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APPROXIMATION OF FUNCTIONS OF LIPSCHITZ

CLASS BY (N, pn)(E,1) SUMMABILITY MEANS

OF CONJUGATE SERIES OF FOURIER SERIES

VISHNU NARAYAN MISHRA AND VAISHALI SONAVANE

Abstract. Analysis of signals or time functions are of great importance, because it convey infor-
mation or attributes of some phenomenon. In this paper, three theorems on degree of approxima-
tion of a signals (or functions) f ∈ Lip(α ,r) and Lip(ξ (t),r) , (r � 1) have been established.

1. Introduction

The theory of summability arises from the process of summation of series and the
significance of the concept of summability has been strikingly demonstrated in various
contexts, e.g., in analytic continuation, quantum mechanics, probability theory, Fourier
analysis, approximation theory and fixed point theory. The methods of almost summa-
bility and statistical summability have become an active area of research in recent years.
Positive approximation processes play an important role in Approximation Theory and
appear in a very natural way dealing with approximation of continuous functions, espe-
cially one, which requires further qualitative properties such as monotonicity, convexity
and shape preservation and so on. The degree of approximation of functions belonging
to Lipα , Lip(α,r) , Lip(ξ (t),r) 0 < α � 1, 1 � r < ∞ classes by Nörlund (Np) ma-
trices and general summability matrices have been proved by various investigators like
Chandra ([1]–[2]), Khan ([4]–[6]), Mohapatra and Russell [7], Leindler [8] and Mishra
and Mishra [9], Mishra et al. [10]. But most of these results are not satisfactory for
α = 1 are not of O(n−1). Therefore this deficiency has motivated to investigate the
degree of approximation using generalized Minkowski’s inequality cases 0 < α � 1
and α = 1 separately. Recently, Lal and Mishra [15] have proved a theorem on the
degree of approximation of functions belonging to the class Lip(α,r) and Lip(ξ (t),r)
by product summability means of the form (N, pn)(E,1) of Fourier series. In this pa-
per, we obtain new theorems on degree of approximation of the function belonging to
Lip(α,r) and Lip(ξ (t),r) by (N, pn)(E,1) means of conjugate series of Fourier series.
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2. Definitions and notations

Let ∑∞
n=0 un be a given infinite series with the sequence of nth partial sums {sn} .

Let {pn} be a non-negative sequence of constants, real or complex, and let us write

Pn =
n
∑

k=0
pk �= 0 ∀n � 0, p−1 = 0 = P−1 and Pn → ∞ as n → ∞.

The sequence to sequence transformation tNn = ∑n
k=0 pn−ksk/Pn defines the se-

quence of {tNn } Nörlund means of the sequence {sn} , generated by the sequence of
coefficients {pn}.

The series ∑∞
n=0 un is said to be Np summable to the sum s if lim

n→∞
tNn exists and is

equal to a finite number s.
The necessary and sufficient condition for the regularity of (N, pn) method is

pn

Pn
→ 0 as n → ∞.

Let E(1)
n = 1

2n

n
∑

k=0

(
n
k

)
sk. If E(1)

n → s as n → ∞, then ∑∞
n=0 un is said to be summable

s to by the Euler Method (E,1) and this method is regular (Hardy [3]).
The product summability (N, pn)(E,1) is obtained by superimposing (N, pn)-

summability on (E,1)-summability.
The (N, pn) transform of (E,1) transform defines the (N, pn)(E,1) transform tNE

n
of the nth partial sum sn of the series ∑∞

n=0 un by

tNE
n =

1
Pn

∑n
k=0 pn−kE

(1)
k =

1
Pn

∑n
k=0 pn−k

1
2k ∑k

ν=0

(
k
v

)
sν

tNE
n =

1
Pn

∑n
k=0 pk

1
2n−k ∑n−k

ν=0

(
n− k
v

)
sν .

