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TIGHT FRAMELET PACKETS ON LOCAL

FIELDS OF POSITIVE CHARACTERISTIC

FIRDOUS A. SHAH AND M. YOUNUS BHAT

Abstract. An important tool for the construction of tight wavelet frames on local fields of positive
characteristic with the help of unitary extension principles was presented by Shah and Debnath
[Tight wavelet frames on local fields, Analysis, 33 (2013), 293–307]. In this paper, we continue
the study based on the extension principles and give an explicit construction of a class of tight
framelet packets on local fields of positive characteristic.

1. Introduction

A field K equipped with a topology is called a local field if both the additive K+

and multiplicative groups K∗ of K are locally compact Abelian groups. The local fields
are essentially of two types: zero and positive characteristic (excluding the connected
local fields R and C). Examples of local fields of characteristic zero include the p -
adic field Qp where as local fields of positive characteristic are the Cantor dyadic group
and the Vilenkin p -groups. Even though the structures and metrics of local fields of
zero and positive characteristics are similar, their wavelet and multiresolution analysis
theory are quite different. In recent years, local fields have attracted the attention of
several mathematicians, and have found innumerable applications not only to number
theory but also to representation theory, division algebras, quadratic forms and algebraic
geometry. As a result, local fields are now consolidated as part of the standard repertoire
of contemporary mathematics. For more about local fields and their applications, we
refer to the monographs [14, 25].

In recent years, there has been a considerable interest in the problem of construct-
ing wavelet bases on various spaces other than R , such as abstract Hilbert spaces [24],
locally compact Abelian groups [7], Cantor dyadic groups [10], p -adic fields [9], zero-
dimensional groups [12] and Vilenkin groups [13]. Recently, R. L. Benedetto and J. J.
Benedetto [2] developed a wavelet theory for local fields and related groups. They did
not develop the multiresolution analysis (MRA) approach, their method is based on the
theory of wavelet sets. The concept of multiresolution analysis on a local field K of
positive characteristic was introduced by Jiang et al. [8]. They pointed out a method for
constructing orthogonal wavelets on local field K with a constant generating sequence
and derived necessary and sufficient conditions for a solution of the refinement equa-
tion to generate a multiresolution analysis of L2(K) . Subsequently, the tight wavelet
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frames on local fields of positive characteristic were constructed by Shah and Debnath
[22] using extension principles. Recently, Shah and Abdullah [18] have introduced the
notion of non-uniform multiresolution analysis on local field K of positive character-
istic and obtained the necessary and sufficient condition for a function ϕ to generate a
non-uniform multiresolution analysis on local fields. More results in this direction can
also be found in [6, 19, 20] and in the references therein.

The traditional wavelet frames provide poor frequency localization in many ap-
plications as they are not suitable for signals whose domain frequency channels are
focused only on the middle frequency region. Therefore, in order to make more kinds
of signals suited for analyzing by wavelet frames, it is necessary to extend the concept
of wavelet frames to a library of wavelet frames, called framelet packets or wavelet
frame packets. The original idea of framelet packets was introduced by Coifman et
al. [5] to provide more efficient decomposition of signals containing both transient and
stationary components. Well known Daubechies orthogonal wavelets are a special of
wavelet packets. Chui and Li [4] generalized the concept of orthogonal wavelet packets
to the case of non-orthogonalwavelet packets so that they can be employed to the spline
wavelets and so on. Shen [23] generalized the notion of univariate orthogonal wavelet
packets to the case of multivariate wavelet packets. The construction of wavelet pack-
ets and wavelet frame packets on local fields of positive characteristic were recently
reported by Behera and Jahan in [1]. They proved lemmas on the so-called splitting
trick and several theorems concerning the Fourier transform of the wavelet packets and
the construction of wavelet packets to show that their translates form an orthonormal
basis of L2(K) . Other notable generalizations are the wavelet packets and framelet
packets on a positive half-line R+ [16, 17, 21], the vector-valued wavelet packets [3]
and the tight framelet packets on Rd [11]. Inspired by the above described work on lo-
cal fields [1, 8, 22], in this article we derive explicit formulations to construct a class of
tight framelet packets in L2(K) using the unitary extension principle of Ron and Shen
[15].

This paper is structured as follows. In Section 2, we discuss some preliminary
facts about local fields of positive characteristic and review some major concepts con-
cerning tight wavelet frames on local fields. In Section 3, we prove a crucial lemma
called the splitting lemma which play a key role in the construction of tight framelet
packets on local field K . By virtue of this lemma, we construct a class of tight framelet
packets in L2(K) by decomposing the wavelet spaces Wj,� , j ∈ Z , 1 � � � L using
the framelet symbols h� , 1 � � � L . In Section 4, we derive another approach to con-
struct tight framelet packets in L2(K) by directly decomposing the MRA space VJ for
a fixed level J > 0 to the level 0 with any combined mask h = [h0,h1, . . . ,hL] satis-
fying the unitary extension principle condition M (ξ )M ∗(ξ ) = Iq , where M (ξ ) ={
h�

(
pξ +pu(k)

)}q−1
�,k=0 .
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2. Preliminaries on local fields

Let K be a field and a topological space. Then K is called a local field if both
K+ and K∗ are locally compact Abelian groups, where K+ and K∗ denote the additive
and multiplicative groups of K , respectively. If K is any field and is endowed with the
discrete topology, then K is a local field. Further, if K is connected, then K is either
R or C . If K is not connected, then it is totally disconnected. Hence by a local field,
we mean a field K which is locally compact, non-discrete and totally disconnected.
The p -adic fields are examples of local fields. More details are referred to [14, 25]. In
the rest of this paper, we use the symbols N , N0 and Z to denote the sets of natural,
non-negative integers and integers, respectively.

