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REVIVING THE QUADRATIC SERIES OF AU–YEUNG
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Abstract. In this paper we revive and bring to light the quadratic series of Au–Yeung

∞

∑
n=1

(
Hn

n

)2

=
17
4

ζ (4),

where Hn denotes the n th harmonic number. We prove this series identity by using a technique
based on the computation of a special logarithmic integral combined with Abel’s summation
formula.

1. Introduction and the main result

The identity
∞

∑
n=1

(
Hn

n

)2

=
17
4

ζ (4) =
17π4

360
,

was discovered numerically by Enrico Au–Yeung an undergraduate student in the Fac-
ulty of Mathematics in Waterloo and proved rigorously by David Borwein and Jonathan
Borwein in [3] who used Fourier series techniques combined with Parseval’s formula
for proving it. This quadratic series has become a classic in the theory of nonlinear har-
monic series. We mention that a nonlinear harmonic series is a series which involves
products of at least two harmonic numbers [4]. It appears as a problem in [7, Problem
2.6.1. p. 110], [5, Problem 3.70, p. 150] and a recent proof involving integrals of
polylogarithm functions was given in [6].

In this paper we revive and bring to light the quadratic series of Au–Yeung by
giving a proof of it which is based on the calculation of a quadratic logarithmic integral
combined with Abel’s summation formula. We mention that our results are not new
and they exist in the mathematical literature.

We state below the theorem we are going to prove.

THEOREM 1 (A quadratic series of Au–Yeung) The following equality holds:

∞

∑
n=1

(
Hn

n

)2

=
17
4

ζ (4) =
17π4

360
,

where Hn is the nth harmonic number defined, for n � 1 , by Hn = 1+ 1
2 + · · ·+ 1

n .

Mathematics subject classification (2010): 40C10, 40A05.
Keywords and phrases: Abel’s summation formula, logarithmic integrals, harmonic numbers,

quadratic series, Riemann zeta function.

c© � � , Zagreb
Paper JCA-06-09

113

http://dx.doi.org/10.7153/jca-06-09
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Before we prove Theorem 1 we collect some results we need in our analysis.

Recall that, Abel’s summation formula ([2, p. 55], [5, p. 258]) states that if

(an)n�1 and (bn)n�1 are two sequences of real numbers and An =
n
∑

k=1
ak , then

n

∑
k=1

akbk = Anbn+1 +
n

∑
k=1

Ak(bk −bk+1). (1)

We will also be using, in our calculations, the infinite version of the preceding
formula

∞

∑
k=1

akbk = lim
n→∞

(Anbn+1)+
∞

∑
k=1

Ak(bk −bk+1). (2)

Next we prove the following two lemmas which are used in the proof of Theorem
1.

LEMMA 2 (Two logarithmic integrals and harmonic numbers) Let n � 1 be an integer.
The following equalities hold:

(a)
∫ 1

0
xn−1 ln(1− x)dx = −Hn

n
;

(b)
∫ 1

0
xn−1 ln2(1− x)dx =

2
n

n

∑
k=1

Hk

k
=

H2
n

n
+

1
n

(
1+

1
22 + · · ·+ 1

n2

)
.

Proof. (a) We have,

∫ 1

0
xn−1 ln(1− x)dx =

∫ 1

0
xn−1

(∫ x

0
− 1

1− t
dt

)
dx

= −
∫ 1

0

1
1− t

(∫ 1

t
xn−1dx

)
dt

= −1
n

∫ 1

0

1− tn

1− t
dt

= −1
n

∫ 1

0

(
1+ t + t2 + · · ·+ tn−1)dt

= −Hn

n
.
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(b) We have,
∫ 1

0
xn−1 ln2(1− x)dx =

∫ 1

0
xn−1

(∫ x

0
−2

ln(1− t)
1− t

dt

)
dx

= −2
∫ 1

0

ln(1− t)
1− t

(∫ 1

t
xn−1dx

)
dt

=
−2
n

∫ 1

0
ln(1− t)

1− tn

1− t
dt

= −2
n

∫ 1

0
ln(1− t)

(
1+ t + t2 + · · ·+ tn−1)dt

=
2
n

n

∑
k=1

Hk

k
,

where the last equality follows based on part (a) of the lemma.
It remains to prove that

H2
n +1+

1
22 + · · ·+ 1

n2 = 2
n

∑
k=1

Hk

k
.

