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EXPLICIT FORMULA FOR GENERALIZATION OF POLY-BERNOULLI
NUMBERS AND POLYNOMIALS WITH a,b,c PARAMETERS

HASSAN JOLANY AND ROBERTO B. CORCINO

Abstract. In this paper we investigate special generalized Bernoulli polynomials with a,b,c pa-
rameters that generalize classical Bernoulli numbers and polynomials. The present paper deals
with some recurrence formulae for the generalization of poly-Bernoulli numbers and polyno-
mials with a,b,c parameters. Poly-Bernoulli numbers satisfy certain recurrence relationships
which are used in many computations involving poly-Bernoulli numbers. Obtaining a closed
formula for generalization of poly-Bernoulli numbers with a,b,c parameters therefore seems
to be a natural and important problem. By using the generalization of poly-Bernoulli polyno-
mials with a,b,c parameters of negative index we define symmetrized generalization of poly-
Bernoulli polynomials with a; b; ¢ parameters of two variables and we prove duality property for
them. Also by Stirling numbers of the second kind we will find a closed formula for them. Fur-
thermore we generalize the Arakawa-Kaneko Zeta functions and by using the Laplace-Mellin
integral, define generalization of Arakawa-Kaneko Zeta functions with a,b,c parameters and
obtain an interpolation formula for the generalization of poly- Bernoulli numbers and polynomi-
als with a,b,c parameters. Furthermore we present a link between this type of Zeta functions
and Dirichlet series. By our interpolation formula, we will interpolate the generalization of
Arakawa-Kaneko Zeta functions with a,b,c parameters.

1. Introduction

The poly-Bernoulli polynomials have been studied by many researchers in recent
decade. The poly-Bernoulli polynomials have wide-ranging applications from number
theory and combinatorics to other fields of applied mathematics. One of applications
of poly-Bernoulli numbers that was investigated by Chad Brewbaker in [6, 9], is about
the number of (0; 1)- matrices with n-rows and k columns. He showed the number of
(0, 1)-matrices with n-rows and k columns uniquely reconstructable from their row and

column sums are the poly- Bernoulli numbers of negative index ng) . Another appli-
cation of poly-Bernoulli numbers is in Zeta function theory. Multiple Zeta functions at
non-positive integers can be described in terms of these numbers. A third application
of poly-Bernoulli numbers that was proposed by Stephane Launois in [16, 17], is about
cardinality of some subsets of Sn. He proved the cardinality of sub-poset of the reverse
Bruhat ordering is equal to the poly-Bernoulli numbers. Also one of other applications
of poly-Bernoulli numbers is about skew Ferrers boards. In [15], Jonas Sjostran found
a relation between poly-Bernoulli numbers and the number of elements in a Bruhat in-
terval. Also he showed the Poincare polynomial (for value q = 1) of some particularly
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interesting intervals in the finite Weyl group can be written in terms of poly-Bernoulli
numbers. Moreover Peter Cameron in [25] showed that the number of acyclic orienta-
tions of a complete bipartite graph is a poly-Bernoulli number.

One of generalizations of poly-Bernoulli numbers that was first proposed by Y.
Hamahata, is the Multi-poly-Bernoulli numbers and he derived a closed formula for
them. A. Bayad , introduced a new generalization of poly-Bernoulli numbers and poly-
nomials. He, by using Dirichlet character, defined generalized poly-Bernoulli numbers
associated to ). Also, he introduced the generalized Arakawa-Kaneko L-functions
and showed that the non-positive integer values of the complex variable s of these L-
functions can be written rationally in terms of generalized poly-Bernoulli polynomials
associated to y .

In [1, 2], D. S. Kim and T. Kim considered poly-Bernoulli mixed-type polyno-
mials. From the properties of Sheffer sequences of these polynomials arising from
umbrral calculus, they derived several new and interesting identities. Also they intro-
duced new generating function which is known as Hermite poly-Bernoulli mixed-type
polynomials.

