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EXPLICIT FORMULA FOR GENERALIZATION OF POLY–BERNOULLI

NUMBERS AND POLYNOMIALS WITH a,b,c PARAMETERS

HASSAN JOLANY AND ROBERTO B. CORCINO

Abstract. In this paper we investigate special generalized Bernoulli polynomials with a,b,c pa-
rameters that generalize classical Bernoulli numbers and polynomials. The present paper deals
with some recurrence formulae for the generalization of poly-Bernoulli numbers and polyno-
mials with a,b,c parameters. Poly-Bernoulli numbers satisfy certain recurrence relationships
which are used in many computations involving poly-Bernoulli numbers. Obtaining a closed
formula for generalization of poly-Bernoulli numbers with a,b,c parameters therefore seems
to be a natural and important problem. By using the generalization of poly-Bernoulli polyno-
mials with a,b,c parameters of negative index we define symmetrized generalization of poly-
Bernoulli polynomials with a; b; c parameters of two variables and we prove duality property for
them. Also by Stirling numbers of the second kind we will find a closed formula for them. Fur-
thermore we generalize the Arakawa-Kaneko Zeta functions and by using the Laplace-Mellin
integral, define generalization of Arakawa-Kaneko Zeta functions with a,b,c parameters and
obtain an interpolation formula for the generalization of poly- Bernoulli numbers and polynomi-
als with a,b,c parameters. Furthermore we present a link between this type of Zeta functions
and Dirichlet series. By our interpolation formula, we will interpolate the generalization of
Arakawa-Kaneko Zeta functions with a,b,c parameters.

1. Introduction

The poly-Bernoulli polynomials have been studied by many researchers in recent
decade. The poly-Bernoulli polynomials have wide-ranging applications from number
theory and combinatorics to other fields of applied mathematics. One of applications
of poly-Bernoulli numbers that was investigated by Chad Brewbaker in [6, 9], is about
the number of (0; 1)- matrices with n-rows and k columns. He showed the number of
(0, 1)-matrices with n-rows and k columns uniquely reconstructable from their row and

column sums are the poly- Bernoulli numbers of negative index B(k)
n . Another appli-

cation of poly-Bernoulli numbers is in Zeta function theory. Multiple Zeta functions at
non-positive integers can be described in terms of these numbers. A third application
of poly-Bernoulli numbers that was proposed by Stephane Launois in [16, 17], is about
cardinality of some subsets of Sn. He proved the cardinality of sub-poset of the reverse
Bruhat ordering is equal to the poly-Bernoulli numbers. Also one of other applications
of poly-Bernoulli numbers is about skew Ferrers boards. In [15], Jonas Sjostran found
a relation between poly-Bernoulli numbers and the number of elements in a Bruhat in-
terval. Also he showed the Poincare polynomial (for value q = 1) of some particularly
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interesting intervals in the finite Weyl group can be written in terms of poly-Bernoulli
numbers. Moreover Peter Cameron in [25] showed that the number of acyclic orienta-
tions of a complete bipartite graph is a poly-Bernoulli number.

One of generalizations of poly-Bernoulli numbers that was first proposed by Y.
Hamahata, is the Multi-poly-Bernoulli numbers and he derived a closed formula for
them. A. Bayad , introduced a new generalization of poly-Bernoulli numbers and poly-
nomials. He, by using Dirichlet character, defined generalized poly-Bernoulli numbers
associated to χ . Also, he introduced the generalized Arakawa-Kaneko L -functions
and showed that the non-positive integer values of the complex variable s of these L -
functions can be written rationally in terms of generalized poly-Bernoulli polynomials
associated to χ .

In [1, 2], D. S. Kim and T. Kim considered poly-Bernoulli mixed-type polyno-
mials. From the properties of Sheffer sequences of these polynomials arising from
umbrral calculus, they derived several new and interesting identities. Also they intro-
duced new generating function which is known as Hermite poly-Bernoulli mixed-type
polynomials.

In [14], H. Jolany et al, by using real a,b,c parameters, introduced the gener-
alization of poly-Bernoulli polynomials with a; b; c parameters and found a closed
relationships between generalized poly-Bernoulli polynomials with a; b; c parameters
and generalized Euler polynomials with a; b; c parameters.