Let K be a fixed local field. Then there is an integer q = pr , where p is a fixed
prime element of K and r is a positive integer, and a norm |.| on K such that for all
x ∈ K we have |x| � 0 and for each x ∈ K \ {0} we get |x| = qk for some integer
k . This norm is non-Archimedean, that is |x+ y| � max{|x|, |y|} for all x,y ∈ K and
|x+ y| = max{|x|, |y|} whenever |x| �= |y| . Let dx be the Haar measure on the locally
compact, topological group (K,+) . This measure is normalized so that

∫
D dx = 1,

where D = {x ∈ K : |x| � 1} is the ring of integers in K . Define B = {x ∈ K : |x| < 1} .
The set B is called the prime ideal in K . The prime ideal in K is the unique maximal
ideal in D and hence as result B is both principal and prime. Therefore, for such an
ideal B in D , we have B = 〈p〉 = pD.

Let D∗ = D\B = {x ∈ K : |x| = 1} . Then, it is easy to verify that D∗ is a group
of units in K∗ and if x �= 0, then we may write x = pkx′,x′ ∈ D∗. Moreover, each
Bk = pkD =

{
x ∈ K : |x| < q−k

}
is a compact subgroup of K+ and usually known

as the fractional ideals of K+ (see [14]). Let U = {ai}q−1
i=0 be any fixed full set of

coset representatives of B in D , then every element x ∈ K can be expressed uniquely
as x = ∑∞

�=k c�p
� with c� ∈ U . Let χ be a fixed character on K+ that is trivial on

D but is non-trivial on B−1 . Therefore, χ is constant on cosets of D so if y ∈ Bk ,
then χy(x) = χ(yx),x ∈ K. Suppose that χu is any character on K+ , then clearly the
restriction χu|D is also a character on D . Therefore, if {u(n) : n ∈ N0} is a complete
list of distinct coset representative of D in K+ , then, as it was proved in [25], the set{

χu(n) : n ∈ N0
}

of distinct characters on D is a complete orthonormal system on D .

The Fourier transform f̂ of a function f ∈ L1(K)∩L2(K) is defined by

f̂ (ξ ) =
∫

K
f (x)χξ (x)dx. (2.1)

It is noted that

f̂ (ξ ) =
∫

K
f (x)χξ (x)dx =

∫
K

f (x)χ(−ξ x)dx.

Furthermore, the properties of Fourier transform on local field are much similar to
those of on the real line. In particular Fourier transform is unitary on L2(K) .

Let us now impose a natural order on the sequence {u(n)}∞
n=0 . Since D/B ∼=

GF(q) where GF(q) is a c-dimensional vector space over the field GF(q) , we choose
a set {1 = ζ0,ζ1,ζ2, . . . ,ζc−1}⊂D∗ such that span{ζ j}c−1

j=0
∼= GF(q) . For n∈N0 such
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that 0 � n < q , we have

n = a0 +a1p+ . . .+ac−1pc−1, 0 � ak < p, k = 0,1, . . . ,c−1.

Define
u(n) = (a0 +a1ζ1 + . . .+ac−1ζc−1)p−1. (2.2)

For n � 0 and 0 � bk < q , k = 0,1,2, . . . ,s , we write

n = b0 +b1q+b2q
2 + . . .+bsq

s,

such that
u(n) = u(b0)+u(b1)p−1 + . . .+u(bs)p−s. (2.3)

If r,k � 0 and 0 � s < qk , then it follows that

u(rqk + s) = u(r)p−k +u(s).

Further, it is easy to verify that u(n) = 0 if and only if n = 0 and {u(�)+ u(k) : k ∈
N0} = {u(k) : k ∈ N0} for a fixed � ∈ N0. Hereafter we use the notation χn = χu(n) ,
n � 0.

Let the local field K be of characteristic p > 0 and ζ0,ζ1,ζ2, . . . ,ζc−1 be as above.
We define a character χ on K as follows:

χ(ζμp− j) =
{

exp(2π i/p), μ = 0 and j = 1,
1, μ = 1, . . . ,c−1 or j �= 1.

(2.4)

Let Z = {u(n) : n ∈ N0} , where {u(n) : n ∈ N0} is a complete list of (distinct) coset
representation of D in K+ . Then

l2(Z ) =
{

z : Z → C : ∑
n∈N0

∣∣z(u(n)
)∣∣2 < ∞

}

is a Hilbert space with an inner product

〈z,w〉 = ∑
n∈N0

z
(
u(n)

)
w
(
u(n)

)
.

Moreover, the Fourier transform on l2(Z ) is a map ∧ : l2(Z ) → L2(D) defined by

ẑ(ξ ) = ∑
n∈N0

z
(
u(n)

)
χu(n)(ξ ), z

(
u(n)

) ∈ Z

and its inverse is

z
(
u(n)

)
= 〈 f ,χu(n)〉 =

∫
D

f (x)χu(n)(x)dx, f ∈ L2(D).