If tNE
n → s as n → ∞ then the infinite series ∑∞

n=0 un or the sequence {sn} is said to be
summable (N, pn)(E,1) to the sum s if lim

n→∞
tnNE exists and is equal to s.

sn → s ⇒ E(1)
n → s, as n → ∞, (E,1) method is regular

⇒ tNn (E1
n ) = tNE

n = P−1
n

n

∑
k=0

pn−ksk → s, as n → ∞, (N, pn) method is regular

⇒ (N, pn)(E,1) method is regular

For a 2π -periodic function f ∈ Lp := Lp [0,2π] , p � 1, integrable in the sense of
Lebesgue, let

sn ( f ;x) :=
a0

2
+

∞

∑
n=1

(an cosnx+bn sinnx), n ∈ N with s0 ( f ;x) =
a0

2
.

Denotes (n+1)th partial sums, called trigonometric polynomial of degree (or order)
n , of the Fourier series of f . The Fourier series and trigonometric polynomials play an
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important role in various scientific and engineering fields, e.g., Lo and Hui [17] use the
Fourier series expansion in a very nice way. Based upon the Fourier series expansion,
they propose a simple and easy-to-use approach for computing accurate estimates of
Black-Scholes double barrier option prices with time-dependent parameters.

The conjugate series of Fourier series is given by

∞

∑
n=1

(bn cosnx−an sinnx) ≡
∞

∑
n=1

Bn (x). (1)

A signal (function) f ∈ Lipα, if

f (x+ t)− f (x) = O(|tα |) for 0 < α � 1, t > 0

and f ∈ Lip(α,r) , for 0 � x � 2π , [4] if⎛⎝ 2π∫
0

| f (x+ t)− f (x)| rdx

⎞⎠1/r

= O
(|t|α) , 0 < α � 1, r � 1, t > 0.

f ∈ Lip(ξ (t),r) [6], if

Lip(ξ (t) ,r) =
{

f ∈ Lp [0,2π] : ‖ f (x+ t)− f (x)‖p = O(ξ (t))
}

, t > 0, r � 1.

L∞ -norm of a function f : R → R is defined by ‖ f‖∞ = sup{| f (x)| : x ∈ R} .

Lr -norm of a function is defined by ‖ f‖r =
(∫ 2π

0 | f (x)|rdx
)1/r

, 1 � r < ∞ .

The degree of approximation of a function f : R→ R by trigonometric polynomial
tn of order n under sup norm ‖ ‖∞ is defined by ([12])

‖tn − f‖∞ = sup{|tn(x)− f (x)| : x ∈ R}
and En( f ) of a function f ∈ Lr is given by En( f ) = min

n
‖tn − f‖r.

Some interesting results on summability methods and their applications can be
seen in Totur and Canak [11], Mursaleen [13] and Bor and Ozarslan [14], Nigam and
Sharma [19], Sulaiman [20], Canak et al. [21], Szász [22], Erdem and Totur [23] and
Canak [24].

Abel’s Transformation: The formula

∑n
k=m

ukvk = ∑n−1
k=m

Uk(vk − vk+1)−Um−1vm +Unvn, (2)

where 0 �m � n , Uk = u0+u1+u2+ . . .+uk , if k � 0, U−1 = 0, which can be verified,
is known as Abel’s transformation and will be used extensively in what follows.

If vm,vm+1, . . . ,vn are non-negative and non-increasing, the left hand side of (2)
does not exceed

2vm max
m−1�k�n

|Uk| in absolute value. In fact,

∣∣∑n
k=m ukvk

∣∣ � max |Uk|
{
∑n−1

k=m (vk − vk+1)+ vm + vn

}
= 2vm max |Uk| . (3)
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We use the following notations throughout this paper

ψx(t) = ψ(t) = f (x+ t)− f (x− t), Δpk = pk − pk+1, k � 0(
ÑE

)
n
(t) =

1
2πPn

n

∑
k=0

pk
cosn−k

(
t
2

)
cos

(
n− k+ 1

2

)
(t)

sin
(

t
2

)
and τ := [1/t] , the integral of 1/t .

