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A NEW SUBCLASS OF HARMONIC MEROMORPHIC

FUNCTIONS INVOLVING QUANTUM CALCULUS

HUDA ALDWEBY AND MASLINA DARUS

Abstract. In this article, we introduce a new subclass of harmonic meromorphic functions which
are defined by means of quantum calculus (q -calculus). With that, we study various interesting
properties of this class. Further, q -integral operator is also defined and we show that the new
class aforementioned is closed under this q -operator.

1. Introduction

Quantum calculus (q -calculus) has created many interests among the researchers
due to its numerous applications in various branches of mathematics. Not to men-
tion of its great influence in theoretical physics as well. The application of q -calculus
was initiated by Jackson [14, 15], who was perhaps the first to develop q -integral and
q -derivative in a systematic way. We also note that in [1, 2, 3], the q -analogue of
Baskakov Durrmeyer operator has been proposed, which is based on q -analogue of
beta function. Some other important generalizations of q -calculus of complex opera-
tors are the q -Picard and q -Gauss-Weierstrass singular integral operators discussed in
[4],[5] and [6]. Very recently, other q -analogues of differential operators have been in-
troduced in [16] and [8, 9, 10]. These q -operators are defined by using convolution of
normalized analytic functions and q -hypergeometric functions, where several interest-
ing results are obtained. We believe that deriving q -analogues of operators defined on
the space of analytic functions, would be important in future. A comprehensive study
on applications of q -analysis in operator theory may be found in [7].

For z ∈ U∗ = U\{0} , let MH denote the class of functions:

f (z) = h(z)+g(z) =
1
z

+
∞

∑
k=1

akz
k +

∞

∑
k=1

bkz
k, (1)

which are harmonic in the punctured unit disk U\{0} , where h and g are analytic in
U∗ and U , respectively, and h has a simple pole at the origin with residue 1 here. The
class MH was studied in [13],[11] and [12]. We further denote by the subclass MH of
MH consisting of functions f of the form

h(z) =
1
z

+
∞

∑
k=1

|ak|zk, z ∈ U\{0} and g(z) = −
∞

∑
k=1

|bk|zk, z ∈ U (2)
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which are univalent harmonic in the punctured unit disk U∗ .

We provide some notations and concepts of q -calculus used in this paper. All the results
can be found in [7].

For n ∈ N , the q -number is defined as follows:

[k]q =
1−qk

1−q
, 0 < q < 1. (3)

Hence, [k]q can be expressed as a geometric series ∑k−1
i=0 qi , when k → ∞ the series

converges to 1\1−q .

As q → 1, [n]q → n , and this is the bookmark of a q -analogue: the limit as q → 1
recovers the classical object.

The q -derivative of a function f is defined by

Dq( f (z)) =
f (qz)− f (z)

(q−1)z
, q �= 1,z �= 0, (4)

and Dq( f (0)) = f ′(0) provided f ′(0) exists. For a function h(z) = zk observe that

Dq(h(z)) = Dq(zk) =
1−qk

1−q
zk−1 = [k]qzk−1,

then limq→1 Dq(h(z))= limq→1[k]qzk−1 = kzk−1 = h′(z) , where h′ is the ordinary deriva-
tive.

The q -Jackson definite integral of the function f is defined by

∫ z

0
f (t)dqt = (1−q)z

∞

∑
n=1

f (zqn)qn, z ∈ C.

DEFINITION 1. A function f = h+ g ∈ MH of the form (1) is said to be in the
class MqS∗H(α) of meromorphically harmonic starlike functions of order α in U if it
satisfies the condition

Re

{
−qz Dq(h(z))−qz Dq(g(z))

h(z)+g(z)

}
> α (z ∈ U, 0 < q < 1, 0 � α < 1).

Also, denote MqS∗H(α) the subclass of MqS∗H(α) consisting harmonic meromorphic
functions f = h+ g where h and g of the form (2) .

In the first theorem we establish the sufficient coefficient condition for the class MqS∗H(α) .
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THEOREM 1. If f = h+g is of the form (1)and satisfies the condition

∞

∑
k=1

[(q[k]q + α)|ak|+(q[k]q−α)|bk|] � 1−α, (5)

where (0 < q < 1) , and 0 � α < 1 then f is harmonic univalent sense-preserving in
U∗ and f ∈ MqS∗H(α) .