Let us briefly recall poly-Bernoulli numbers and polynomials. For an integer k∈Z

Lik(z) =
∞

∑
n=0

zn

nk
(1)

which is the k -th polylogarithm if k � 1, and a rational function if k � 0. The name
of the function comes from the fact that it may alternatively be defined as the repeated
integral of itself, namely that

Lik+1(z) =
∫ z

0

Lik(t)
t

dt. (2)

One knows that Li1(z) =− log(1− z) . Also if k is a negative integer, say k =−r , then
the poly-logarithmic function converges for |x| < 1 and equals

Li−r(x) =
∑r

j=0

〈
r
j

〉
xr− j

(1− x)r− j (3)

where the

〈
r
j

〉
are the Eulerian numbers. The Eulerian numbers

〈
r
j

〉
are the number

of permutations of {1,2, . . . ,r} with j permutation ascents. One has

〈
r
j

〉
=

r+1

∑
l=0

(−1)l
(

r+1
l

)
( j− l +1)r. (4)
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The formal power series Lik (z) can be used to define poly-Bernoulli numbers and

polynomials. The polynomials B(k)
n (x) , (n = 0,1,2, . . .) are said to be poly-Bernoulli

polynomials if they satisfy

Lik(1− e−t)
1− e−t ext =

∞

∑
n=0

B(k)
n (x)

tn

n!
(5)

where k � 1. By (2), the left-hand side of (5) can be written in the form of iterated
integrals

ex 1
1+ ex

∫ x

0

1
1+ ex

∫ x

0
. . .

1
1+ ex

∫ x

0

1
1+ ex dx . . .dx =

∞

∑
n=0

B(k)
n

xn

n!
. (6)

For any n � 0, we have

(−1)nB(1)
n (−x) = Bn(x)

where Bn(x) are the classical Bernoulli polynomials given by

t
et −1

ext =
∞

∑
n=0

Bn(x)
tn

n!
, |t| < 2π . (7)

For x = 0 in (5), we have B(k)
n (0) := B(k)

n , where B(k)
n are called poly-Bernoulli numbers

(for more information, see [2, 3, 5, 7, 8, 10, 11, 12, 13, 18]. In 2002, Q. M. Luo et
al. [19], defined the generalization of Bernoulli numbers and polynomials with a,b
parameters as follows:

t
bt −at e

xt =
∞

∑
n=0

Bn(x;a,b)
tn

n!
,

∣∣∣∣t ln b
a

∣∣∣∣< 2π . (8)

So, by (7), we get

Bn(x;1,e) := Bn(x),Bn(0;a,b) := Bn(a,b) and Bn(0;1,e) := Bn

where Bn(a,b) are called the generalization of Bernoulli numbers with a,b parame-
ters. Also they the proved the following expression for this type of polynomials which
interpolate the generalization of Bernoulli polynomials with a,b,c parameters

m

∑
j=1

jn =
1

(n+1)(lnb)n [Bn+1(m+1;1,b,b)−Bn+1(0;1,b,b)].

H. Jolany et al. in [14] defined a new generalization for poly-Bernoulli numbers and
polynomials. They introduced the generalization of poly-Bernoulli polynomials with
a,b parameters as follows

Lik(1− (ab)−t)
bt −a−t ext =

∞

∑
n=0

B(k)
n (x;a,b)

tn

n!
. (9)
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Also they extended the definition of generalized poly-Bernoulli polynomials with three
parameters a,b,c as follows:

Lik(1− (ab)−t)
bt −a−t cxt =

∞

∑
n=0

B(k)
n (x;a,b,c)

tn

n!
. (10)

where B(k)
n (x;a,b,c) are called the generalization of poly-Bernoulli polynomials with

a,b,c parameters. These are coefficients of power series expansion of a higher genus
algabraic function with respect to a suitable variable. In the sequel, we list some closed
formulas of poly-Bernoulli numbers and polynomials.

Kim, in [1, 2, 8], presented the following explicit formulas for poly-Bernoulli
numbers

B(k)
n =

1
n+1

{
B(k−1)

n −
n−1

∑
m=1

(
n

m−1

)
B(k)

m

}

B(−k)
n =

min(n,k)

∑
j=0

( j!)2
{

n+1
j +1

}{
k+1
j +1

}
, n,k � 0,

where {
n
m

}
=

(−1)m

m!

m

∑
l=0

(−1)l
(

m
l

)
ln, n,m � 0

called the Stirling numbers of the second kind. A. Bayad in [26] introduced the gener-

alized poly-Bernoulli polynomials B(k)
n,χ(x) . So, by applying their method, we introduce

a closed formula and also interpolation formula for the generalization of poly-Bernoulli
numbers and polynomials with a; b parameters which yields a deeper insight into the
effectiveness of this type of generalizations.