The study of error estimates of the periodic functions in Lipschitz [Lipα ⊆Lip(α,r)
⊆ Lip(ξ (t),r)] spaces through the summability means of Fourier series, referred as
Fourier approximation in the literature, has been of a growing interests over the last
decades as mentioned in Srivastava and Singh [18]. The engineers and scientists use
properties of Fourier approximation for designing digital filters. Especially, Psarakis
and Moustakides [16] presented a new L2 based method for designing the Finite Im-
pulse Response (FIR) digital filters and get corresponding optimum approximations
having improved performance. Lp -space in general, L2 and L∞ in particular play an
important role in the theory of signals and filters. A good amount of work on Lp -
boundedness of Cesàro means, a particular type of Hausdorff matrix, of orthonormal
expansions for general exponential weights. In the last four decades, a lot of work has
been done on the trigonometric Fourier approximation of f ∈ Lip(ξ (t) ,r) , r > 1. The
purpose of this research article is to determine the degree of approximation of a signal
(function) f ∈ Lip(ξ (t) ,r) , (r � 1) by product summability transforms of conjugate
series of its Fourier series under proper (correct) set of conditions. The product trans-
form (N, pn)(E,1) plays an important role in signal theory as a double digital filter in
finite impulse response in particular [25]. This fact shows that in same way our results
are very extensive results.

3. Main results

In this paper, we determine the degree of approximation f ∈ Lip(α,r) and
Lip(ξ (t) ,r) , (r � 1) , through trigonometric polynomials.

THEOREM 3.1. Let (N, pn) be a regular Nörlund defined by a positive generating
sequence {pn}.

Let f : [0,2π] → R be 2π -periodic, integrable in the sense of Lebesgue and be-
longing to Lip(α,r) , (r � 1)-class. If either

(i) (n+1)pn = O(Pn), (ii)
n−1

∑
k=0

|Δpk| = O

(
Pn

n+1

)
, (4)

or

(i)′ (n+1)pn = O(Pn), (ii)′
n−1

∑
k=0

∣∣∣∣Δ Pk

k+1

∣∣∣∣ = O

(
Pn

n+1

)
. (5)

Then the degree of approximation of f by (N, pn)(E,1) transform

t̃NE
n =

1
Pn

pk
1

2n−k

n−k

∑
v=0

(
n− k

v

)
s̃v
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of its conjugate series (1)

Ẽn

(
f ,Lr

(α)

)
=
∥∥∥t̃NE

n − f̃
∥∥∥

Lr
(α)

=

⎧⎨⎩O((n+1)−α), 0 < α < 1

O
(

log(n+1)
(n+1)

)
, α = 1.

, for n = 0,1,2,3, . . . .

THEOREM 3.2. Let(N, pn) be a regular Nörlund method defined by a positive
sequence {pn} satisfying equation (4) or (5). Suppose that ξ (t) be a modulus of con-
tinuity such that

ν∫
0

ξ (t)
t

dt = O(ξ (ν)) , 0 < ν < π . (6)

Let f : [0,2π]→R be a 2π -periodic, integrable in the sense of Lebesgue and belonging
to Lip(ξ (t) ,r) , (r � 1)-class then its degree of approximation by t̃NE

n means of its
conjugate series (1) is given by

Ẽn

(
f ,Lr

(α)

)
=
∥∥∥t̃NE

n − f̃
∥∥∥

Lr
(α)

= O

⎛⎜⎝ 1
n+1

π∫
π

n+1

ξ (t)
t2

dt

⎞⎟⎠ .

THEOREM 3.3. Let (N, pn) be a regular Nörlund method defined by a positive
sequence {pn} satisfying equation (4) or (5).