Proof. Let the function f = h+g given by (1), satisfying (5). For 0 < |z1| � |z2| < 1,
we have

| f (z1)− f (z2)| � |h(z1)−h(z2)|− |g(z1)−g(z2)|
� |z1 − z2|

|z1||z2| − |z1− z2|
∞

∑
k=1

(|ak|+ |bk|)|zk−1
1 + · · ·zk−1

2 |

>
|z1 − z2|
|z1||z2|

[
1−|z2|2

∞

∑
k=1

q[k]q(|ak|+ |bk|)
]

>
|z1 − z2|
|z1||z2|

[
1−

∞

∑
k=1

(
q[k]q + α

1−α
|ak|+ q[k]q−α

1−α
|bk|
)]

.

This last expression is nonnegative by (5), and so f is univalent in U∗ . In order to
show that f is sense-preserving in U

∗ , it only needs to show that |h′(z)| > |g′(z)| with
ordinary derivative. For 0 < |z| = r < 1, it follows that by using (5)

|q Dq(h(z))| � 1
|z|2 −

∞

∑
k=1

q[k]q|ak||z|k−1

=
1
r2 −

∞

∑
k=1

q[k]q|ak|rk−1

> 1−
∞

∑
k=1

q[k]q|ak|

� 1−
∞

∑
k=1

q[k]q + α
1−α

|ak|

�
∞

∑
k=1

q[k]q−α
1−α

|bk|

>
∞

∑
k=1

q[k]q|bk| >
∞

∑
k=1

q[k]q|bk|rk−1

=
∞

∑
k=1

q[k]q|bk||z|k−1 > |q Dq(g(z))|.

Therefore,
h′(z) = lim

q→1
[|q Dq(h(z))] > lim

q→1
[|q Dq(g(z))] = g′(z)
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which proves that f is sense-preserving in U∗ . In order to show f ∈ MqS∗H(α) , it
suffices to show

Re

{
−qz Dq(h(z))−qz Dq(g(z))

h(z)+g(z)
−α

}
> 0 ,z ∈ U.

It is known that Re(p(z)) > 0 if and only if
∣∣∣ p(z)−1

p(z)+1

∣∣∣< 1 for an analytic function p(z) =

1+ p1z+ p2z2 + · · · .

Let
A(z) = −qz Dq(h(z))+qz Dq(g(z))−αh(z)−αg(z) (6)

and
B(z) = h(z)+g(z). (7)

Then, we have to show that

|A(z)+B(z)|− |A(z)−B(z)|> 0.

Now from (6) and (7), it follows that

|A(z)+B(z)|

=
∣∣∣−qz Dq(h(z))+qz Dq(g(z))−αh(z)−αg(z)+h(z)+g(z)

∣∣∣
=

∣∣∣∣∣2−α
z

−
∞

∑
k=1

(q[k]q + α −1)akz
k +

∞

∑
k=1

(q[k]q −α +1)bkzk

∣∣∣∣∣
� 2−α

|z| −
∞

∑
k=1

(q[k]q + α −1)|ak||z|k −
∞

∑
k=1

(q[k]q−α +1)|bk||z|k

and
|A(z)−B(z)|

=
∣∣∣−qz Dq(H(z))+qz Dq(g(z))−αh(z)−αg(z)−h(z)−g(z)

∣∣∣
=

∣∣∣∣∣−α
z

−
∞

∑
k=1

(q[k]q + α +1)akz
k +

∞

∑
k=1

(q[k]q−α −1)bkzk

∣∣∣∣∣
� α

|z| +
∞

∑
k=1

(q[k]q + α +1)|ak||z|k +
∞

∑
k=1

(q[k]q−α −1)|bk||z|k.

Therefore, we conclude
|A(z)+B(z)|− |A(z)−B(z)|
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� 2(1−α)
|z| −2

∞

∑
k=1

(q[k]q + α)|ak||z|k −2
∞

∑
k=1

(q[k]q −α)|bk||z|k

� 2

{
(1−α)−

∞

∑
k=1

(q[k]q + α)|ak||z|k+1 −
∞

∑
k=1

(q[k]q−α)|bk||z|k+1

}

� 2

{
(1−α)−

(
∞

∑
k=1

(q[k]q + α)|ak|+
∞

∑
k=1

(q[k]q−α)|bk|
)}

> 0.

Now, we prove that the condition (5) is necessary for functions in MqS∗H(α) .

THEOREM 2. Let f = h + g ∈ MH where h and g of the form (2). Then f ∈
MqS∗H(α) if and only if the inequality

∞

∑
k=1

[(q[k]q + α)|ak|+(q[k]q−α)|bk|] � 1−α, (8)

is satisfied.