2. Explicit formulas for generalization of poly-Bernoulli polynomials with three
parameters

Now, we are in a position to state and prove the main results of this paper. In this
section, we obtain some interesting new relations associated to generalization of poly-
Bernoulli numbers and polynomials with a,b,c parameters. Here we prove a collection
of important and fundamental identities involving this type of number and polynomials.
We also deduce their special cases which leads to the corresponding results for the poly-
Bernoulli polynomials.

First of all, we present an explicit formula for generalization of poly-Bernoulli
polynomials with a,b,c parameters

THEOREM 2.1 (Explicit Formula) For k ∈ Z , n � 0 , we have

B(k)
n (x;a,b) =

n

∑
m=0

1
(m+1)k

m

∑
j=0

(−1) j
(

m
j

)
(x− j lna− ( j +1) lnb)n. (11)
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Proof.

Lik(1− (ab)−t)
bt −a−t = b−t

(
∞

∑
m=1

(1− (ab)−t)m−1

mk

)
= b−t

(
∞

∑
m=0

(1− (ab)−t)m

(m+1)k

)

= b−t
∞

∑
m=0

1
(m+1)k

m

∑
j=0

(−1) j
(

m
j

)
e− jt ln(ab)

=
∞

∑
m=0

(1
(m+1)k

m

∑
j=0

(−1) j
(

m
j

)
e−t( j lna+( j+1) lnb)

So, we get

Lik(1− (ab)−t)
bt −a−t ext =

∞

∑
m=0

1
(m+1)k

m

∑
j=0

(−1) j
(

m
j

)
et(x− j lna−( j+1) lnb)

=
∞

∑
n=0

(
∞

∑
m=0

1
(m+1)k

m

∑
j=0

(−1) j
(

m
j

)
(x− j lna− ( j +1) lnb)n

)
tn

n!

By comparing the coefficients of tn
n! on both sides, the proof is completed. �

As a direct result, by applying the same method as Theorem 2.1, we derive follow-
ing corollaries.

COROLLARY 2.2 For k ∈ Z , n � 0 , we have

B(k)
n (x;a,b,c) =

n

∑
m=0

1
(m+1)k

m

∑
j=0

(−1) j
(

m
j

)
(x lnc− j lna− ( j +1) lnb)n. (12)

As a direct result, by applying a = e,b = 1,c = e in Corollary 1, we get the fol-
lowing corollary.

COROLLARY 2.3 For k ∈ Z , n � 0 , we have

B(k)
n (x) =

n

∑
m=0

1
(m+1)k

m

∑
j=0

(−1) j
(

m
j

)
(x− j)n. (13)

Furthermore, by setting k = 1 in Corollary 2 and because we have, Bn(x) =
(−1)nB(1)

n (−x) , we obtain following explicit formulas for classical Bernoulli numbers
and polynomials.

COROLLARY 2.4 For k ∈ Z , n � 0 , we have

Bn(x) =
n

∑
m=0

1
m+1

m

∑
j=0

(−1) j
(

m
j

)
(x+ j)n

Bn =
n

∑
m=0

1
m+1

m

∑
j=0

(−1) j
(

m
j

)
jn.
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Now, we investigate some recursive formulas for the generalization of poly-Bernoulli
numbers and polynomials with a,b parameters.

THEOREM 2.5 (Recursive Formula) For all k � 1 and n � 0 , we have

B(k)
n (x;a,b)= (lna+ lnb)

n

∑
m=0

(−lna)m
(

n
m

)
B(k−1)

n−m (a,b)
m

∑
l=0

(−lna)−l

n− l +1

(
m
l

)
Bl(x;a−1,b).

(14)

Proof. We know

Lik+1(t) =
∫ t

0

Lik(s)
s

ds

so

Lik+1(1− (ab)−t) =
∫ t

0

Lik(1− (ab)−s)
1− (ab)−s (lnab)e−s lnabds.

So we get

Lik+1(1− (ab)−t)
bt −a−t ext =

atext

(ab)t −1

∫ t

0
(lnab)

Lik(1− (ab)−s)
1− (ab)−s e−s lnabds.

Therefore, we obtain

∞

∑
n=0

B(k)
n (x;a,b)

tn

n!

= (lnab)

(
∞

∑
n=0

B(k)
n (x;a−1,b)

tn−1

n!

)∫ t

0

Lik(1− (ab)−s)
1− (ab)−s e−s lnabds

= (lnab)

(
∞

∑
n=0

B(k)
n (x;a−1,b)

tn−1

n!