Let f : [0,2π] → R be a 2π -periodic, integrable in the sense of Lebesgue and
belonging to Lip(ξ (t) ,r) , (r � 1)-class(

ξ (t)
t

)
is monotonic decreasing in

(
π

n+1
,π
)

(7)

then its degree of approximation by t̃NE
n means of its conjugate series (1) is given by

Ẽn

(
f ,Lr

(α)

)
=
∥∥∥t̃NE

n − f̃
∥∥∥

Lr
(α)

= O

(
ξ
(

1
(n+1)

)
log(n+1)

)
.

4. Lemmas

In order to prove our theorems, we need the following Lemmas.

LEMMA 4.1. For 0 < t � π
(n+1) , (ÑE)n(t) = O(τ) .

Proof. For 0 < t � π
(n+1) , cosnt � 1, and sin(t/2) � (t/π) , for 0 < t � π

(n+1) ,
we have ∣∣∣(ÑE)n(t)

∣∣∣ =

∣∣∣∣∣ 1
2πPn

n

∑
k=0

pk
cosn−k

(
t
2

)
cos

(
n− k+ 1

2

)
(t)

sin
(

t
2

) ∣∣∣∣∣
� 1

2πPn

n

∑
k=0

pk
1

t/π

= O(τ).
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This completes the proof of Lemma 4.1. �

LEMMA 4.2. For π
(n+1) < t < π , (ÑE)n(t) = O

(
τ2

(n+1)

)
under conditions of our

theorem {pn}.

Proof. Case 1. If (n+1) pn = O(Pn) ,
n−1
∑

k=0
|Δpk| = O

(
P

n+1

)
.

For sin t
2 � t

π ,
∣∣cosn−k t

2

∣∣ � 1, 0 < k < n and using Abel’s lemma, we get∣∣∣(ÑE)n(t)
∣∣∣

=

∣∣∣∣∣ 1
2πPn

n

∑
k=0

pk
cosn−k

(
t
2

)
cos

(
n− k+ 1

2

)
(t)

sin
(

t
2

) ∣∣∣∣∣
� 1

2tPn

n

∑
k=0

∣∣∣∣pk cos

(
n− k+

1
2

)
t

∣∣∣∣
� 1

2tPn

[
n−1

∑
k=0

|pk − pk+1|
k

∑
j=0

cos

(
n− j +

1
2

)
t + pn

n

∑
k=0

cos

(
n− k+

1
2

)
t

]

� 1
2tPn

[
n−1

∑
k=0

|Δpk|+ pn

]
max

0�k�n

∣∣∣∣∣ n

∑
k=0

cos

(
n− k+

1
2

)
t

∣∣∣∣∣
= O

(
τ2

Pn

)[
n−1

∑
k=0

|Δpk|+ pn

]

= O

(
τ2

Pn

)(
Pn

n+1
+

Pn

n+1

)
= O

(
τ2

n+1

)
.

Case 2. For sin t
2 � t

π ,
∣∣cosn−k t

2

∣∣ � 1, 0 < k < n , (n+1) pn = O(Pn) and
n−1
∑

k=0

∣∣∣Δ(
Pk

k+1

)∣∣∣ = O
( Pn

n+1

)
, using Abel’s lemma, we have

∣∣∣(̃NE)n(t)
∣∣∣

=

∣∣∣∣∣ 1
2πPn

n

∑
k=0

pk
cosn−k

(
t
2

)
cos

(
n− k+ 1

2

)
(t)

sin
(

t
2

) ∣∣∣∣∣
� 1

2tPn

n

∑
k=0

pk cos

(
n− k+

1
2

)
(t)

= O

(
1

2tPn

n

∑
k=0

(
Pk

k+1

)
cos

(
n− k+

1
2

)
(t)

)
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= O

[
1

2tPn

{
n−1

∑
k=0

∣∣∣∣Δ(
Pk

k+1

)∣∣∣∣ k

∑
v=0

cos(n−v+1)
( t

2

)
+

Pn

n+1

n

∑
k=0

cos

(
n−k+

1
t

)
t

}]