For all z,w ∈ Z , we have Parseval’s relation:

〈z,w〉 = ∑
n∈N0

z
(
u(n)

)
w
(
u(n)

)
=

∫
D

ẑ(ξ )ŵ(ξ )dξ = 〈ẑ, ŵ〉,
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and Plancherel’s relation:∣∣∣∣z∣∣∣∣2 = ∑
n∈N0

∣∣z(u(n)
)∣∣2 =

∫
D

∣∣ẑ(ξ )
∣∣2dξ =

∣∣∣∣ẑ∣∣∣∣2.
For given Ψ :=

{
ψ1, . . . ,ψL

} ⊂ L2(K) , define the wavelet system

X
(
Ψ

)
:=

{
ψ�

j,k : 1 � � � L, j ∈ Z,k ∈ N0

}
(2.5)

where ψ�
j,k = q j/2ψ�

(
p− j ·−u(k)

)
. The wavelet system X(Ψ) is called a framelet sys-

tem, if there exist positive numbers 0 < A � B < ∞ such that for all f ∈ L2(K)

A
∥∥ f

∥∥2
2 �

L

∑
�=1

∑
j∈Z

∑
k∈Z

∣∣〈 f ,ψ�
j,k〉

∣∣2 � B
∥∥ f

∥∥2
2. (2.6)

The largest A and the smallest B for which (2.6) holds are called wavelet frame
bounds. A wavelet frame is a tight wavelet frame if A and B are chosen such that
A = B and then generators ψ1,ψ2, . . . ,ψL are often referred as tight framelets. If only
the right-hand inequality in (2.6) holds, then X(Ψ) is called a Bessel sequence.

The construction of framelet systems often starts with the construction of MRA,
which is built on refinable functions. A function ϕ ∈ L2(K) is called refinable if it
satisfies a refinement equation:

ϕ(x) =
√

q ∑
k∈N0

ak ϕ
(
p−1x−u(k)

)
, (2.7)

for some {ak : k ∈ N0} ∈ l2(N0). The Fourier transform of (2.7) yields

ϕ̂
(
ξ
)

= h0(pξ )ϕ̂(pξ ), (2.8)

where

h0(ξ ) =
1√
q ∑

k∈N0

ak χk(ξ ),

is an integral periodic function in L2(D) and is often called the refinement symbol of
ϕ .

For a compactly supported refinable function ϕ ∈ L2(K) with ϕ̂(0) �= 0, let V0 be
the closed shift invariant space generated by {ϕ(·−u(k) : k ∈ N0} and Vj =

{
ϕ

(
p− j−

u(k)
)
: k ∈ N0

}
, j ∈Z . It is known that when ϕ is compactly supported, then

{
Vj : j ∈

Z
}

forms a multiresolution analysis for L2(K) (see [6]). Recall that a multiresolution
analysis is a family of closed subspaces

{
Vj : j ∈ Z

}
of L2(K) that satisfies (i) Vj ⊂

Vj+1, j ∈ Z; (ii)
⋃

j∈ZVj is dense in L2(K) and (iii)
⋂

j∈ZVj = {0} . We further assume
that

lim
ξ→0

ϕ̂
(
ξ
)

= 1 for a.e. ξ ∈ D, (2.9)

and

∑
k∈N0

∣∣ϕ̂(
ξ +u(k)

)∣∣2 = 1 for a.e. ξ ∈ D. (2.10)
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Given an MRA generated by the refinable function ϕ , one can construct a set of basic
tight framelets Ψ :=

{
ψ1, . . . ,ψL

} ⊂V1 satisfying

ψ̂�(ξ ) = h�(pξ )ϕ̂(pξ ), (2.11)

where

h�(ξ ) =
1√
q ∑

k∈N0

a�
k χk(ξ ), � = 1, . . . ,L (2.12)

are the integral periodic functions in L2(D) and are called the framelet symbols or
wavelet masks (see [8]).

With h�(ξ ), � = 0,1, . . . ,L as framelet symbols, we formulate the q× (L+1) ma-
trix M (ξ ) as:

M (ξ ) =

⎛
⎜⎜⎜⎝

h0
(
pξ +pu(0)

)
h0

(
pξ +pu(1)

)
. . . h0

(
pξ +pu(q−1)

)
h1

(
pξ +pu(0)

)
h1

(
pξ +pu(1)

)
. . . h1

(
pξ +pu(q−1)

)
...

...
. . .

...
hL

(
pξ +pu(0)

)
hL

(
pξ +pu(1)

)
. . . hL

(
pξ +pu(q−1)

)

⎞
⎟⎟⎟⎠ . (2.13)

The so-called unitary extension principle (UEP) provides a sufficient condition on
Ψ = {ψ1, . . . ,ψL} such that the resulting wavelet system X(Ψ) forms a tight frame
of L2(K) . In this connection, Shah and Debnath [22] gave an explicit construction
scheme for the construction of tight framelets on local fields of positive characteristic
using unitary extension principles in the following way.