Proof. In view of Theorem 1, it suffices to show that the “only if” part is true. Assuming
that f ∈ MqS∗H(α) , then we have

Re

{
−qz Dq(h(z))+qz Dq(g(z))−αh(z)−αg(z)

h(z)+g(z)

}
> 0

= Re

{
1−α

z −∑∞
k=1(q[k]q + α)|ak|zk −∑∞

k=1(q[k]q−α)|bk|zk

1
z + ∑∞

k=1 |ak|zk −∑∞
k=1 |bk|zk

}
> 0.

The above condition must hold for all values of z in U∗ . Upon choosing the value of z
on the positive real axis, where 0 < z = r < 1, we conclude

1−α −{∑∞
k=1(q[k]q + α)|ak|rk+1 + ∑∞

k=1(q[k]q−α)|bk|rk+1
}

1+ ∑∞
k=1 |ak|rk+1−∑∞

k=1 |bk|rk+1 > α.

If the condition (8) does not hold, then the numerator is negative for r sufficiently
close to 1. Hence, there exist z0 = r in (0,1) for which the quotient is negative. This
contradicts the required condition for f ∈ MqS∗H(α) and so the proof is complete.

A growth property for functions in the class MqS∗H([a1]) is contained in the following
theorem:

THEOREM 3. Let f = h+ g ∈ MqS∗H(α) defined by (2). Then we have for |z| =
r < 1

1
r
− 1−α

q(1+q)−α
r � | f (z)| � 1

r
+

1−α
q(1+q)−α

r.
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Proof. Let f ∈ MqS∗H(α) , taking the absolute value of f defined by (2) and using
Theorem 2, it follows that

| f (z)| =

∣∣∣∣∣1z +
∞

∑
k=1

akz
k −

∞

∑
k=1

bkzk

∣∣∣∣∣
� 1

r
+

∞

∑
k=1

|ak|rk +
∞

∑
k=1

|bk|rk

� 1
r

+
∞

∑
k=1

(|ak|+ |bk|)r

=
1
r

+
1−α

q(1+q)−α

∞

∑
k=1

q(1+q)−α
1−α

[|ak|+ |bk|] r

� 1
r

+
1−α

q(1+q)−α

∞

∑
k=1

[
q[k]q + α

1−α
|ak|+ q[k]q−α

1−α
|bk|
]
r

� 1
r

+
1−α

q(1+q)−α
r.

The proof of the left inequality is similar to the proof of the right inequality.

THEOREM 4. Let f = h+ g where h and g are given by (2). Then f ∈MqS∗H(α)
if and only if

f (z) =
∞

∑
k=0

(λkhk + γkgk), (9)

where

h0(z) =
1
z
, hk(z) =

1
z

+
(

1−α
q[k]q + α

)
zk,k = 1,2, ... , (10)

and

g0(z) =
1
z
, gk(z) =

1
z
−
(

1−α
q[k]q−α

)
zk,k = 1,2, ... , (11)

where 1 � λk � 0,1 � γk � 0 and ∑∞
k=0(λk + γk) = 1 .

Proof. Letting

f (z) =
∞

∑
k=0

(λkhk + γkgk)

= λ0h0(z)+ γ0g0(z)+
∞

∑
k=1

(λkhk(z)+ γkgk(z))

= (λ0 + γ0)
1
z

+
∞

∑
k=1

λk

(
1
z

+
1−α

q[k]q + α
zk
)

+
∞

∑
k=1

γk

(
1
z

+
1−α

q[k]q−α
zk
)

,
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then

∞

∑
k=1

{
q[k]q + α

1−α

(
1−α

q[k]q + α
λk

)
+

q[k]q−α
1−α

(
1−α

q[k]q−α
γk

)}
∞

∑
k=1

(λk + γk) = 1−λ0− γ0 � 1,

so f ∈ MqS∗H(α) .

Conversely, suppose that f ∈ MqS∗H(α) . Set

λk =
q[k]q + α

1−α
|ak|,0 � λk � 1,

γk =
q[k]q−α

1−α
|bk|,0 � γk � 1,

λ0 = 1−
∞

∑
k=1

λk −
∞

∑
k=1

γk.

Therefore, f can be written as

f (z) =
1
z

+
∞

∑
k=1

|ak|zk −
∞

∑
k=1

|bk|

=
1
z

+
∞

∑
k=1

1−α
q[k]q + α

λkz
k −

∞

∑
k=1

1−α
q[k]q−α

γk z k

= (λ0 + γ0)
1
z

+
∞

∑
k=1

(
1
z

+
1−α

q[k]q + α
zk
)

λk +
∞

∑
k=1

(
1
z
− 1−α

q[k]q−α
z k
)

γk

=
∞

∑
k=0

(λkhk + γkgk),as required.