= O

(
1

2tPn

)[
n−1

∑
k=0

∣∣∣∣Δ(
Pk

k+1

)∣∣∣∣+ Pn

n+1

]
max

0�k�n

∣∣∣∣∣ n

∑
k=0

cos

(
n− k+

1
2

)
t

∣∣∣∣∣
= O

(
1

2tPn

)[
n−1

∑
k=0

∣∣∣∣Δ(
Pk

k+1

)∣∣∣∣+ Pn

n+1

]
max

0�k�n

∣∣∣∣cos(2n− k+1) t
2 cos(k+1) t

2

sin t
2

∣∣∣∣
= O

(
1

2t2Pn

)[
Pn

n+1
+

Pn

n+1

]
= O

(
τ2

(n+1)

)
.

This completes the proof of Lemma 4.2. �

LEMMA 4.3. Let f ∈ Lip(α,r) , 0 < α � 1 , r � 1, then

[∫ 2π

0
|ψ (x,t)|r

] 1
r

= O
(|t|α) .

Proof. Clearly,

|ψ (x,t)| = | f (x+ t)− f (x− t)− f (x)+ f (x)|
� | f (x+ t)− f (x)|+ | f (x− t)− f (x)| .

Then using Minkowski’s inequality, we have

[∫ 2π

0
|ψ (x, t)|rdx

] 1
r

�
[∫ 2π

0
{| f (x+ t)− f (x)|+ | f (x− t)− f (x)|}

r

dx

] 1
r

�
[∫ 2π

0
| f (x+ t)− f (x)|

r

dx

] 1
r

+
[∫ 2π

0
| f (x− t)− f (x)|

r

dx

] 1
r

= O
(|t|α)+O

(|t|α)
= O

(|t|α) .

This completes the proof of Lemma 4.3. �

LEMMA 4.4. If f ∈ Lip(ξ ,r) , r � 1 , then

[∫ 2π

0
|ψ (x,t)|r

] 1
r

= O(ξ (t)) .

Proof. The proof of this Lemma is similar to proof of Lemma 4.3. �
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5. Proof of the Theorem 3.1

Let s̃n ( f ;x) denotes the partial sum of series (1), then we have

s̃n ( f ;x)− f̃ (x) =
1
2π

∫ π

0
ψ (x,t)

cos
(
n+ 1

2

)
t

sin(t/2)
dt.

Denoting (E,1) means of s̃n ( f ;x) by Ẽ(1)
n (x) , we obtain

1
2n

n

∑
k=0

(
n

k

){
s̃n ( f ;x)− f̃ (x)

}
=

1
2n+1π

∫ π

0

ψ (x,t)
sin(t/2)

n

∑
k=0

(
n

k

)
cos

(
k+

1
2

)
tdt

Ẽ(1)
n (x)− f̃ (x) =

1
2n+1π

∫ π

0

ψ (x,t)
sin(t/2)

Re

{
n

∑
k=0

(
n
k

)
ei(k+ 1

2)t
}

dt

=
1

2n+1π

∫ π

0

ψ (x,t)
sin(t/2)

Re{eit/2(1+ eit)n}dt

=
1

2n+1π

∫ π

0

ψ (x,t)
sin(t/2)

Re{2ncosn
( t

2

)
ei(n+1)t/2}dt

=
1
2π

∫ π

0
ψ (x,t)

cosn
(

t
2

)
cos(n+1)

(
t
2

)
sin(t/2)

dt.