)∫ t

0

(
∞

∑
n=0

(−s lna)n

n!

)(
∞

∑
n=0

B(k−1)
n (a,b)

sn

n!

)
ds

= (lnab)

(
∞

∑
n=0

B(k)
n (x;a−1,b)

tn−1

n!

)
∞

∑
n=0

(
n

∑
m=0

(− lna)n−m
(

n
m

)
B(k−1)

m (a,b)

)
tn+1

(n+1)!

= (lnab)
∞

∑
n=0

(
n

∑
l=0

B(k)
n−l(x;a

−1,b)
l

∑
m=0

(− lna)l−m
(

l
m

)
B(k−1)

m (a,b)
tn

(l +1)!(n− l)!

)

= (lnab)
∞

∑
n=0

(
n

∑
l=0

B(k)
n−l(x;a

−1,b)
l +1

(
n
l

) l

∑
m=0

(− lna)l−m
(

l
m

)
B(k−1)

m (a,b)

)
tn

n!

So, by applying the following identity(
n
l

)(
l
m

)
=
(

n
m

)(
n−m
n− l

)
,
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we obtain

∞

∑
n=0

B(k)
n (x;a,b)

tn

n!

= (lnab)
∞

∑
n=0

(
n

∑
m=0

B(k−1)
m (a,b)

(
n
m

) n

∑
l=m

(− lna)l−m

l +1

(
n−m
n− l

)
B(k)

n−l(x;a
−1,b)

)
tn

n!
.

Putting l′ = n− l , we have

∞

∑
n=0

B(k)
n (x;a,b)

tn

n!

= (lnab)
∞

∑
n=0

(
n

∑
m=0

B(k−1)
m (a,b)

(
n
m

)n−m

∑
l′=0

(− lna)n−l′−m

n− l′+1

(
n−m

l′

)
B(k)

l′ (x;a−1,b)

)
tn

n!
.

Putting m′ = n−m , we obtain

∞

∑
n=0

B(k)
n (x;a,b)

tn

n!

= (lnab)
∞

∑
n=0

(
n

∑
m′=0

B(k−1)
n−m′ (a,b)

(
n
m′

) m′

∑
l′=0

(− lna)m′−l′

n− l′+1

(
m′

l′

)
B(k)

l′ (x;a−1,b)

)
tn

n!
.

By comparing the coefficients of tn
n! on both sides, the proof is complete. �

As a direct consequence of Theorem 2.5 with a = e,b = 1, we obtain the follow-
ing corollary which is the well known recurrence formula for classical poly-Bernoulli
polynomials.

COROLLARY 2.6 For all k � 1 , n � 0 , we have

B(k)
n (x) =

n

∑
m=0

(−1)m
(

n
m

)
B(k−1)

n−m

m

∑
l=0

(−1)l

n− l +1

(
m
l

)
B(1)

l (x). (15)

Let us consider the extreme recurrence formula for generalization of poly-Bernoulli
polynomials with a,b parameters. By using following lemma and some standard tech-
niques based upon generating function and series rearrangement we present a new re-
currence formula for generalization of poly-Bernoulli polynomials with a,b parame-
ters.

LEMMA 2.7 For a,b > 0 and n � 0 , we have

B(k)
n (x;a,b) = (lna+ lnb)nB(k)

n

(
x− lnb

lna+ lnb

)
. (16)
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Proof. By applying (9), we have

∞

∑
n=0

B(k)
n (x;a,b)

tn

n!
=

Lik(1− (ab)−t)
bt −a−t ext =

1
bt

Lik(1− (ab)−t)
1− (ab)−t ext

= e(x−lnb)t Lik(1− e−t lnab

1− e−t lnab =
∞

∑
n=0

(lna+ lnb)nB(k)
n

(
x− lnb

lna+ lnb

)
tn

n!

So, by comparing the coefficients of tn
n! on both sides, we obtain the desired result. �

Now we are ready to present our second recurrence formula for generalization of
Poly-Bernoulli numbers and polynomials with a,b parameters.