Next, we proceed three closure theorems which are convolution of the class MqS∗H(α) ,
convex linear combination of its members and finally we show that this class in closed
under q -integral operator.

THEOREM 5. Let f ∈MqS∗H(α) and F ∈MqS∗H(α) , then the convolution function

( f ∗̃F)(z) =
1
z

+
∞

∑
k=1

|ak||Ak|zk −
∞

∑
k=1

|bk||Ak|zk

is in MqS∗H(α) .

Proof. Since F ∈ MqS∗H(α) , then by Theorem 2, |Ak| � 1 and |Bk| � 1, hence

∞

∑
k=1

{
q[k]q + α

1−α
|Akak|+ q[k]q−α

1−α
|Bkbk|

}
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�
∞

∑
k=1

{
q[k]q + α

1−α
|ak|+ q[k]q−α

1−α
|bk|
}

� 1

by Theorem 2, as f ∈ MqS∗H(α) . Thus, f ∗̃F ∈ MqS∗H(α) .

We now examine the convex combination of MqS∗H(α) .

THEOREM 6. Let the functions fi defined as

fi(z) =
1
z

+
∞

∑
k=1

|ak,i|zk −
∞

∑
k=1

|bk,i z
k (12)

be in the class MqS∗H([a1]) for every i = 1,2, · · · , �. , then the function

ξ (z) =
�

∑
i=1

ci fi(z)

is also in the class MqS∗H(α) , where ∑�
i=1 ci = 1 .

Proof. According to the definition of ξ , we can write

ξ (z) =
1
z

+
∞

∑
k=1

(
�

∑
i=1

ci|ak,i|
)

zk −
∞

∑
k=1

(
�

∑
i=1

ci|bk,i|
)

zk.

Further, since fi are in MqS∗H(α) for every i = 1,2, · · · , � . Then by (8) , we have

∞

∑
k=1

{
q[k]q + α

(
�

∑
i=1

ci|ak,i|
)

+q[k]q−α

(
�

∑
i=1

ci|bk,i|
)}

=
�

∑
i=1

ci

{
∞

∑
k=1

(
q[k]q + α|ak,i|+q[k]q−α|bk,i|

)}

�
�

∑
i=1

ci(1−α) � 1−α.

Hence, the proof is complete.

COROLLARY 1. The class MqS∗H(α) is closed under convex combination.

DEFINITION 2. Let f = h + g be defined by (2); then the q -integral operator
Fq : MH → MH is defined by the relation

Fq(z) =
[c]q
zc+1

∫ z

0
tch(t)dqt +

[c]q
zc+1

∫ z

0
tcg(t)dqt,(c > 0),z ∈ U

∗ (13)

where [a]q is the q -number defined by (3).
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From the Definition 2, we conclude that

Fq(z) =
[c]q
zc+1

[∫ z

0

{
tc−1 +

∞

∑
k=1

|ak|tk+c

}
dqt −

∫ z

0

{
|bk|tk+c

}
dqt

]

=
[c]q
zc+1

[(
1−q)z

∞

∑
n=0

(zqn)c−1qn
)

+
∞

∑
k=1

|ak|
(
(1−q)z

∞

∑
n=0

(zqn)k+cqn
)

−
∞

∑
k=1

|bk|
(
(1−q)z

∞

∑
n=0

(zqn)k+cqn
)]

=
[c]q
zc+1

[
zc

[c]q
+

∞

∑
k=1

1
[k+ c+1]q

|ak|zk+c+1−
∞

∑
k=1

1
[k+ c+1]q

|bk|zk+c+1

]

=
1
z

+
∞

∑
k=1

[c]q
[k+ c+1]q

|ak|zk −
∞

∑
k=1

[c]q
[k+ c+1]q

|bk|zk,c > 0,0 < q < 1, |z| < 1. (14)

In the next theorem, we show that the class MqS∗H(α) is closed under the q -integral
operator defined by (13).

THEOREM 7. Let f = h+g be given by (2) and f ∈MqS∗H(α) , then Fq is defined
by (13) also belongs to MqS∗H(α) .

Proof. From the series representation of Fq defined by (14), we see that

[k+ c+1]q− [c]q =
k+c

∑
i=0

qi−
c−1

∑
i=0

qi =
k+c

∑
i=c

qi > 0.

Therefore,

∞

∑
k=1

{
q[k]q + α

(
[c]q

[k+ c+1]q
|ak|
)

+q[k]q−α
(

[c]q
[k+ c+1]q

|bk|
)}

�
∞

∑
k=1

{
(q[k]q + α)|ak|+(q[k]q−α)|bk|

}
� 1−α,

hence, Fq ∈ MqS∗H(α) .
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