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CERTAIN NON–LINEAR DIFFERENTIAL POLYNOMIALS

HAVING COMMON POLES SHARING A NON

ZERO POLYNOMIAL WITH FINITE WEIGHT

ABHIJIT BANERJEE AND GOUTAM HALDAR

Abstract. With the notion of weighted sharing we study the uniqueness property of meromorphic
functions having common poles when certain non-inear differential polynomials share a non zero
polynomial function. Our theorems in the paper will improve, extend and supplement a number
of recent results in a more compact and convenient way.

1. Introduction, definitions and results

In this paper by meromorphic functions we will always mean meromorphic func-
tions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f − a and g− a
have the same zeros with the same multiplicities. Similarly, we say that f and g share
a IM, provided that f − a and g− a have the same zeros ignoring multiplicities. In
addition we say that f and g share ∞ CM, if 1/ f and 1/g share 0 CM, and we say
that f and g share ∞ IM, if 1/ f and 1/g share 0 IM.

We adopt the standard notations of value distribution theory (see [6]). We denote
by T (r) the maximum of T (r, f ) and T (r,g) . The notation S(r) denotes any quantity
satisfying S(r) = o(T (r)) as r −→ ∞ , outside of a possible exceptional set of finite
linear measure.

A finite value z0 is said to be a fixed point of f (z) if f (z0) = z0 . For a positive
integer m and a number μ , let m∗ = χμm , where χμ = 0 if μ = 0 and χμ = 1 if
μ �= 0. Throughout this paper, we need the following definition.

Θ(a, f ) = 1− limsup
r−→∞

N(r,a; f )
T (r, f )

,

where a is a value in the extended complex plane.
We start with the following famous theorem of W.K. Hayman (see [5], Corollary

of Theorem 9) obtained in 1959.

THEOREM A. Let f be a transcendental meromorphic function and n(� 3) is
an integer. Then f n f ′ = 1 has infinitely many solutions.
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In 1997, Yang and Hua obtained the following uniqueness result corresponding to
Theorem A :

THEOREM B. [17] Let f and g be two non-constant meromorphic functions,
n � 11 be a positive integer and a ∈ C−{0} . If f n f ′ and gng′ share a CM, then
either f (z) = c1ecz , g(z) = c2e−cz , where c1 , c2 and c are three constants satisfying
(c1c2)n+1c2 = −1 or f ≡ tg for a constant t such that tn+1 = 1 .

Using the idea of sharing fixed points, in 2002, M.L. Fang and H.L. Qiu further
extended Theorem B in the following manner.

THEOREM C. [4] Let f and g be two non-constant meromorphic functions, and
let n � 11 be a positive integer. If f n f ′ − z and gng′ − z share 0 CM, then either
f (z) = c1ecz2 , g(z) = c2e−cz2 , where c1 , c2 and c are three nonzero complex numbers
satisfying 4(c1c2)n+1c2 = −1 or f = tg for a complex number t such that tn+1 = 1 .

For the past few years researchers have become more interested in the value shar-
ing of nonlinear differential polynomials which are the k -th derivative of some linear
expression of f and g .

In 2010, J.F. Xu, F. Lu and H.X. Yi proved the following results.

THEOREM D. [15] Let f and g be two non-constant meromorphic functions,
and let n , k be two positive integers with n > 3k+ 10. If ( f n)(k) and (gn)(k) share z

CM, f and g share ∞ IM, then either f (z) = c1ecz2 , g(z) = c2e−cz2 , where c1 , c2 and
c are three constants satisfying 4n2(c1c2)nc2 = −1 or f ≡ tg for a constant t such
that tn = 1 .

THEOREM E. [15] Let f and g be two non-constant meromorphic functions
satisfying Θ(∞, f ) > 2

n , and let n , k be two positive integers with n � 3k + 12. If
( f n( f −1))(k) and (gn(g−1))(k) share z CM, f and g share ∞ IM, then f ≡ g.

In the mean time in 2008 Zhang and Lin [21, 22] obtained a more generalised
result for entire function as follows.

THEOREM F. [21, 22] Let f and g be two non-constant entire functions, and
n, m, k be three positive integers with n > 2k +m∗ + 4. Suppose ( f n(μ f m + λ ))(k) ,
(gn(μgm + λ ))(k) share 1 CM, where λ , μ are constants such that |λ |+ |μ | �= 0 . If

(i) λ μ �= 0 , and gcd (n,m) = d , then f d ≡ gd ; especially when d = 1 , f ≡ g. or
while m = 1 and Θ(∞, f ) > 2/n, then f ≡ g;

(ii) if λ μ = 0 , then either f = tg , where t is a constant satisfying tn+m∗
= 1 or

f = c1ecz , g = c2e−cz , where c1 , c2 and c are three constants such that (−1)kλ 2(c1c2)n+m∗

[(n+m∗)c]2k = 1 or (−1)kμ2(c1c2)n+m∗
[(n+m∗)c]2k = 1 .