(N, pn) means of Ẽ(1)
n (x) i.e. t̃NE

n (x) is given by

1
Pn

n

∑
k=0

pk

{
Ẽ(1)

n−k ( f ;x)− f̃ (x)
}

=
1

2πPn

n

∑
k=0

pk

∫ π

0
ψ (x, t)

cosn−k
(

t
2

)
cos

(
n−k+ 1

2

)
(t)

sin(t/2)
dt

t̃NE
n (x)− f̃ (x) =

∫ π

0
ψ (x,t)

(
ÑE

)
n
(t)dt (8)

Hence by generalized Minkowski’s inequality ([12], p.p. 18–19) Lemma (4.3), we shall
obtain the proof of this theorem in a quite different method as following:

∥∥∥t̃NE
n − f̃

∥∥∥
Lr

(α)

=
[∫ 2π

0

∣∣∣̃tNE
n ( f ;x)− f̃ (x)

∣∣∣rdx

] 1
r

=
[∫ 2π

0

∣∣∣∣∫ π

0
ψ (x,t)

(
ÑE

)
n
(t)dt

∣∣∣∣rdx

] 1
r

�
∫ π

0

{∫ 2π

0
|ψ (x,t)|rdx

} 1
r ∣∣∣(ÑE

)
n
(t)

∣∣∣dt

= O

(∫ π
(n+1)

0
(tα)

(
ÑE

)
n
(t)dt

)
+O

(∫ π

π
(n+1)

(tα)
(
ÑE

)
n
(t)dt

)
= I1 + I2, (say). (9)
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If f ∈ Lipα, then ψ (x,t) ∈ Lip(α,r) .
Using Lemma 4.1, we have

|I1| = O

(∫ π
(n+1)

0
tα 1

t
dt

)
= O

(
(n+1)−α) . (10)

Now applying Lemma (4.2), we get

|I2| = O

(∫ π

π
(n+1)

τ2

(n+1)
dt

)
= O

[(
1

(n+1)

)∫ π

π
(n+1)

tα−2dt

]

=

⎧⎪⎨⎪⎩
O
[(

1
(n+1)

)( 1
1−α

)( 1
(n+1)α−1 −πα−1

)]
, 0 < α < 1

O
(

log(n+1)
n+1

)
, α = 1

=

⎧⎨⎩O
(
(n+1)−α) , 0 < α < 1

O
(

log(n+1)
n+1

)
, α = 1

(11)

On combining equations (9) to (11), we have

Ẽn

(
f ,Lr

(α)

)
=
∥∥∥t̃NE

n − f̃
∥∥∥

Lr
(α)

=

⎧⎨⎩O((n+1)−α), 0 < α < 1

O
(

log(n+1)
(n+1)

)
, α = 1

for n = 0,1,2,3, . . . .
This completes the proof of Theorem 3.1. �

6. Proof of the Theorem 3.2

Using (9), Lemma 4.4 and generalized Minkowski’s inequality

∥∥∥t̃NE
n − f̃

∥∥∥ =

⎡⎣ 2π∫
0

∣∣∣̃tNE
n ( f ;x)− f̃ (x)

∣∣∣r dx

⎤⎦ 1
r

=

⎡⎣ 2π∫
0

∣∣∣∣∣∣
π∫

0

ψ(x,t)(ÑE)n(t)dt

∣∣∣∣∣∣
r

dx

⎤⎦
1
r

�
π∫

0

⎧⎨⎩
2π∫
0

|ψ(x,t)|rdx

⎫⎬⎭
1
r ∣∣∣(ÑE)n(t)

∣∣∣dt

=
π∫

0

O(ξ (t))
∣∣∣(ÑE)n(t)

∣∣∣dt
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= O

⎛⎜⎝
π

(n+1)∫
0

(ξ (t))(ÑE)n(t)dt

⎞⎟⎠+O

⎛⎜⎝ π∫
π

(n+1)

(ξ (t))(ÑE)n(t)dt

⎞⎟⎠
= I′1 + I′2. (12)

Now, using Lemma 4.1 and (6), we get

I′1 = O

⎛⎜⎝
π

(n+1)∫
0

ξ (t)
t

dt

⎞⎟⎠

= O

⎛⎜⎜⎝(n+1)