THEOREM 2.1. Suppose that the refinable function ϕ and the framelet symbols
h0,h1, . . . ,hL satisfy (2.8)-(2.10). Define ψ1, . . . ,ψL by (2.11) . Let M (ξ ) be the ma-
trix as defined in (2.13) such that

M (ξ )M ∗(ξ ) = Iq, for a.e. ξ ∈ σ(V0) (2.14)

where σ(V0) :=
{

ξ ∈ D : ∑k∈Z |ϕ̂
(
ξ + u(k)

)|2 �= 0
}
, then the wavelet system X(Ψ)

given by (2.5) constitutes a normalized tight wavelet frame for L2(K) .
Moreover, if the framelet symbols h�, � = 0,1, . . . ,L, satisfy the UEP condition

(2.14). Then, for any ξ ∈ K , we have

q−1

∑
k=0

∣∣h�

(
pξ +pu(k)

)∣∣2 � 1, (2.15)

and

L

∑
�=0

h�

(
pξ +pu(r)

)
h�

(
pξ +pu(s)

)
= δr,s, 0 � r,s � q−1. (2.16)

For each j ∈ Z , we define

Vj = span
{

ϕ j,k : k ∈ N0
}
,
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and
Wj,� = span

{
ψ�

j,k : k ∈ N0
}
, � = 0,1, . . . ,L.

Therefore, in view of tight frame decomposition, we have

Vj = Vj−1 +
L

∑
�=1

Wj−1,�. (2.17)

It is immediate from the above decomposition that these L + 1 spaces are in general
not orthogonal. Therefore, by the repeated applications of (2.17) , we can further split
the Vj spaces as:

Vj =Vj−1+
L

∑
�=1

Wj−1,� =Vj−2+
j−1

∑
r= j−2

L

∑
�=1

Wr,� = . . .=Vj0 +
j−1

∑
r= j0

L

∑
�=1

Wr,� =
j−1

∑
r=−∞

L

∑
�=1

Wr,�.

3. Tight framelet packets on local fields via wavelet spaces Wj,�

We start this section with a splitting lemma which plays a crucial role in the con-
struction of tight framelet packets on local field K of positive characteristic. We split
the wavelet spaces Wj,� by framelet symbols h�, � = 0,1, . . . ,L and then by selecting
and recursively decomposition, we will obtain various tight framelet packets of L2(K) .

LEMMA 3.1. (Splitting Lemma) Let g∈ L2(K) and
{
g j,k : k ∈ N0

}
be a Bessel’s

sequence in L2(K) i.e.,

∑
k∈N0

∣∣ĝ(
ξ +u(k)

)∣∣2 � B, ξ ∈ K (3.1)

for any fixed j ∈ Z . Let h�, 0 � � � L be the framelet masks associated with the
refinable function ϕ and the tight framelets ψ�, 1 � � � L satisfying the UEP condition
(2.14). Suppose

g�(x) = q ∑
k∈N0

h�

(
u(n)

)
g
(
p−1x−u(n)

)
, (3.2)

G� = span
{
g�

j−1,k : k ∈ N0
}
, (3.3)

and G = span
{
g j,k : k ∈ N0

}
, for 0 � � � L. Then

(i) For � = 0,1, . . . ,L, each set
{

g�
j−1,k : k ∈ N0

}
forms a Bessel’s sequence

with
∣∣∣∣g�

∣∣∣∣2
2 � B and

∣∣∣∣g∣∣∣∣2
2 � B.

(ii) For any sequence z ∈ l2(Z ) , there exists L+1 sequences
{
z�

}L
�=0 defined

by
z�

(
u(k)

)
=
√

q ∑
k∈N0

h�

(
u(n)−p−1u(k)

)
z
(
u(n)

)
, k ∈ N0 (3.4)
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such that ∣∣∣∣z∣∣∣∣2l2(Z ) =
L

∑
�=0

∣∣∣∣z�∣∣∣∣2, (3.5)

and

∑
k∈N0

z
(
u(k)

)
g j,k =

L

∑
�=0

∑
k∈N0

z�
(
u(k)

)
g�

j−1,k. (3.6)

(iii) In particular for any f ∈ L2(K) , let z
(
u(k)

)
= 〈 f ,g j,k〉, k ∈ N0 , then z ∈

l2(Z ) and (3.4)–(3.6) gives

z�
(
u(k)

)
=

〈
f ,g�

j−1,k

〉
, k ∈ N0, � = 0,1, . . . ,L, (3.7)

∑
k∈N0

∣∣〈 f ,g j,k〉
∣∣2 =

L

∑
�=0

∑
k∈N0

∣∣∣〈 f ,g�
j−1,k〉

∣∣∣2 , (3.8)

and

∑
k∈N0

〈 f ,g j,k〉g j,k =
L

∑
�=0

∑
k∈N0

〈
f ,g�

j−1,k

〉
g�

j−1,k, (3.9)

respectively.
(iv) G has the decomposition

G = G0 +G1 + . . .+GL.

Proof. (i) By Plancherel’s formula, we have∣∣∣∣g∣∣∣∣2
2 =

∣∣∣∣ĝ∣∣∣∣2
2

=
∫

K

∣∣ĝ(ξ )χk(ξ )
∣∣2dξ

=
∫

D
∑

k∈N0

∣∣ĝ(
ξ +u(k)

)∣∣2∣∣χk(ξ )
∣∣2dξ .