THEOREM 2.8 For k ∈ Z and n � 2 , we have

B(k)
0 (x;a,b) = 1

B(k)
1 (x;a,b) =

1
2

[
B(k−1)

1 (x;a,b)+
(

x− lnb
lna+ lnb

)
B(k)

0 (x;a,b)
]

B(k)
n (x;a,b) =

1
n+1

{
B(k−1)

n (x;a,b)+ (x− lnb)(lna+ lnb)n−1B(k)
0 (x;a,b)

+ (x− lnb)
n−1

∑
m=1

(lna+ lnb)n−m−1
(

n
m

)
B(k)

m (x;a,b)

−
n−1

∑
m=1

(lna+ lnb)n−m
(

n
m−1

)
B(k)

m (x;a,b)

}

Proof. From [], we have the following recurrence formula for poly-Bernoulli poly-
nomials

B(k)
n (x;a,b) =

1
n+1

[
B(k−1)

n (x)+ xB(k)
0 (x)

n−1

∑
m=1

[(
n

m−1

)
−
(

n
m

)
x

]
B(k)

m (x)

]
(17)

So, by applying Lemma 2.7 and replacing r by x−lnb
lna+lnb in (17), we obtain the desired

result. �
Now, we show that the generalization of poly-Bernoulli polynomials of a; b pa-

rameters are in the set of Appell polynomials.

For a sequence {Pn(x)}∞
n=0 of Appell polynomials, which is a sequence of poly-

nomials satisfying
dPn(x)

dx
= nPn−1(x), n � 1.

Tremendous properties are well known. Among them, the most important classifica-
tions of Appell polynomials may be the following equivalent conditions ([20, 21, 22]).



GENERALIZATION OF POLY-BERNOULLI NUMBERS AND POLYNOMIALS 127

THEOREM 2.9 Let {Pn(x)}∞
n=0 be a sequence of polynomials. Then the following are

all equivalent

(a) {Pn(x)}∞
n=0 is a sequence of Appell polynomials.

(b) {Pn(x)}∞
n=0 has a generating function of the form

A(t)ext =
∞

∑
n=0

Pn(x)
tn

n!
,

where A(t) is a formal power series in t with A(0) �= 0 .

(c) {Pn(x)}∞
n=0 satisfies

Pn(x+ y) =
n

∑
k=0

(
n
k

)
Pn−k(x)yk

Now, in the following theorem we prove that the generalization of poly-Bernoulli
polynomials are in the set of Appell sequence

THEOREM 2.10 (Appell Sequence) The generalized poly-Bernoulli polynomials sat-
isfy the following differential equation

dB(k)
0 (x;a,b)

dx
= 0

dB(k)
n+1(x;a,b)

dx
= (n+1)B(k)

n (x;a,b). (18)

Proof. By differentiating both sides of (9), with respect to x , we have

t
Lik(1− (ab)−t)

bt −a−t ext =
∞

∑
n=0

dB(k)
n (x;a,b)

dx
tn

n!

and obtain

Lik(1− (ab)−t)
bt −a−t ext =

∞

∑
n=0

[
1

(n+1)
dB(k)

n+1(x;a,b)
dx

]
tn

n!

which yields the desired results. �
Thus, by applying the property of (c) of Theorem 2.9, we obtain following corol-

lary.

COROLLARY 2.11 (Addition Formula) For k ∈ Z and n � 0 , we have

B(k)
n (x+ y;a,b) =

n

∑
m=0

(
n
m

)
B(k)

m (x;a,b)yn−m. (19)
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In particular,

B(k)
n (x;a,b) =

n

∑
m=0

(
n
m

)
B(k)

m (a,b)xn−m. (20)

and by taking y = (m−1)x , we obtain Multiplication theorem for them

B(k)
n (mx;a,b) =

n

∑
i=0

(
n
i

)
B(k)

i (x;a,b)(m−1)n−ixn−i, m = 1,2, . . . (21)

Actually, because generalization of poly-Bernoulli polynomials of a,b parameters
are in the set of Appell polynomials, we can derive numerous properties for them. For
instance in [23], F. A. Costabile and E. Longo presented a new definition by means of
a determinantal form for Appell polynomials by using of linear algebra tools and also
M. E. H. Ismail in [24], found a differential equation for Appell polynomials.

3. Symmetrized generalization of poly-Bernoulli polynomials with a,b
parameters of two variables

Kaneko, Japanese mathematician introduced the symmetrized poly-Bernoulli poly-
nomials with two variables and by using their method we introduce symmetrized gen-
eralization of poly-Bernoulli polynomials with a,b parameters of two variables and
construct a generating function for symmetrized generalization of poly-Bernoulli poly-
nomials with a,b parameters of two variables. Also we give a closed formula and
duality property for this type of polynomials as well.

DEFINITION 3.1. For m,n � 0, we define

C(−m)
n (x,y;a,b) =

1
(lna+ lnb)n

m

∑
k=0

(
m
k

)
B(−k)

n (x;a,b)
(

y− lnb
lna+ lnb

)m−k

(22)

Now, in the following theorem we introduce a generating function for C(−m)
n (x,y;a,b) .