1
(n+1)∫
0

ξ (t)
t

dt

⎞⎟⎟⎠
= O

(
ξ
(

1
n+1

))
, (13)

in view of second mean value theorem for integrals and ξ
( π

n+1

)
� πξ

(
1

n+1

)
, for π

n+1 �
1

n+1 .
Applying Lemma 4.2, we have

I′2 = O

⎛⎜⎝ π∫
π

(n+1)

ξ (t)τ2

(n+1)
dt

⎞⎟⎠

= O

⎛⎜⎝ 1
(n+1)

π∫
π

(n+1)

ξ (t)
t2 dt

⎞⎟⎠ . (14)

Note that

1
(n+1)

π∫
π

(n+1)

ξ (t)
t2 dt � π

(n+1)
ξ
(

1
(n+1)

) π∫
π

(n+1)

1

t2 dt

=
π

(n+1)
ξ
(

1
(n+1)

){
−1

t

}π

π
(n+1)

=
π

(n+1)
ξ
(

1
(n+1)

)(
− 1

π
+

n+1
π

)
It then follows that

ξ
(

1
(n+1)

)
= O

⎛⎜⎝ 1
(n+1)

π∫
π

(n+1)

ξ (t)
t2 dt

⎞⎟⎠ . (15)
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On combining equation from (12) to (15), we get

Ẽn

(
f ,Lr

(ξ )

)
=
∥∥∥t̃NE

n − f̃
∥∥∥

Lr
(ξ )

= O

⎛⎜⎝ 1
(n+1)

π∫
π

(n+1)

ξ (t)
t2 dt

⎞⎟⎠ . (16)

This completes the proof of Theorem 3.2. �

7. Proof of the Theorem 3.3

Following the proof of the theorem 3.2, we obtain

∥∥∥t̃NE
n − f̃

∥∥∥
Lr

(ξ )

= O

⎛⎜⎝ 1
(n+1)

π∫
π

(n+1)

ξ (t)
t2 dt

⎞⎟⎠ . (17)

Applying condition (7) and mean value theorem for integral calculus, (17) becomes

∥∥∥t̃NE
n − f̃

∥∥∥
Lr

(ξ )

= O

⎛⎜⎝ξ
(

1
(n+1)

) π∫
π

(n+1)

1
t
dt

⎞⎟⎠
= O

(
ξ
(

1
(n+1)

)
log(n+1)

)
,

in view of second mean value theorem for integrals and ξ
( π

n+1

)
� πξ

(
1

n+1

)
, for

π
n+1 � 1

n+1 .
This completes the proof of the Theorem 3.3. �
REMARK 1. In the proof of theorem 3.1 of Lal and Mishra [15], the estimate for

the case α = 1 is O
(

log(n+1)π
n+1

)
.

Since 1
n+1 � log(n+1)π

n+1 , the π is not needed in above estimation.

8. Corollaries

In addition, several corollaries are derived from our results as well as those ob-
tained previously by others. The important particular cases of (N,1)(E,1) are

(1) (C,1)(E,1) if pn = 1.

(2) (C,δ ) (E,1) if pn =
(n+δ−1

δ−1

)
, δ > 0.

1. If ξ (t) = tα−β , 0 � β < α � 1 in theorem 3.2, then

∥∥∥t̃NE
n − f̃

∥∥∥ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O

(
1

(n+1)α−β

)
, 0 � β < α < 1.

O

(
log(n+1)

n+1

)
, 0 = β < α = 1.
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Proof. Putting ξ (t) = tα−β , 0 � β < α � 1 in (16), we have

∥∥∥t̃NE
n − f̃

∥∥∥ = O

⎛⎜⎝ 1
(n+1)

π∫
π

(n+1)

tα−β−2dt

⎞⎟⎠

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O

(
1

(n+1)α−β

)
, 0 � β < α < 1.