Using equation (3.1) and the fact that the set
{

χu(n) : n∈N0
}

is a complete orthonormal

system on D , we obtain
∣∣∣∣g∣∣∣∣2

2 � B .
On taking Fourier transform of equation (3.2), we obtain

ĝ�(ξ ) = h�(pξ ) ĝ(pξ ). (3.10)

Using (2.15) and (3.1), we have

∑
k∈N0

∣∣ĝ�

(
ξ +u(k)

)∣∣2 = ∑
k∈N0

∣∣h�

(
pξ +pu(k)

)∣∣2∣∣ĝ(
pξ +pu(k)

)∣∣2

=
q−1

∑
s=0

∑
k∈N0

∣∣h�

(
pξ +pu(qk+ s)

)∣∣2∣∣ĝ(
pξ +pu(qk+ s)

)∣∣2
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=
q−1

∑
s=0

∣∣h�

(
pξ +pu(s)

)∣∣2 ∑
k∈N0

∣∣ĝ(pξ +pu(qk+ s)
)∣∣2

=
q−1

∑
s=0

∣∣h�

(
pξ +pu(s)

)∣∣2 ∑
k∈N0

∣∣ĝ(pξ +pu(s)
)
+u(k)

∣∣2

� B
q−1

∑
s=0

∣∣h�

(
pξ +pu(s)

)∣∣2
� B, for � = 0,1, . . . ,L.

(ii) For each 0 � � � L , the Fourier transform of (3.4) gives

ẑ�(ξ ) = q−1/2
q−1

∑
r=0

h�

(
pξ +pu(r)

)
ẑ
(
pξ +pu(r)

)
. (3.11)

By summing equation (3.11) over � = 0 to L and using (2.16), we obtain

L

∑
�=0

∣∣ẑ�(ξ )
∣∣2 = q−1

L

∑
�=0

q−1

∑
r,s=0

h�

(
pξ +pu(r)

)
ẑ
(
pξ +pu(s)

)
h�

(
pξ +pu(s)

)
ẑ
(
pξ +pu(r)

)

= q−1
q−1

∑
r,s=0

ẑ
(
pξ +pu(s)

)
ẑ
(
pξ +pu(r)

) L

∑
�=0

h�

(
pξ +pu(s)

)
h�

(
pξ +pu(r)

)

= q−1
q−1

∑
r,s=0

ẑ
(
pξ +pu(s)

)
ẑ
(
pξ +pu(r)

)
δr,s

= q−1
q−1

∑
r=0

∣∣ẑ(pξ +pu(r)
)∣∣2.

Therefore

L

∑
�=0

∣∣∣∣ẑ�∣∣∣∣2�2(Z ) =
L

∑
�=0

∑
k∈N0

∣∣ẑ�(u(k)
)∣∣2 =

L

∑
�=0

∫
D

∣∣ẑ�(u(k)
)∣∣2dξ

=
∫

D

L

∑
�=0

∣∣ẑ�(u(k)
)∣∣2dξ = q−1

∫
D

q−1

∑
r=0

∣∣ẑ(pξ +pu(r)
)∣∣2dξ

=
∫

D

∣∣ẑ(ξ )
∣∣2dξ =

∫
D

∣∣∣∣∣ ∑
n∈N0

z
(
u(n)

)
χu(n)(ξ )

∣∣∣∣∣
2

dξ

= ∑
n∈N0

∣∣z(u(n)
)∣∣2 =

∣∣∣∣ẑ∣∣∣∣2
�2(Z ).

Equation (3.6) can be recast in the frequency domain as:

q− j/2ẑ(p jξ ) ĝ(p jξ ) = q
1− j
2

L

∑
�=0

ẑ�(p j−1ξ ) ĝ�(p j−1ξ ). (3.12)
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Thus, in order to show that (3.6) holds, it suffices to verify the equality (3.12).

R.H.S. = q
1− j
2

L

∑
�=0

ẑ�(p j−1ξ ) ĝ�(p j−1ξ )

= q
1− j
2

L

∑
�=0

ẑ�(p j−1ξ )h�(p jξ )ĝ�(p jξ ) (By splitting lemma)

= q
1− j
2 ĝ(p jξ )

L

∑
�=0

[
q−1

q−1

∑
r=0

ẑ
(
pξ +pu(r)

)
h�

(
pξ +pu(r)

)]
h�(p jξ )

= q− j/2ĝ(p jξ )
q−1

∑
r=0

ẑ
(
pξ +pu(r)

) L

∑
�=0

[
h�

(
pξ +pu(r)

)
h�(p jξ )

]

= q− j/2ĝ(p jξ )
q−1

∑
r=0

ẑ
(
pξ +pu(r)

)
δr,0

= q− j/2ĝ(p jξ )ẑ
(
p jξ

)
= L.H.S.

(iii). For the proof of the part (iii) of the splitting lemma, it is sufficient to verify
equation (3.7) only. The equations (3.8) and (3.9) are direct consequences of equations
(3.5) and (3.6) which have been proved. Moreover, from equation (3.4), we have

z�
(
u(k)

)
= q1/2 ∑

n∈N0

h�

(
u(n)−p−1u(k)

)
z
(
u(n)

)
= q1/2 ∑

n∈N0

h�

(
u(n)−p−1u(k)

)〈 f ,g j,n〉

= 〈 f ,q1/2 ∑
n∈N0

h�

(
u(n)−p−1u(k)

)
g j,n〉

= 〈 f ,g�
j−1,k〉, � = 0,1, . . . ,L.

