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SIDELNIKOV INEQUALITY AND LEGENDRE POLYNOMIALS

N. O. KOTELINA AND A. B. PEVNYI

Abstract. Extremal arrangements (in various meanings of “extremal”) of points on a sphere have
long been a subject of much interest (see [3] for a survey of early works).

One class of such extremal arrangements, consisting of “semidesigns” introduced in [4],
is related to so-called Sidelnikov inequality [8]. In this paper we present a very simple proof of
a discrete case of Sidelnikov inequality and show that it becomes equality on semidesigns.

1. Introduction

Let R
3 denote Euclidean 3-space, 〈x,y〉 the scalar product, ‖x‖ the norm

√〈x,x〉
and S2 the unit sphere {x ∈ R

3 : ‖x‖ = 1} .
The following is a discrete case of Sidelnikov inequality in R

3 .

THEOREM 1. Let x1, . . . ,xm be any vectors in S2 and k a positive integer. Then

m

∑
i=1

m

∑
j=1

〈xi,x j〉2k � m2

2k+1
. (1)

Sidelnikov’s proof of (1) is rather sophisticated. Goethals, Seidel [2] and Ven-
kov [1] gave some other proofs. Our proof given below is based on Legendre polyno-
mials.

2. Some properties of Legendre polynomials

Legendre polynomials {Pn}∞
n=0 can be defined by the conditions: degPn(t) = n ,

Pn(1) = 1 and
1∫

−1

Pn(t)Pm(t)dt = 0, n �= m. (2)

Any three consecutive polynomials Pn−1 , Pn , Pn+1 are connected by the following
relation (see e.g. [6])

tPn(t) =
n+1
2n+1

Pn+1(t)+
n

2n+1
Pn−1(t). (3)

Mathematics subject classification (2010): 39B72.
Keywords and phrases: Legendre polynomials, nonnegative definiteness, semidesign, Sidelnikov in-

equality.

c© � � , Zagreb
Paper JCA-06-13

163

http://dx.doi.org/10.7153/jca-06-13


164 N. O. KOTELINA AND A. B. PEVNYI

Also, we have P0(t) = 1, P1(t) = t .
We need the expansion of t2k in terms of Legendre polynomials. For k = 1 we get

t2 = tP1(t) = 2
3P2(t)+ 1

3P0(t) . Multiply this equation by t and apply (3). We obtain

t3 =
2
3

[3
5
P3(t)+

2
5
P1(t)

]
+

1
3
P1(t) =

2
5
P3(t)+

3
5
P1(t).

Multiplying by t again, we get

t4 =
8
35

P4(t)+
4
7
P2(t)+

1
5
P0(t).

Continuing this process ad infinitum, we obtain an expression of the form

t2k =
k

∑
l=0

clP2k−2l(t), (4)

with cl > 0 for l = 0, . . . ,k . Also, we can find explicitly the last coefficient ck . To this
end, we integrate (4) over [−1,1] :

1∫

−1

t2k dt = ck

1∫

−1

dt,

hence ck = 1/(2k+1) .
In our proof of inequality (1), a decisive role is played by the so-called nonnegative

definiteness of Legendre polynomials.
Let n be a positive integer. For any n > 0 there is the “addition formula”

Pn
(〈x,y〉) =

4π
2n+1

2n+1

∑
s=1

Yns(x)Yns(y), x, y ∈ S2. (5)

Here {Yns} are spherical functions of order n .
For any X = {x1, . . . ,xm} ⊂ S2 consider the sum

Sn(X) =
m

∑
i=1

n

∑
j=1

Pn
(〈xi,x j〉

)
.

By (5) we can rewrite this as

Sn(X) = 4π
2n+1

2n+1

∑
s=1

[ m

∑
i=1

Yns(xi)
]2

, (6)

which yields Sn(X) � 0 — the above nonnegative definiteness.
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3. Proof of theorem 1

Let again system X = {x1, . . . ,xm} be a subset of S2 . Taking t = 〈xi,x j〉 in (4)
and summing over i, j = 1, . . . ,m , we get

S :=
m

∑
i, j=1

〈xi,x j〉2k =
k

∑
l=0

clS2k−2l(X) (7)

with cl > 0 and S2k−2l(X) � 0, hence S � ckS0(X) = m2

2k+1 . �

4. Conditions for the equality case in (1)

Inequality (1) turns to equality on spherical semidesigns. Spherical semidesigns
have been introduced in [4]. One of equivalent definitions is the following

DEFINITION 1. (Spherical Semidesign) A system Φ = {φ1, . . . ,φm} on S2 is called
spherical semidesign of order 2k , iff

Sn(Φ) :=
m

∑
i, j=1

Pn
(〈φi,φ j〉

)
= 0 for n = 2,4,6, . . . ,2k. (8)

Let us compare this with the notion of spherical design introduced in [5]. One of
the possible definitions for a spherical design of order p is the following: a system Φ
is a spherical design of order p iff Sn(Φ) = 0 for all n = 1,2,3, . . . , p (see [7]).

THEOREM 2. Let X = {x1, . . . ,xm} be any system on S2 . The equation

m

∑
i, j=1

〈xi,x j〉2k =
m2

2k+1
(9)

holds if and only if X is a spherical semidesign of order 2k .

Proof. Let S denote the left-hand side of (9). The proof is based on representa-
tion (7). We rewrite it in the form

S =
k−1

∑
l=0

clS2k−2l(X)+
m2

2k+1
,

where cl > 0, l = 0, . . . ,k−1. If S = m2/(2k+1) then

k−1

∑
l=0

clS2k−2l(X) = 0. (10)

From S2k−2l(X) � 0, l = 0, . . . ,k− 1, it follows that S2k−2l(X) = 0 for all l = 0, . . . ,
k− 1, that is, Sn(X) = 0 for n = 2,4, . . . ,2k . By the definition 1, the system X is a
spherical semidesign of order 2k .

Conversely, if X is a spherical semidesign of order 2k , then (10) holds which
yields S = m2/(2k+1) . �
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EXAMPLE 1. Consider an icosahedron inscribed in S2 . Let the points {x1, . . . ,x6,
−x1, . . . ,−x6} be its vertices. Then 〈xi,x j〉 = ±1/

√
5 for i �= j . Hence

6

∑
i, j=1

〈xi,x j〉4 = 6 ·1+30 · 1
25 = 36

5 .

For k = 2, m = 6 we have m2/(2k+1)= 36
5 . By theorem 2 the system X = {x1, . . . ,x6}

is a spherical semidesign of order 4. The set of all 12 vertices of icosahedron is a
spherical design of order 5.

If we take cube, octahedron or dodecahedron inscribed in S2 , then the set of ver-
tices for each of these polyhedra is a spherical design of order 3. At the same time,
their “halves” are spherical semidesigns of order 2.

The authors gratefully acknowledge prof. A. B. Zhubr for help with editing this
paper.
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modulaires”, Monographie de L’Enseignement Mathématique, 37 (2001), 10–86.
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