In [14], H. Jolany et al, by using real a,b,c parameters, introduced the gener-
alization of poly-Bernoulli polynomials with a; b; ¢ parameters and found a closed
relationships between generalized poly-Bernoulli polynomials with a; b; ¢ parameters
and generalized Euler polynomials with a; b; ¢ parameters.

Let us briefly recall poly-Bernoulli numbers and polynomials. For an integer k € Z

| o\l
>~

m@:zn (1)
n=0

which is the k-th polylogarithm if k£ > 1, and a rational function if k£ < 0. The name
of the function comes from the fact that it may alternatively be defined as the repeated
integral of itself, namely that

¢ Lig(2)
t

Liry1(z) = /0 dt. ()

One knows that Li; (z) = —log(1 —z). Also if k is a negative integer, say k = —r, then
the poly-logarithmic function converges for |x| < 1 and equals

r'_O <r>xr_j
) Y
Li_,(x) = N )

where the <r> are the Eulerian numbers. The Eulerian numbers <r> are the number
J

J
of permutations of {1,2,...,r} with j permutation ascents. One has

<;> =r+21(—1>’ ("T)(j—lH)’. )

=0
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The formal power series Lik (z) can be used to define poly-Bernoulli numbers and
polynomials. The polynomials BS,k) (x), (n=0,1,2,...) are said to be poly-Bernoulli
polynomials if they satisfy

le(l - e")
1—e?!

e’ = iB,(qk) (x)— (5)

where k > 1. By (2), the left-hand side of (5) can be written in the form of iterated
integrals

1 r o] x 1 L | < (X"
. dx...dx= ) B, —. 6
“Treho 1+e Jo l—l—e"/o T ™ 20 n! ©

For any n > 0, we have

(—1)"BY (—x) = Bu(x)

where Bn(x) are the classical Bernoulli polynomials given by

2 Bu(x)—, |t| <2m. (7

For x=0in (5), we have B( )(0) Bﬁ,k) , where B( ) are called poly-Bernoulli numbers
(for more information, see [2, 3, 5, 7, 8, 10, 11, 12, 13, 18]. In 2002, Q. M. Luo et

1. [19], defined the generahzatlon of Bernoulli numbers and polynomials with a,b
parameters as follows:

t - t"
teﬂ = ZBn(X;aJ))aa

tlnb
b —a =

<2m. t))

So, by (7), we get
B,(x;1,e) := B, (x),B,(0;a,b) :== By(a,b) and B,(0;1,¢) :=

where B, (a,b) are called the generalization of Bernoulli numbers with a,b parame-
ters. Also they the proved the following expression for this type of polynomials which
interpolate the generalization of Bernoulli polynomials with a,b, ¢ parameters

1
ZJ = (n+1)(Ind)"

j=1

[ n+l(m+ lvlabab) _Bn+l(0;17b7b)]'

H. Jolany et al. in [14] defined a new generalization for poly-Bernoulli numbers and
polynomials. They introduced the generalization of poly-Bernoulli polynomials with
a,b parameters as follows

Lig(1 — (ab)~

= EB xab—'. 9)
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Also they extended the definition of generalized poly-Bernoulli polynomials with three
parameters a,b,c as follows:

Lig(1—(ab)™") | < (k "

= Y B (vya,b,¢)—. (10)

|
n—0 n:

where Bﬁlk) (x;a,b,c) are called the generalization of poly-Bernoulli polynomials with

a,b,c parameters. These are coefficients of power series expansion of a higher genus
algabraic function with respect to a suitable variable. In the sequel, we list some closed
formulas of poly-Bernoulli numbers and polynomials.