O

(
log(n+1)

n+1

)
, 0 = β < α = 1.

2. If pn = 1 ∀n � 1 in theorem 3.1, then for f ∈ Lip(α,r) , the degree of approx-
imation by (C,1) (E,1) means is given by

t̃CE
n =

1
n+1 ∑n

k=0

1
2k ∑k

ν=0

(
k

v

)
s̃ν

of its conjugate series (1) is given by

∥∥∥t̃CE
n − f̃

∥∥∥
r
=

⎧⎪⎨⎪⎩
O
((

(n+1)−α)) , 0 < α < 1.

O

(
log(n+1)

n+1

)
, α = 1.

3. If pn = 1 ∀n � 1 in theorem 3.2, then for f ∈ Lip(ξ (t) ,r) , the degree of
approximation by (C,1)(E,1) means tCE

n is given by

∥∥∥t̃CE
n − f̃

∥∥∥
Lr

(ξ )

= O

⎛⎜⎝ 1
(n+1)

π∫
π

(n+1)

ξ (t)
t2 dt

⎞⎟⎠ .

4. If ξ (t) = tα , and r → ∞ in theorem 3.1, then for f ∈ Lipα , 0 < α � 1, the
degree of approximation under supremem norm is given by

∥∥∥t̃NE
n − f̃

∥∥∥
∞

= ess sup
0�x�2π

{
t̃NE
n (x)− f̃ (x)

}
=

⎧⎪⎨⎪⎩
O
((

(n+1)−α)) , 0 < α < 1.

O

(
log(n+1)

n+1

)
, α = 1.

REMARK 2. The independent proofs of Cor 2, Cor 3 and Cor 4 can be derived
along the same lines as the theorems.

9. Example

In this example, we see how the En
1 and tNn ( f ;x) (Nörlund (Np)) summability

of partial sums of a Fourier series is better behaved than the sequence of partial sums
sn (x) itself.
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Let

f (x) =

{−1, −π � x < 0,

1, 0 � x < π ,

with f (x+2π) = f (x) for all real x . Fourier series of f (x) is given by

2
π

∞

∑
n=1

1− (−1)n

n
sinnx, −π � x � π . (18)

Then nth partial sum sn (x) of Fourier series (18) is given by

sn(x) =
4
π

(
sinx+

1
3

sin3x+ . . .+
1
n

sinnx

)
. (19)

Figure 1: Graph of f (x) (blue), sn(x) (pink), En
1 ( f ;x) (yellow), tNn ( f ;x) (green), n = 7 and

14 .

The E1
n summability is defined as the nth partial sum of E1

n summability and we
denote it by E1

n . If

E1
n ( f ;x) =

1
(2)n

n

∑
k=0

(
n
k

)
sk( f ;x) → s, as n → ∞ (20)

Now, Np take to be the Nörlund matrix generated by pn = n+1, then Nörlund means
Np is given by

tNn ( f ;x) =
2

(n+1)(n+2)

n

∑
k=0

(n− k+1)sk( f ;x). (21)

In the figure 1, we observe that E1
n ( f ;x) and tNn ( f ;x) converges to f (x) faster

than sn (x) in the interval [−π ,π] . We further note that near the points of discontinuities
i.e. −π , 0 and π , the graph of s7 and s14 show peaks and move closer the line passing
through points of discontinuity as n increases (Gibbs Phenomenon), but in the graph
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of E1
n ( f ;x) and tNn ( f ;x) , n = 7,14 the peaks become flatter. The Gibbs Phenomenon

is an overshoot a peculiarity of the Fourier series and other eigen function series at a
simple discontinuity i.e. the convergence of Fourier series is very slow at the point
of discontinuity. Thus the product summability means of the Fourier series of f (x)
overshoot the Gibbs Phenomenon and show the smoothing effect of the method. Thus
E1

n ( f ;x) and tNn ( f ;x) are the better approximant than sn (x) .
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