(iv). This is immediate from equations (3.2) and (3.3). �

In the following sub-section we construct tight framelet packets for L2(K) via

multiresolution analysis generated by the framelet symbols. To do this, let
{

ψ�,h�

}L
�=0

satisfy the conditions of the unitary extension principle and ω0 = ϕ . Define the func-
tions ωn(x) , n = 0,1,2, . . . , associated with the refinable function ϕ recursively by

ω̂n(ξ ) = ω̂(L+1)r+�(ξ ) = h�(pξ )ωr(pξ ), � = 0,1, . . . ,L, r ∈ N0. (3.13)

Note that for r = 0 and � = 0,1, . . . ,L , we have

ω̂�(ξ ) = h�(pξ )ω0(pξ ) = h�(pξ )ϕ(pξ ), (3.14)

which shows that ω�(·) = ψ�(·) , � = 0,1, . . . ,L.
For n ∈ N0 , define a family of subspaces of L2(K) by

Un = span
{

ωn,0,k : k ∈ N0
}
. (3.15)
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Clearly U0 = V0 and U� = W0,� , for � = 1, . . . ,L . Since X(Ψ) is a tight wavelet frame
constructed via UEP in an MRA generated by ϕ . Therefore, we have

∑
n∈N0

∣∣ω̂0
(
ξ +u(k)

)∣∣2 � 1, ξ ∈ K.

By invoking Lemma 3.1, for n = 1,2, . . . , we obtain

∑
k∈N0

∣∣ω̂n
(
ξ +u(k)

)∣∣2 � 1, U1
n =

(L+1)(n+1)−1

∑
t=(L+1)n

Ut ,

and for any f ∈ L2(K) ,

∑
k∈N0

∣∣〈 f ,ωn,1,k〉
∣∣2 =

(L+1)(n+1)−1

∑
t=(L+1)n

∑
k∈N0

∣∣〈 f ,ωt,0,k〉
∣∣2.

A repeated application of the Splitting Lemma 3.1 for j = 1,2, . . . , yields

U j
n =

(L+1) j(n+1)−1

∑
t=(L+1) jn

Ut (3.16)

and for any f ∈ L2(K)

∑
k∈N0

∣∣〈 f ,ωn, j,k〉
∣∣2 =

(L+1) j(n+1)−1

∑
t=(L+1) jn

∑
k∈N0

∣∣〈 f ,ωt,0,k〉
∣∣2. (3.17)

Substituting n = 0 in (3.16) and (3.17), we get

Vj =
(L+1) j−1

∑
t=0

Ut (3.18)

and

∑
k∈N0

∣∣〈 f ,ϕ j,k〉
∣∣2 =

(L+1) j−1

∑
t=0

∑
k∈N0

∣∣〈 f ,ωt,0,k〉
∣∣2 (3.19)

for any f ∈ L2(K) , respectively. Moreover, for n = �, � = 1, . . . ,L , (3.16) and (3.17)
yields

Wj,� = W j
0,� = U j

� =
(L+1) j(�+1)−1

∑
t=(L+1) j�

Ut , (3.20)

and for any f ∈ L2(K)

∑
k∈N0

∣∣〈 f ,ψ�, j,k〉
∣∣2 = ∑

k∈N0

∣∣〈 f ,ω�, j,k〉
∣∣2 =

(L+1) j(�+1)−1

∑
t=(L+1) j�

∑
k∈N0

∣∣〈 f ,ωt,0,k〉
∣∣2. (3.21)
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From equation (3.21), it follows that each wavelet space Wj,� , j ∈ N0 , � = 1, . . . ,L can
be further splitted into (L+ 1) j subspaces Ut , t ∈ [(L+ 1) j� , (L+ 1) j(�+ 1)− 1] . If
we keep the parameter j fixed, say J > 0, we will obtain

L2(K) =
(L+1)J−1

∑
t=0

Ut +
L

∑
�=1

∑
j�J

Wj,�. (3.22)

THEOREM 3.2. Let X(Ψ) be a tight wavelet frame constructed via UEP in an
MRA and h1,h2, . . . ,hL are the framelet symbols satisfying the UEP condition (2.14).
Let {ωn : n ∈ N0} be defined as in (3.13). Then for any fixed J > 0 , the family of func-
tions

F =
{

ωn,0,k : 0 � n � (L+1)J −1, k ∈ N0

}⋃{
ψ�

j,k : 1 � � � L, j � J, k ∈ N0

}
forms a tight frame for L2(K) .

Proof. By Theorem 2.1, the wavelet system X(Ψ) constitutes a tight wavelet
frame for L2(K) . Therefore by equation (3.18), we have for any f ∈ L2(K)

∣∣∣∣ f ∣∣∣∣2 = ∑
k∈N0

∣∣〈 f ,ϕ0,k〉
∣∣2 +

L

∑
�=1

∑
j∈Z

∑
k∈N0

∣∣∣〈 f ,ψ�
j,k

〉∣∣∣2

= ∑
k∈N0

∣∣〈 f ,ϕJ,k〉
∣∣2 +

L

∑
�=1

∑
j�J

∑
k∈N0

∣∣∣〈 f ,ψ�
j,k

〉∣∣∣2

=
(L+1)J−1

∑
n=0

∑
n∈N0

∣∣〈 f ,ωn,0,k〉
∣∣2 +

L

∑
�=1

∑
j�J

∑
k∈N0

∣∣∣〈 f ,ψ�
j,k

〉∣∣∣2 . �

DEFINITION 3.3. The functions {ωn : n ∈ N0} are called as the basic framelet
packets on the local field K of positive characteristic associated with the refinable func-
tion ϕ .