Kim, in [1, 2, 8], presented the following explicit formulas for poly-Bernoulli

numbers
n—1
W _ 1 (k=1) _ no\ k)
Bn _n—l-l{Bn mz:‘l (m—l)Bm }
min(n,k)
(—k) _ 2 fnt1 fk+1 <
B, EO (" {j+1 it , k=0,
where 1y
n —1)" & m
= —1) 1" >0
nf =S e (7

called the Stirling numbers of the second kind. A. Bayad in [26] introduced the gener-
alized poly-Bernoulli polynomials BE,kJ)C (x). So, by applying their method, we introduce
a closed formula and also interpolation formula for the generalization of poly-Bernoulli
numbers and polynomials with a; b parameters which yields a deeper insight into the

effectiveness of this type of generalizations.

2. Explicit formulas for generalization of poly-Bernoulli polynomials with three
parameters

Now, we are in a position to state and prove the main results of this paper. In this
section, we obtain some interesting new relations associated to generalization of poly-
Bernoulli numbers and polynomials with a, b, c parameters. Here we prove a collection
of important and fundamental identities involving this type of number and polynomials.
We also deduce their special cases which leads to the corresponding results for the poly-
Bernoulli polynomials.

First of all, we present an explicit formula for generalization of poly-Bernoulli
polynomials with a,b,c parameters

THEOREM 2.1 (Explicit Formula) For k € Z, n > 0, we have

n l m

B (x;a,0) = D . Z(—l)/’(’?) (x—jlna— (j+1)Inb)".  (11)

o=, (m+-1) )
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Proof.
M) (5 Ut e (5 (e
= Z 50 ()
= mio (mill)k ﬁé(_l)j (’;’) (jlna+(j+1)nb)
So, we get
W) e 5, L S (7)o

By comparing the coefficients of . on both sides, the proof is completed. [
As a direct result, by applylng the same method as Theorem 2.1, we derive follow-
ing corollaries.

COROLLARY 2.2 For k€ Z, n >0, we have

m

(t) S
B, (x;a,b,c) = Z m—l—lkz’ ( )xlnc—Jlna—(J—Fl)lnb) (12)

As a direct result, by applying a = e,b = 1,c = e in Corollary 1, we get the fol-
lowing corollary.

COROLLARY 2.3 For k€ Z, n >0, we have

n

Zmﬂki ()xﬁ (13)

Furthermore, by setting k = 1 in Corollary 2 and because we have, B,(x) =

(— l)”B,(ql) (—x), we obtain following explicit formulas for classical Bernoulli numbers
and polynomials.

COROLLARY 2.4 For ke Z, n >0, we have
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Now, we investigate some recursive formulas for the generalization of poly-Bernoulli
numbers and polynomials with a,b parameters.

THEOREM 2.5 (Recursive Formula) For all k > 1 and n > 0, we have

() (1) = S nay (M) gED (g py S (ZEna) ! (m O
By’ (x;a,b) = (lna—I—lnb)ngO( Ina) (m)B"m (a7b)126 T Bi(x;a D).
(14)

Proof. We know

Lig1(2) = /OI Litls) ds

N

so
. - " Lig(1—(ab)™* N
le+1(1—(ab) t):/O %(lnab)e Slnabds.
So we get
Lig1(1—(ab)™) o / le Li(1—(ab) ™) sinan g,
b —at ab —1 1 —(ab)~s

Therefore, we obtain

EB xab

n=0 \/=0 m=0 m
- c szk)l(x’ail’b) n L [—m ! (k1) "
:(lnab)gb 126 T ; go(—lna) By (a,b) | —

So, by applying the following identity

(1)) -GG
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we obtain

EB xab

= (Inab) g (2 Bk 1 (r’;) i %(n_m>3g{),(x;al,b)> ﬂ

Putting I’ =n — 1, we have

EB xab

(k—1) n\ n=m (—ll’la)"fllim n—m\ B o
= (Inab) ;(23 (a,b <m> Zﬁ B (a ! b)

n
=0 n:

Putting m’ = n — m, we obtain

ZB xab—n

oo n 1 n m' “Ina m' =1 m' " B I
= (Inab) Y, ( ,ZOB}E_m,)(mb) (m,) Y ﬁ(l/)Bl(/)(x;a 1,b)> —.