THEOREM 3.2 For m,n � 0 , we have

∞

∑
n=0

∞

∑
m=0

C(−m)
n (x,y;a,b)

tn

n!
um

m!
=

e(x+ lna
lna+lnb )t e(y+ lnb

lna+lnb )u

et + eu− et+u (23)

Proof. By using the definition of C(−m)
n (x,y;a,b) , the left-hand side can be written

as

LHS =
∞

∑
n=0

∞

∑
m=0

1
(lna+ lnb)n

m

∑
k=

B(−k)
n (x;a,b)

(
y− lnb

lna+ lnb

)m−k tn

n!
um

k!(m− k)!
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By putting l = m− k , we get

LHS =
∞

∑
n=0

∞

∑
k=0

∞

∑
l=0

1
(lna+ lnb)n B(−k)

n (x;a,b)
(

y− lnb
lna+ lnb

)l tn

n!
uk

k!
ul

l!

= e(y− lnb
lna+lnb )u

∞

∑
n=0

∞

∑
k=0

1
(lna+ lnb)n B(−k)

n (x;a,b)
tn

n!
uk

k!

= e(y− lnb
lna+lnb )u

∞

∑
k=0

(
ext

∞

∑
n=0

B(−k)
n (a,b)

(
t

lna+lnb

)n
n!

)
uk

k!

= e(y− lnb
lna+lnb )u

∞

∑
k=0

(
ext Li−k(1− e−t)

1− e−t e(
−t lnb

lna+lnb )
n
)

uk

k!

= e(y− lnb
lna+lnb )ue(x− lnb

lna+lnb )t
∞

∑
k=0

∞

∑
n=0

B(−k)
n

tn

n!
uk

k!

But Kaneko proved following expression

∞

∑
k=0

∞

∑
n=0

B(−k)
n

tn

n!
uk

k!
=

et+u

et + eu− et+u .

So, by applying this expression, we obtain the desired result. �

As a direct result, we have the following corollary for C(−m)
n (x,y;a,b) that is the

well known duality property.

COROLLARY 3.3 (Duality Property) For m � 0 , we have

C(−m)
n (x,y;a,b) = C(−m)

n (y,x;b,a). (24)

Now, we are ready to show a closed formula for C(−m)
n (x,y;a,b) which is impor-

tant and fundamental.

THEOREM 3.4 (Closed Formula) For m � 0 , we have

C(−m)
n (x,y;a,b) =

∞

∑
j=0

( j!)2

(
∞

∑
p=0

(
x+

lna
lna+ lnb

)n−p(n
p

){
p
j

})
× (25)

×
(

∞

∑
l=0

(
y+

lnb
lna+ lnb

)m−l(m
l

){
l
j

})



130 HASSAN JOLANY AND ROBERTO B. CORCINO

Proof. By applying Theorem 3.2, we have

∞

∑
n=0

∞

∑
m=0

C(−m)
n (x,y;a,b)

tn

n!
um

m!
=

e(x+ lna
lna+lnb )t e(y+ lnb

lna+lnb )u

et + eu− et+u =
e(x+ lna

lna+lnb )t e(y+ lnb
lna+lnb )u

1− (et −1)(eu−1)

= e(x+ lna
lna+lnb )t e(y+ lnb

lna+lnb )u
∞

∑
j=0

(et −1) j(eu−1) j

=
∞

∑
j=0

e(x+ lna
lna+lnb)t(et −1) je(y+ lnb

lna+lnb )u(eu−1) j

By applying the generating function of Stirling numbers of second kind

∞

∑
n=0

{
n
k

}
un

n!
=

(eu −1)k

k!

the right-hand side of the last expression becomes

=
∞

∑
j=0

(
j!

∞

∑
n=0

(
x+ lna

lna+lnb

)n
tn

n!

∞

∑
m=0

{
m
j

}
tm

m!

)(
j!

∞

∑
n=0

(
y+ lnb

lna+lnb

)n
un

n!

∞

∑
m=0

{
m
j

}
um

m!

)

=
∞

∑
j=0

(
j!

∞

∑
l=0

l

∑
m=0

(
x+

lna
lna+ lnb

)l−m( l
m

){
m
j

}
tl

l!

)
×

×
(

j!
∞

∑
p=0

p

∑
r=0

(
y+

lnb
lna+ lnb

)p−r(p
r

){
r
j

}
up

p!