With the help of basic framelet packets, we are now in a position to construct a
class of tight frames for L2(K) by choosing other L2(K) space decompositions. For
simplicity, let us consider a disjoint partition ϒJ of a finite set of non-negative integers

ΩJ =
{

r ∈ N0 : 0 � r � (L+1)J −1
}

(3.23)

into disjoint of the form

Λ j,n =
{
(L+1) jn, . . . ,(L+1) j(n+1)−1

}
, j,n ∈ N0,

i.e.,

ϒJ =
{

Λ j,n :
⋃

Λ j,n = ΩJ

}
, (3.24)
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Then, it follows from (3.16) and (3.21) that

L2(K) =
(L+1)J−1

∑
t=0

Ut +
L

∑
�=1

∑
j�J

Wj,�

= ∑
ΛJ,n∈ϒJ

(L+1)J(n+1)−1

∑
t=(L+1) jn

Ut +
L

∑
�=1

∑
j�J

Wj,�

= ∑
ΛJ,n∈ϒJ

U j
t +

L

∑
�=1

∑
j�J

Wj,�.

THEOREM 3.4. Suppose X(Ψ) is a tight wavelet frame constructed via UEP in an
MRA and h1,h2, . . . ,hL are the framelet symbols satisfying the UEP condition (2.14).
Let {ωn : n ∈ N0} be defined as in equation (3.13). For any fixed J > 0 , ϒJ is a
partition of ΩJ , where ΩJ and ϒJ are defined in (3.23) and (3.24), respectively. Then
the family of functions

FϒJ =
{

ωn,0,k : ΛJ,n ∈ ϒJ, k ∈ N0

}⋃{
ψ�, j,k : 1 � � � L, j � J, k ∈ N0

}
constitutes a tight frame for L2(K) .

Proof. For any arbitrary f ∈ L2(K) , we have

∑
ΛJ,n∈ϒJ

∑
k∈N0

∣∣〈 f ,ωn, j,k〉
∣∣2 = ∑

ΛJ,n∈ϒJ

(L+1) j(n+1)−1

∑
n=(L+1) jn

∑
k∈N0

∣∣〈 f ,ωn,0,k〉
∣∣2

=
(L+1)J−1

∑
n=0

∣∣〈 f ,ωn,0,k〉
∣∣2.

By invoking Theorem 3.2, we get the desired result. �

4. Tight framelet packets on local fields via MRA space VJ

Besides the recursive derivation of tight framelet packets introduced in Section
3, tight framelet packets can also be constructed by decomposing the MRA space VJ

directly for a fixed level J > 0 to the level 0 .
At the first level of decomposition, by Lemma 3.1, VJ is decomposed into the

L+1 spaces WJ−1,r,r ∈ Δ1 where

Δ1 =
{

r = (rJ,rJ−1, . . . ,r1) : 0 � rJ � L, rJ−1 = . . . = r1 = 0
}
.

For this choice of r = (rJ ,rJ−1, . . . ,r1) , we define

r(n) = rn, n = 1,2, . . . ,J,
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ωr(x) = q1/2 ∑
n∈N0

ar(1)
n ϕ

(
p−1x−u(n)

)
,

and
WJ−1,r := span

{
ωr,J−1,k : k ∈ N0

}
.

Therefore, for any f ∈ L2(K) , we have

∑
k∈N0

∣∣〈 f ,ϕJ,k〉
∣∣2 = ∑

r∈Δ1

∑
k∈N0

∣∣〈 f ,ωr,J−1,k
〉∣∣2 .

At the second level of decomposition, by Lemma 3.1, each space WJ−1,r ,r ∈ Δ1 is
decomposed with the constructed mask h into spaces WJ−2,r′ ,r′ ∈ Δr

2 , where Δr
2 is a

subset of Δ2 defined by

Δr
2 =

{
r′ ∈ Δ2 : r′(1) = r(1)

}
and Δ2 is a J -tuple index set defined by

Δ2 =
{

r = (rJ ,rJ−1, . . . ,r1) : 0 � rJ−1,rJ � L, rJ−2 = . . . = r1 = 0
}
,

ωr′(x) = q1/2 ∑
n∈N0

ar′(2)
n ϕ

(
p−1x−u(n)

)
,

WJ−2,r′ := span
{

ωr′,J−2,k : k ∈ N0
}
.

Thus, for any f ∈ L2(K) , we have

∑
k∈N0

∣∣〈 f ,ωr,J−1,k〉
∣∣2 = ∑

r′∈Δr
2

∑
k∈N0

∣∣〈 f ,ωr′ ,J−2,k〉
∣∣2.