1
n=0 I'=0 n:

By comparing the coefficients of o -7 on both sides, the proof is complete. [

As a direct consequence of Theorem 2.5 with a = e,b = 1, we obtain the follow-
ing corollary which is the well known recurrence formula for classical poly-Bernoulli
polynomials.

COROLLARY 2.6 Forall k=1, n >0, we have

= io(—n'"(m) By m)Z (_1111@)3(%). (15)

Let us consider the extreme recurrence formula for generalization of poly-Bernoulli
polynomials with a,b parameters. By using following lemma and some standard tech-
niques based upon generating function and series rearrangement we present a new re-
currence formula for generalization of poly-Bernoulli polynomials with a,b parame-
ters.

LEMMA 2.7 For a,b >0 and n > 0, we have

K)oy npk) ([ X—Inb
By’ (x;a,b) = (Ina+1nb)"B, <lna+1nb)' (16)
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Proof. By applying (9), we have

> (k) t" Lik(l - (ab)”) 1 Lik(l — (ab)it) Xt
ngb (x a, )n! b —at b 1— (ab)_t
Li (l _e—tlnab Ld x—Inb t"
_ eIy kAT TC 1 Inb ”B(k) |
€ 1 — ¢—tlnab ngb( na+lIn ) n Ina+1Inb ) n!

So, by comparing the coefficients of ;i, on both sides, we obtain the desired result. [
Now we are ready to present our second recurrence formula for generalization of
Poly-Bernoulli numbers and polynomials with a,b parameters.

THEOREM 2.8 For k€7 and n > 2, we have
B(()k) (x;a,b) =

1
(k) 1nt-n, x—Inb \ L,
By (x;a,b) = 3 [B (x;a,b) + <lna+lnb)BO (x,mb)}
1

n+1

x—1Inb) 2 (Ina+Ind)""" 1<m>B£,]f)(x;a,b)

B (x;a,b) = {B,(qk_l) (x;a,b) + (x —Inb)(Ina + lnb)"_lB(()k) (x;a,D)

m=1

_ i (Ina+Inb)"™" (m’i I)B},f)(x;a,b)}

Proof. From [], we have the following recurrence formula for poly-Bernoulli poly-

nomials
n—1
k). 1 (k=1)¢ (k) no\_(n (k)
By’ (x;a,b) = 1 By (x)+xB (x)mz:‘(1 {(m—l) (m)x} By (x)|  (17)

x—Inb

YESIY in (17), we obtain the desired

So, by applying Lemma 2.7 and replacing r by =17
result. [
Now, we show that the generalization of poly-Bernoulli polynomials of a; b pa-

rameters are in the set of Appell polynomials.

For a sequence {P,(x)};"_, of Appell polynomials, which is a sequence of poly-
nomials satisfying
dP,(x)
dx
Tremendous properties are well known. Among them, the most important classifica-
tions of Appell polynomials may be the following equivalent conditions ([20, 21, 22]).

=nP,_i1(x), n>1.
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THEOREM 2.9 Let {P,(x)};_ be a sequence of polynomials. Then the following are
all equivalent

(a) {P.(x)}5_ is a sequence of Appell polynomials.
(b) {P.(x)}5>_ has a generating function of the form

where A(t) is a formal power series in t with A(0) # 0.
(c) {Pu(x)}57_ satisfies

Pi(x+y) = i (Z) Pyi(x)f

k=0

Now, in the following theorem we prove that the generalization of poly-Bernoulli
polynomials are in the set of Appell sequence

THEOREM 2.10 (Appell Sequence) The generalized poly-Bernoulli polynomials sat-
isfy the following differential equation

dB(()k) (x;a,b)

dx =0
® ..
aBY (xa,b
% = (n+ 1)BY (x;0,b). (18)

Proof. By differentiating both sides of (9), with respect to x, we have

tLik(l - (ab)_t)ext _ i dBy’ (x;a,b) t"
b —a™! = dx n!

and obtain
Lig(1—(ab)™") o _ <

bt —a-t ¢ :Z

n=0

1 dBEfgl(x;a,b) "
(n+1) dx

n!

which yields the desired results. [l
Thus, by applying the property of (c) of Theorem 2.9, we obtain following corol-
lary.