)

=
∞

∑
l=0

∞

∑
p=0

tl

l!
up

p!

∞

∑
j=0

( j!)2

(
l

∑
m=0

(
x+

lna
lna+ lnb

)l−m( l
m

){
m
j

})
×

×
(

p

∑
r=0

(
y+

lnb
lna+ lnb

)p−r(p
r

){
r
j

})

which yields the result. �

4. Generalization of Arakawa-Kaneko L -functions with a,b parameters

It is well known since the second-half of the 19-th century the Riemann Zeta func-
tion may be represented by the normalized Mellin transformation

ζ (s) =
1

Γ(s)

∫ ∞

0
ts−1 e−t

1− e−t dt, Re(s) > 1.

T. Arakawa and M. Kaneko, by inspiration of last expression, introduced Arakawa-
Kaneko Zeta function as follows. For any integer k � 1

ξk(s,x) =
1

Γ(s)

∫ ∞

0

Lik(1− e−t)
1− e−t e−xt ts−1dt.
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It is defined for Re(s) > 0 and x > 0 if k � 1, and for Re(s) > 0 and x > |k|+ 1
if k � 0. The function ξk(s,x) has analytic continuation to an entire function on the
whole complex s-plane and

ξk(−n,x) = (−1)nB(k)
n (−x) (26)

for all non-negative integer n and x � 0 (for more information, see [7]).

For k ∈ Z , the generalization of Arakawa-Kaneko Zeta function with a,b param-
eters are given by the Laplace Mellin-integral

ξk(s,x;a,b) =
1

Γ(s)

∫ ∞

0

Lik(1− (ab)−t)
bt −a−t e−xt ts−1dt. (27)

It is defined for Re(s) > 0 and x > 0 if k � 1, and for Re(s) > 0 and x > |k|+ 1 if
k � 0. It is easy to see that the generalization of Arakawa-Kaneko zeta function with
a,b parameters include the Arakawa-Kaneko Zeta function and Hurwitz-Zeta function.

In this section, we now derive an interpolation formula of generalization of poly-
Bernoulli polynomials with a,b parameters and investigate fundamental properties of
ξk(s,x;a,b) . At first, in following lemma we give a relation between generalization
of Arakawa-Kaneko Zeta function with a,b parameters and classical Arakawa-Kaneko
Zeta function.

LEMMA 4.1 For k ∈ Z , we have

ξk(s,x;a,b) =
1

(lna+ lnb)s ξk

(
s,

x+ lnb
lna+ lnb

)
. (28)

Proof. It is easy to see that

ξk(s,x;a,b) =
1

Γ(s)

∫ ∞

0

Lik(1− e−t lnab)
1− e−t lnab e−(x+lnb)tts−1dt.

So, by changing t by z = (lna+ lnb)t , we obtain

ξk(s,x;a,b) =
1

(lna+ lnb)s

1
Γ(s)

∫ ∞

0

Lik(1− e−z)
1− e−z e

−
(

(x+lnb)
lna+lnb

)
z
ts−1dt,

which yields the lemma. �

THEOREM 4.2 (Interpolation formula) The function s→ ξk(s,x;a,b) has analytic con-
tinuation to an entire function on the whole complex s-plane and for any positive inte-
ger n, we have

ξk(−n,x;a,b) = (−1)nB(k)
n (−x;a,b). (29)
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Proof. By using Lemma 4.1, to prove that s → ξk(s,x;a,b) has analytic continu-
ation to an entire function on the whole complex s-plane, it is sufficient to show that
s → ξk(s,x) has such a property. Since this fact comes from the first part of Theorem
1.10 in [7] we omit it. By using Lemma 2.7 and expression (26), we get

ξk(−n,x;a,b) = (lna+ lnb)nξk

(
−n,

x+ lnb
lna+ lnb

)

= (−1)n(lna+ lnb)nB(k)
n

(−x− lnb
lna+ lnb

)

= (−1)nB(k)
n (−x;a,b).

So we obtain the desired result. �
As an immediate consequence of previous theorems in this section, we obtain an

explicit formula for ξk(s,x;a,b) .