It is worth mentioning that, the previous formula is known in the literature. For
example, it appears in [1, Equation (3,62)] and it can be proved by mathematical induc-
tion. However, we give below another proof of it which is based on the summation by
parts formula. To see this, we use formula (1), with ak = 1

k and bk = Hk , and we get
that

n

∑
k=1

Hk

k
=

(
1+

1
2

+ · · ·+ 1
n

)
Hn+1−

n

∑
k=1

(
1+

1
2

+ · · ·+ 1
k

)
1

k+1

= HnHn+1−
n

∑
k=1

Hk+1− 1
k+1

k+1

= HnHn+1−
n

∑
k=1

Hk+1

k+1
+

n

∑
k=1

1
(k+1)2

= HnHn+1−
n+1

∑
m=2

Hm

m
+

n+1

∑
m=2

1
m2

= HnHn+1−
n

∑
m=1

Hm

m
− Hn+1

n+1
+

n

∑
m=1

1
m2 +

1
(n+1)2

= H2
n +1+

1
22 + · · ·+ 1

n2 −
n

∑
m=1

Hm

m
,

and the lemma is proved.

LEMMA 3 (A special harmonic sum) The following equality holds:

∞

∑
n=1

1
n2

(
1+

1
22 + · · ·+ 1

n2

)
=

7
4

ζ (4).
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Proof. We apply Abel’s summation formula (2), with an = 1
n2 and bn = 1+ 1

22 +
· · ·+ 1

n2 , and we have

S =
∞

∑
n=1

1+ 1
22 + · · ·+ 1

n2

n2

= lim
n→∞

(
1
12 +

1
22 + · · ·+ 1

n2

)(
1+

1
22 + · · ·+ 1

(n+1)2

)

−
∞

∑
n=1

1
12 + 1

22 + · · ·+ 1
n2

(n+1)2

= ζ 2(2)−
∞

∑
n=1

1+ 1
22 + 1

32 + · · ·+ 1
(n+1)2

(n+1)2 +
∞

∑
n=1

1
(n+1)4

= ζ 2(2)−
∞

∑
m=2

1+ 1
22 + 1

32 + · · ·+ 1
m2

m2 +
∞

∑
m=2

1
m4

= ζ 2(2)−S+ ζ (4)

=
7
2

ζ (4)−S.

We used that ζ 2(2) = 5
2 ζ (4) since ζ (2) = π2

6 and ζ (4) = π4

90 [9, p. 605].

The summation identity in Lemma 3 is known in the literature. It is a special case
of the following series formula involving the generalized harmonic number (see [10,
Formula (1.1)]):

∞

∑
n=1

H(p)
n

np =
1
2

(
ζ 2(p)+ ζ (2p)

)
.

Now we are ready to prove Theorem 1.

Proof. We have, based on part (b) of Lemma 2, that

∫ 1

0

xn−1

n
ln2(1− x)dx =

H2
n

n2 +
1
n2

(
1+

1
22 + · · ·+ 1

n2

)
,

and it follows that

∞

∑
n=1

∫ 1

0

xn−1

n
ln2(1− x)dx =

∞

∑
n=1

H2
n

n2 +
∞

∑
n=1

1
n2

(
1+

1
22 + · · ·+ 1

n2

)
. (3)

Using Tonelli’s theorem [8, p. 309] we are allowed to bring the sum under the
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integral and we have

∞

∑
n=1

∫ 1

0

xn−1

n
ln2(1− x)dx =

∫ 1

0

∞

∑
n=1

xn−1

n
ln2(1− x)dx

= −
∫ 1

0

ln3(1− x)
x

dx

= −
∫ 1

0

ln3 y
1− y

dy

= −
∫ 1

0
ln3 y

∞

∑
k=0

ykdy

= −
∞

∑
k=0

∫ 1

0
yk ln3 ydy

= 6
∞

∑
k=0

1
(k+1)4

= 6ζ (4),

(4)

since
∫ 1
0 yk ln3 ydy = − 6

(k+1)4 . Combining (3), (4) and Lemma 3 we get that

∞

∑
n=1

(
Hn

n

)2

=
17
4

ζ (4),

and the theorem is proved.
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