COROLLARY 2.11 (Addition Formula) For k € Z and n > 0, we have

ng)(x—l—y;mb) = Z (Z)B,(,f)(x;mb)y"_m. (19)

m=0
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In particular,

L (n
B (x;a,b) = mgo (m) B (a,b)x . (20)
and by taking y = (m — 1)x, we obtain Multiplication theorem for them
n
BY (mx;a,b) = Y, (7)35’” (a,b)(m— 1" m=1,2, ... 1)
i=0 \!

Actually, because generalization of poly-Bernoulli polynomials of a,b parameters
are in the set of Appell polynomials, we can derive numerous properties for them. For
instance in [23], F. A. Costabile and E. Longo presented a new definition by means of
a determinantal form for Appell polynomials by using of linear algebra tools and also
M. E. H. Ismail in [24], found a differential equation for Appell polynomials.

3. Symmetrized generalization of poly-Bernoulli polynomials with «a,b
parameters of two variables

Kaneko, Japanese mathematician introduced the symmetrized poly-Bernoulli poly-
nomials with two variables and by using their method we introduce symmetrized gen-
eralization of poly-Bernoulli polynomials with a,b parameters of two variables and
construct a generating function for symmetrized generalization of poly-Bernoulli poly-
nomials with a,b parameters of two variables. Also we give a closed formula and
duality property for this type of polynomials as well.

DEFINITION 3.1. For m,n > 0, we define

m m—k
M e vrad) = — 5 (M) Sl 22
G T myia,b) (Ina+1nb)" gf) <k> nwab) (y Ina+1Inb =

Now, in the following theorem we introduce a generating function for C,sfm) (x,v;a,b).

THEOREM 3.2 For m,n > 0, we have

R " oum e(x+lnclnﬁ)te(y+%)u

3 Y " (xya,b) = — = e (23)

n!'m! 1 u __
n=0m=0 m: ete

Proof. By using the definition of C,(fm) (x,y;a,b), the left-hand side can be written
as

mn m—k m
(- k Inb t u
LHS = E E EB b)y|y— ——— _

n=0m= 0 1na+1nb nk ! xa (y lna+1nb) n'k'(m—k)'
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By putting [ =m —k, we get

LHS = 222

o o N 0 1na+lnb

Lon k1
(_k) ) Inb " utu
(x;a,b) (y_ilna—i—lnb) MR

=

el " ut

2 1na+lnb By " (xab) vy

=e y lna+lnb

=

y lna+lnb 2 ( Xt ZB (lnailnb)n> u_k
n!

- k!

t k
y Fatts ) 2( lei)e(lmtmgb)n)u—

1—e! k!

n

= o it e (a1 3 EOB'(“ . n! k!

k=0n

But Kaneko proved following expression

k I+u

ZZ =TT

! k! t U __ pttu’
o nk e +et—e

So, by applying this expression, we obtain the desired result. []

As a direct result, we have the following corollary for C,sfm) (x,y;a,b) that is the
well known duality property.

COROLLARY 3.3 (Duality Property) For m > 0, we have
G " (xysa,b) = Gy " (v, x:b,a). (24)

Now, we are ready to show a closed formula for C,(fm) (x,y;a,b) which is impor-
tant and fundamental.