Finally, at the m-th level (2 � m � J) of decomposition, by Lemma 3.1, each space
WJ−m+1,r, r∈ Δm−1 is decomposed with the constructed mask h into spaces WJ−m,r′ ,r′
∈ Δr

m , where Δr
m is a subset of Δm defined by

Δr
m =

{
r′ ∈ Λm : r′(n) = r(n), for 1 � n � m−1

}
and Δm is a J -tuple index set defined by

Δm =
{

r = (rJ,rJ−1, . . . ,r1) : 0 � rJ−m � L, rJ−m = . . . = r1 = 0
}
,

ωr′(x) = q1/2 ∑
n∈N0

ar′(m)
n ϕ

(
p−1x−u(n)

)
,

WJ−m,r′ := span
{

ωr′,J−m,k : k ∈ N0
}
.

Therefore for any f ∈ L2(K) , we have

∑
k∈N0

∣∣〈 f ,ωr,J−m+1,k
〉∣∣2 = ∑

r′∈Δr
m

∑
k∈N0

∣∣〈 f ,ωr′ ,J−m,k
〉∣∣2 .
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In particular, at the J -th level of decomposition, by Lemma 3.1, each space W1,r ,r ∈
ΔJ−1 is decomposed with h into spaces W0,r′ ,r′ ∈ Δr

J , where Δr
J is a subset of ΔJ

defined by

Δr
J =

{
r′ ∈ ΔJ : r′(n) = r(n), for 1 � n � J−1

}
and ΔJ is a J -tuple index set defined by

ΔJ =
{

r = (rJ ,rJ−1, . . . ,r1) : 0 � rt � L, 1 � t � J
}

, (4.1)

ωr′(x) = q1/2 ∑
n∈N0

ar′(J)
n ϕ

(
p−1x−u(n)

)
,

W0,r′ := span
{

ωr′,0,k : k ∈ N0
}
.

Thus, for any f ∈ L2(K) , we have

∑
k∈N0

∣∣〈 f ,ωr,1,k
〉∣∣2 = ∑

r′∈Λr
J

∑
k∈N0

∣∣〈 f ,ωr′ ,0,k
〉∣∣2 .

Combining all the inner product equations in the above construction, we get

∑
k∈N0

∣∣〈 f ,ϕJ,k〉
∣∣2 = ∑

r∈ΛJ

∑
k∈N0

∣∣〈 f ,ωr,0,k〉
∣∣2, for any f ∈ L2(K). (4.2)

In other words, we obtain another representation of VJ as

VJ := span
{

ωr,0,k : r ∈ ΔJ,k ∈ N0

}
.

THEOREM 4.1. Suppose X(Ψ) is a tight wavelet frame constructed via UEP in
an MRA and h = [h0,h1, . . . ,hL] is the combined mask satisfying the UEP condition
(2.14). Then for any fixed J > 0 , the family of functions

F =
{

ωr,0,k : r ∈ ΔJ

}⋃{
ψ�, j,k : � = 1, . . . ,L, j � J,k ∈ N0

}

forms a tight frame for L2(K) , where ΔJ is a index set defined in (4.1).

Proof. Since X(Ψ) is a tight wavelet frame of L2(K) , then by (4.2), we have

∥∥ f
∥∥2

2 = ∑
k∈N0

∣∣〈 f ,ϕJ,k〉
∣∣2 +

L

∑
�=1

∑
j�J

∑
k∈N0

∣∣∣〈 f ,ψ�
j,k

〉∣∣∣2

= ∑
r∈ΔJ

∑
k∈N0

∣∣〈 f ,ωr,0,k〉
∣∣2 +

L

∑
�=1

∑
j�J

∑
k∈N0

∣∣∣〈 f ,ψ�
j,k

〉∣∣∣2

for any f ∈ L2(K). �
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Similar to the recursive construction of tight framelet packets on local fields of
positive characteristic, we can obtain tight framelet packets by performing various dis-
joint partitions ΓJ of ΔJ with each partition separating ΔJ into disjoint subsets of the
form

I j,r =
{
(rJ , . . . ,r j+1,r

′
j, . . . ,r

′
1) ∈ ΔJ : r = (rJ, . . . ,r j+1,0, . . . ,0) ∈ ΔJ− j

}
,

i.e.,

ΓJ =
{

I j,r :
⋃

I j,r = ΔJ

}
. (4.3)

THEOREM 4.2. Suppose X(Ψ) is a tight wavelet frame constructed via UEP in
an MRA and h = [h0,h1, . . . ,hL] is the combined mask satisfying the UEP condition
(2.14). Let ΓJ be a disjoint partition of ΔJ , where ΔJ and ΓJ are defined in (4.1) and
(4.3), respectively. Then the collection

FΓJ =
{

ωr, j,k : I j,r ∈ ΓJ ,k ∈ N0

}⋃{
ψ�

j,k : � = 1, . . . ,L, j � J ∈ Z, k ∈ N0

}

generates a tight frame for L2(K) .

Proof. Since ΓJ is a disjoint partition of ΔJ , for any f ∈ L2(K) , we have

∑
Ij,r∈ΓJ

∑
k∈N0

∣∣〈 f ,ωr, j,k〉
∣∣2 = ∑

Ij,r∈ΓJ

∑
r′∈Ij,r

∑
k∈N0

∣∣〈 f ,ωr′ ,0,k
〉∣∣2

= ∑
r∈ΔJ

∑
k∈N0

∣∣〈 f ,ωr,0,k〉
∣∣2.

By applying Theorem 4.1, Theorem 4.2 is proved. �
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