρ2

) (2.9)

which are admissible for each n ∈ N . Repeated application of (2.8) and (2.9) for n =
k,k+1, . . . ,T results in the inequality

1

k

(
1−
(
1− 2(1−β )

k

)2
α2ρ2

) >
T

∑
n=k

1
n

n−1

∏
m=k

((
1− 2(1−β )

m

)2

α2ρ2

)

+

T

∏
m=k

((
1− 2(1−β )

m

)2

α2ρ2

)

T

(
1−
(
1− 2(1−β )

T

)2
α2ρ2

)
=: Sk,T +Rk,T , for k � T .

Since Rk,T > 0, allow the limit as T → ∞ , we get

1

k

(
1−
(
1− 2(1−β )

k

)2
α2ρ2

) � lim
T→∞

Sk,T =
∞

∑
n=k

1
n

n−1

∏
m=k

((
1− 2(1−β )

m

)2

α2ρ2

)
= Tk,

and we complete the inequality (2.7). Hence, the proof of Lemma 2.2 is complete. �
We now establish a preliminary result concerning necessary and sufficient condi-

tions for a function to be in S (α,β ).

LEMMA 2.3. Let 0 < α � 1 and 0 � β < 1 . Then f ∈ S (α,β ) if and only if F

defined by F(z) = z( f (z)/z)
1

1−β ∈ S (α) , z ∈ D.

Proof. Let F(z) = z( f (z)/z)
1

1−β . Taking logarithm derivative on both sides and
simplify, we get

z
F ′(z)
F(z)

= 1+
1

1−β

(
z
f ′(z)
f (z)

−1

)
.

By componendo and dividendo rule, we have∣∣∣∣
(

z
F ′(z)
F(z)

−1

)/(
z
F ′(z)
F(z)

+1

)∣∣∣∣=
∣∣∣∣
(

z
f ′(z)
f (z)

−1

)/(
z
f ′(z)
f (z)

+1−2β
)∣∣∣∣ . (2.10)

By Definition 1.2 we get f (z) ∈ S (α,β ) if and only if F(z) ∈ S (α) . �
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3. Proof of the main Theorem

As an initial observation, from (1.2) we see that

z
kα ,β (z)

= (1−αz)2(1−β ) = 1+
∞

∑
n=1

cnz
n

where cn =
(ζ )n

(1)n
αn and ζ = −2(1−β ).

Hence, we apply the area formula for the function z/kα ,β (z) and obtain

π−1Δ
(

ρ ,
z

kα ,β

)
=

∞

∑
n=1

n|cn|2ρ2n, |z| < ρ

=
∞

∑
n=1

n
(ζ )n(ζ )n

(1)n(1)n
α2nρ2n

= ζ 2α2ρ2
∞

∑
n=0

(ζ +1)n(ζ +1)n

(2)n(1)n
α2nρ2n

= 4α2(1−β )2ρ2
2F1(2β −1,2β −1;2;α2ρ2)

= π−1Aα ,β (ρ).

At this point let us write Aα ,β (ρ) , 0 < ρ � 1, in the following form:

Aα ,β (ρ) = 4πα2(1−β )2ρ2
∞

∑
n=0

(2β −1)2
n

(1)n(2)n
α2nρ2n.

Because the series on the right hand side has positive coefficients, Aα ,β (ρ) is a non-
decreasing and convex function of the real variable ρ . Thus, Aα ,β (ρ) � Aα ,β (1) , i.e.

Aα ,β (ρ) � 4πα2(1−β )2
∞

∑
n=0

(2β −1)2
n

(1)n(2)n
α2n.

It is now time for us to prove the main theorem.

Proof. For z ∈ D, we know by Lemma 2.3 that

f (z) ∈ S (α,β ) ⇐⇒ F(z) = z

(
f (z)
z

) 1
1−β ∈ S (α).

Further F(z) ∈ S (α) gives

z
F(z)

=
(

z
f (z)

) 1
1−β ≺ (1−αz)2 =

(
z

kα ,β (z)

) 1
1−β

,

i.e. z
f (z)

≺ (1−αz)2(1−β ) =
z

kα ,β (z)
.
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If
z

f (z)
= 1+

∞

∑
n=1

bnz
n and

z
k(z)

= 1+
∞

∑
n=1

cnz
n, |z| < ρ ,

then the extension of Rogosinski’s result observed by Goluzin [4, Theorem 6.3, p. 193]
yields

∞

∑
n=1

n|bn|2ρ2n �
∞

∑
n=1

n|cn|2ρ2n.

That is

Δ
(

ρ ,
z
f

)
� Δ

(
ρ ,

z
kα ,β

)
= πζ 2α2ρ2

2F1(ζ +1,ζ +1;2;α2ρ2), ζ +1 = 2β −1

whenever the sequence {nρ2n} is decreasing function of ρ , 0 < ρ � 1√
2
. Thus, the

theorem is obviously true for 0 < ρ � 1√
2
. On other hand, in order to present a proof

to include the case ρ > 1√
2
, it suffices to prove

N

∑
n=1

n|bn|2ρ2n �
N

∑
n=1

n|cn|2ρ2n, N ∈ N, ρ ∈ (0,1).

This follows from Lemma 2.2 and hence the proof of Theorem 1.3 is complete. �

If we choose β = 0 in Theorem 1.3, then we get the following Yamashita conjec-
ture problem solved for functions in the Padmanabhan class S (α) :

THEOREM 3.1. Let for 0 < α � 1 , f ∈ S (α) and z/ f be a non-vanishing ana-
lytic function in D . Then we have

max
f∈S (α)

Δ
(

ρ ,
z
f

)
= 2πα2ρ2(2+ α2ρ2)

for all ρ , 0 < ρ � 1 . The maximum is attained only by the rotation of the function
kα(z) defined by (1.3).

If α = 1 and β = 1/2, then as a consequence of Theorem 1.3 we get

COROLLARY 3.2. [11, Theorem 2] We have

max
f∈S t(1/2)

Δ
(

ρ ,
z
f

)
= πρ2 for 0 < ρ � 1 ,

where the maximum is attained only by the rotation of the Koebe function k(z) defined
by (1.3).

Moreover, if we choose α = 1 in Theorem 1.3, we get
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COROLLARY 3.3. [11, Theorem 3] Let f ∈ S t(β ) for some 0 � β < 1 . Then
we have

max
f∈S t(β )

Δ
(

ρ ,
z
f

)
= 4π(1−β )2ρ2

2F1(2β −1,2β −1;2;ρ2) for 0 < ρ � 1 ,

where the maximum is attained only by the rotation of the function kβ (z) defined by
(1.3).

4. Concluding Remark

For −1 � B < A � 1, the Janowski class S ∗(A,B) is defined by the subordination
relation

S ∗(A,B) :=
{

f ∈ A :
z f ′(z)
f (z)

≺ 1+Az
1+Bz

, z ∈ D

}
.

The class S ∗(A,B) is introduced in [7] and studied by number of researchers in this
field. It is evident that S ∗(A,B) ⊂ S t . In [15], it has been reported that Yamashita’s
conjecture is an open problem to prove for convex functions of order β and more
generally, for functions in the class S ∗(A,B) and also for the class of functions f for
which z f ′(z) ∈ S ∗(A,B) . In particular, the choices A = (1−2β )α and B = −α turn
the class S ∗(A,B) into the class S (α,β ) . Therefore, a partial solution to the above
open problem has been solved in this paper.
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