THEOREM 3.4 (Closed Formula) For m > 0, we have

)by = S (2 [ S na_ \""" (n\ [p
i eyan) = 35 (I;’O<x+1na+lnb) (p){ij 2s)

(S0 (0
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Proof. By applying Theorem 3.2, we have

oy Sour n'm! el + et — el tu - L—(ef —1)(e*—1)

i i C(i )( b)[ u™ e(erlnclnﬁ)te(er%)u e(erln;nﬁ)te(er%)u
n X, ya, _' =

_ ol e i (i) 5 (& 1)i(er— 1))
j=0

= 2 e(erlninﬁ)t(et — l)je(er%)u(e“ — 1)7

j=0

By applying the generating function of Stirling numbers of second kind

i n u_”_(e”—l)k
S\ kfnt Rk

the right-hand side of the last expression becomes

oo s ()C+ _Ina )tﬂ b m) ™ oo (y+ ) u' m) "
-y 'viz<x+1n7a)"’"<1)
_/=0 J'l=0m=0 Ina+Inb m

RN mb \""/p

) (’!Eor=0<y+m) (")

S ul < d Ina
_21’20'1)'26 <120<x+m

(8 0+ ms)” (1)

which yields the result. [J
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4. Generalization of Arakawa-Kaneko L-functions with a,b parameters

It is well known since the second-half of the 19-th century the Riemann Zeta func-
tion may be represented by the normalized Mellin transformation

C(s) = —/Omt“"l eit_tdt, Re(s) > 1.

1—e

T. Arakawa and M. Kaneko, by inspiration of last expression, introduced Arakawa-
Kaneko Zeta function as follows. For any integer £ > 1

1 ~ le(l _e_t) —xt zs—1
=— | e lar.
Se(s:) F(s)/o —et ©
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It is defined for Re(s) > 0 and x > 0 if k > 1, and for Re(s) > 0 and x > |k| + 1
if k< 0. The function &(s,x) has analytic continuation to an entire function on the
whole complex s-plane and

& (—n.x) = (~1)"B (—x) (26)

for all non-negative integer n and x > 0 (for more information, see [7]).

For k € 7Z, the generalization of Arakawa-Kaneko Zeta function with a,b param-
eters are given by the Laplace Mellin-integral

Ek(s,x;a,b) = %/: Lik(;:—:lj)_t)e‘”tf‘ldt. 27

It is defined for Re(s) > 0 and x > 0 if k > 1, and for Re(s) > 0 and x > |k| + 1 if
k < 0. It is easy to see that the generalization of Arakawa-Kaneko zeta function with
a,b parameters include the Arakawa-Kaneko Zeta function and Hurwitz-Zeta function.

In this section, we now derive an interpolation formula of generalization of poly-
Bernoulli polynomials with a,b parameters and investigate fundamental properties of
Er(s,x;a,b). At first, in following lemma we give a relation between generalization
of Arakawa-Kaneko Zeta function with a,b parameters and classical Arakawa-Kaneko
Zeta function.

LEMMA 4.1 For k € Z, we have

1 x+1Inb
sa,b) = Sk s : 28
Selsxa.) (Ina+1nb)* S (s lna—|—1nb) (28)

Proof. Ttis easy to see that

' 1 = Lig(l—e™®)
%M@ﬁméﬁ:mrﬂ““w-

So, by changing ¢ by z = (Ina+1nb)z, we obtain
l l o<,]_41]{(1_6_2) 7(M)z —1
ab) = ———— —— i S Ina+Tnb ) <45 dt,
Sl(s,x.a,b) (Ina+1nb)* T'(s) /o —ex ¢

which yields the lemma. [

THEOREM 4.2 (Interpolation formula) The function s — & (s,x;a,b) has analytic con-
tinuation to an entire function on the whole complex s-plane and for any positive inte-
ger n, we have

E(—n,x;a,b) = (—1)"B¥ (—x1a,b). (29)
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Proof. By using Lemma 4.1, to prove that s — & (s,x;a,b) has analytic continu-
ation to an entire function on the whole complex s-plane, it is sufficient to show that
s — & (s,x) has such a property. Since this fact comes from the first part of Theorem
1.10 in [7] we omit it. By using Lemma 2.7 and expression (26), we get

&(—n,x;a,b) = (Ina+1nb)"&; (_ x+Inb )

" na+nb

n ap) [ —x—Inb
= (~1)"(Ina+np)BP ( X1
(=1)"(Ina+Inb) <lna+lnb>

= (—1)"BP (—x;a,b).
So we obtain the desired result. [

As an immediate consequence of previous theorems in this section, we obtain an
explicit formula for & (s,x;a,b).