COROLLARY 4.3 For k ∈ Z , we have

ξk(s,x;a,b) =
∞

∑
n=0

1
(n+1)k

n

∑
j=0

(−1) j
(

n
j

)
1

(x+ j lna+( j +1) lnb)s . (30)

Proof. By applying Theorem 4.2, we can interchange the integral and the sum.
Hence

ξk(s,x;a,b) =
1

Γ(s)

∞

∑
n=1

1
nk

∫ ∞

0
(1− e−t lnab)n−1e−t(x+lnb)ts−1dt

=
1

Γ(s)

∞

∑
n=0

1
(n+1)k

∫ ∞

0

n

∑
j=0

(
n
j

)
(−1) je−t(x+ j lna+( j+1) lnb)ts−1dt

=
∞

∑
n=0

1
(n+1)k

n

∑
j=0

(
n
j

)
(−1) j 1

Γ(s)

∫ ∞

0
e−t(x+ j lna+( j+1) lnb)ts−1dt

=
∞

∑
n=0

1
(n+1)k

n

∑
j=0

(
n
j

)
(−1) j 1

(x+ j lna+( j +1) lnb)s .

So the proof is complete. �
Raabe’s formula is a fundamental and universal property in the theory of Zeta func-

tion and plays an important role in special functions. Raabe’s formula holds for several
types of Zeta functions. For instance, Hurwitz Zeta function, Euler Zeta function and
q -Euler Zeta function, multiple Zeta function. This formula provides a powerful link
between zeta integrals and Dirichlet series. Raabe’s formula can be obtained from the
Hurwitz zeta function

ζ (s,q) =
∞

∑
n=0

1
(n+q)s
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via the integral formula ∫ 1

0
ζ (s,q+ t)dq =

t1−s

s−1
.

Now, in next theorem, we will present a interesting link between integral of gen-
eralization of Arakawa-Kaneko zeta function with a,b parameters and Dirichlet series.
In fact we prove the Raabe’s formula for our new types of zeta function.

LEMMA 4.4 (Difference Formula) we have

ξk(s,x+ lnab;a,b)−ξk(s,x;a,b)

=
∞

∑
m=0

1
(m+1)k

m+1

∑
j=0

(
m+1

j

)
(−1) j+1(x+ j lna+( j +1) lnb)−s. (31)

Proof. By applying the definition of generalization of Arakawa-Kaneko zeta func-
tion with a,b parameters, we get

ξk(s,x+ lnab;a,b)−ξk(s,x;a,b)

= − 1
Γ(s)

∫ ∞

0
Lik(1− e−t lnab)e−t(x+lnb)ts−1dt

= − 1
Γ(s)

∞

∑
m=1

1
mk

∫ ∞

0
(1− (ab)−t)me−t(x+lnb)ts−1dt

=
1

Γ(s)

∞

∑
m=0

1
(m+1)k

∫ ∞

0

m+1

∑
j=0

(
m+1

j

)
(−1) j+1e(x+ j lna+( j+1) lnb)ts−1dt

=
∞

∑
m=0

1
(m+1)k

m+1

∑
j=0

(
m+1

j

)
(−1) j+1(x+ j lna+( j +1) lnb)−s.

So, we obtain the desired result. �
Now, we are ready to present the Raabe’s formula for our new types of zeta func-

tion.

THEOREM 4.5 (Raabe’s Formula) we have

∫ lnab

0
ξk(s,x+w;a,b)dw

=
1

s−1

∞

∑
m=0

1
(m+1)k

m+1

∑
j=0

(
m+1

j

)
(−1) j+1 1

(x+ j lna+( j +1) lnb)s−1 . (32)
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Proof. By using Lemma 4.4, we get

=
1

Γ(s)

∫ ∞

0

Lik(1− e−t lnab)
1− e−t lnab e−t(x+lnb)ts−1

∫ lnab

0
e−wtdwdt

=
1

Γ(s)

∫ ∞

0
Lik(1− e−t lnab)e−t(x+lnb)ts−2dt

=
Γ(s−1)

Γ(s)
(ξk(s−1,x;a,b)− ξk(s−1,x+ lnab;a,b))

=
1

s−1

∞

∑
m=0

1
(m+1)k

m+1

∑
j=0

(
m+1

j

)
(−1) j+1 1

(x+ j lna+( j +1) lnb)s−1 .

So, we obtain the desired result. �
As a direct result of Raabe’s formula and interpolation formula, we obtain follow-

ing corollary for generalization of poly-Bernoulli numbers with a,b parameters.

COROLLARY 4.6 Raabe’s formula in terms of generalization of poly-Bernoulli poly-
nomials with a,b parameters is as follows:

∫ lnab

0
B(k)

n (−x−w;a,b)dw

=
(−1)n+1

n+1

∞

∑
m=0

1
(m+1)k

m+1

∑
j=0

(
m+1

j

)
(−1) j+1(x+ j lna+( j +1) lnb)n+1.
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