COROLLARY 4.3 For k € Z, we have

— 1 4 i(n 1
S(sxia,0) = 3, (n+ 1) (-1 (]) (x+jlna+(j+1)nb)s (30)

n=0 j=0

Proof. By applying Theorem 4.2, we can interchange the integral and the sum.
Hence

0
- 1 o (n 1 o . .
= -1 j_/ —t(x+jlna+(j+1)lnb)ts—ldt
s () e

- 1 ,» |
- 26 (n+ 1 & (j)(_l)’ (x+ jlna+ (j+1)Inb)*

So the proof is complete. [J

Raabe’s formulais a fundamental and universal property in the theory of Zeta func-
tion and plays an important role in special functions. Raabe’s formula holds for several
types of Zeta functions. For instance, Hurwitz Zeta function, Euler Zeta function and
q-Euler Zeta function, multiple Zeta function. This formula provides a powerful link
between zeta integrals and Dirichlet series. Raabe’s formula can be obtained from the

Hurwitz zeta function
> 1
Csq) =2, ———
Zo (n+q)*
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via the integral formula

1 tl—s
t)dg= .
/O E(s,q+1)dg=——

Now, in next theorem, we will present a interesting link between integral of gen-
eralization of Arakawa-Kaneko zeta function with a,b parameters and Dirichlet series.
In fact we prove the Raabe’s formula for our new types of zeta function.

LEMMA 4.4 (Difference Formula) we have
E(s,x+Inab;a,b) — & (s,x;a,b)

m+1

- i m+1 — 2 ( ) 1)/ (x+ jina+ (j+1)Inb) 5. (31)

Proof. By applying the definition of generalization of Arakawa-Kaneko zeta func-
tion with a,b parameters, we get

E(s,x+1Inab;a,b) —&(s,x;a,b)

_ _L /oo Lik(l - eftlnah)eft(erlnb)t.\'fldt
1 o
- 1_ b m —t(x+lnb) s— ldt
5 2 o ) (1= (b e

ml

i +1 /merl ( )(_1)j+le(x+jlna+(j+l)lnb)ts—ldt
m

m+1

1
T T(s) [
i k Z ( ) 1) (x+ jina+ (j+1)Inb) 5.

So, we obtain the desired result. [

Now, we are ready to present the Raabe’s formula for our new types of zeta func-
tion.

THEOREM 4.5 (Raabe’s Formula) we have

Inab
/ Er(s,x+w;a,b)dw
0

1 & 1l 1 1
(m-l— 32)

P Wy D G e
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Proof. By using Lemma 4.4, we get
1 - le(l _eftlnah) —t(x+Inb) s—1 tnab —wt
= m/o We ( n )t /0 e dwdt
- % /NLik(l _ otinaby giletinb)s=2 gy

F(s—l)

() (&(s—1,x;a,b) — &(s — 1,x+Inab;a, b))

m+1 1

s—l 2:‘ m—|—1 k Z ( ) l)jﬂ(x—|—jlna—|—(j—|—l)lnla)-"*l'

So, we obtain the desired result. [J

As a direct result of Raabe’s formula and interpolation formula, we obtain follow-

ing corollary for generalization of poly-Bernoulli numbers with a,b parameters.

COROLLARY 4.6 Raabe’s formula in terms of generalization of poly-Bernoulli poly-
nomials with a,b parameters is as follows:

Inab
/ B,(lk) (—x—w;a,b)dw
0

[1]

[2

—

[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]

[12]
[13]

= (= i Wil (=) (x+ jIna+ (j+1)Inb)"*!
n+l = O(m—i—l )k ’
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