In 2001 an idea of gradation of sharing of values was introduced in {[8], [9]}
which measures how close a shared value is to being share CM or to being shared IM.
This notion is known as weighted sharing and is defined as follows.

DEFINITION 1. [8, 9] Let k be a nonnegative integer or infinity. For a∈C∪{∞}
we denote by Ek(a; f ) the set of all a -points of f , where an a -point of multiplicity m
is counted m times if m � k and k +1 times if m > k . If Ek(a; f ) = Ek(a;g) , we say
that f , g share the value a with weight k .
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The definition implies that if f , g share a value a with weight k then z0 is an a -
point of f with multiplicity m (� k) if and only if it is an a -point of g with multiplicity
m (� k) and z0 is an a -point of f with multiplicity m (> k) if and only if it is an a -
point of g with multiplicity n (> k) , where m is not necessarily equal to n .

We write f , g share (a,k) to mean that f , g share the value a with weight k .
Clearly if f , g share (a,k) , then f , g share (a, p) for any integer p , 0 � p < k . Also
we note that f , g share a value a IM or CM if and only if f , g share (a,0) or (a,∞)
respectively. If a is a small function we define that f and g share (a, l) which means
f and g share a with weight l if f −a and g−a share (0, l) .

With the notion of weighted sharing in 2011, X. Q. Lin [12] improved Theorem F
as follows.

THEOREM G. [12] Let f and g be two non-constant entire functions, and let
n , m, and k be three positive integers. Suppose ( f n(μ f m + λ ))(k) , (gn(μgm + λ ))(k)

share (1, l) , where λ , μ are constants such that |λ |+ |μ | �= 0 and one of the following
conditions holds.:

(i) l = 2 and n > 2k+m∗+4 ;

(ii) l = 1 and n > 5k+3m∗+9
2 ;

(iii) l = 0 and n > 5k+4m∗+7 .

then conclusion of Theorem F holds.

In 2012 Wang and Luo [13] investigated Theorem F for meromorphic functions
and replaced value sharing by fixed point sharing.

THEOREM H. [13] Let f and g be two transcendental meromorphic functions
and n, m, k be three positive integers with n > 3k + m∗ + 7 . Suppose ( f n(μ f m +
λ ))(k) , (gn(μgm + λ ))(k) share (z,∞) , f , g share (∞,0); where λ (�= 0) , μ be con-
stants. then one of the following results holds:

(i) if μ = 0 , then either f = tg , where t is a constant satisfying tn = 1 , or
k = 1 , f = c1ecz2 , g = c2e−cz2 , where c1 , c2 and c are three constants such that
4λ 2(c1c2)n[nc]2 = −1 .

(ii) μ �= 0 and m � 2 and gcd (n,m) = 1 , then f ≡ g.
(iii) If μ �= 0 and m = 1 then either f ≡ g or

f = − λh(hn−1)
μ(hn+1−1)

, f = − λ (hn−1)
μ(hn+1−1)

,

where h is a non-constant meromorphic function.

Also J. Wang, W. Lu and Y. Chen [14] investigated the IM value sharing counter-
part of Theorem H as follows.

THEOREM I. [14] Let f and g be two non-constant meromorphic functions, and
n, k , m be three positive integers with n > 9k+6m∗+13. Suppose ( f n(μ f m +λ ))(k) ,
(gn(μgm + λ ))(k) share (1,0) , where λ , μ are constants such that |λ |+ |μ | �= 0 , and
f , g share (∞,0) .
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(i) If λ μ �= 0 , m > 1 and (n,n+m) = 1 , or while m = 1 and Θ(∞, f ) > 2/n,
then f ≡ g;

(ii) if λ μ = 0 , then either f = tg , where t is a constant satisfying tn+m∗
=

1 or f = c1ecz2 , g = c2e−cz2 , where c1 , c2 and c are three constants such that
(−1)kλ 2(c1c2)n+m∗

[(n+m∗)c]2k = 1 or (−1)kμ2(c1c2)n+m∗
[(n+m∗)c]2k = 1 .

The purpose of the paper is to unify all the above mentioned theorems into a single
result under relaxed sharing hypothesis, which will improve, extend and generalize all
the results discussed above in a large extent. We present the main result as follows.

THEOREM 1. Let f and g be two transcendental meromorphic functions shar-
ing (∞,0); ( f n(μ f m + λ ))(k) , (gn(μgm + λ ))(k) share (p(z), l) , where p(z) be a
nonzero polynomial with deg(p) = r , λ , μ are constants such that |λ |+ |μ | �= 0 and
n, m, k be three positive integers. Suppose one of the following conditions hold:

(a) l � 3 and n > max{3k+m∗+6,k+2r} ;

(b) l = 2 and n > max{3k+m∗+8,k+2r} ;

(c) l = 1 and n > max{4k+ 3m∗
2 +9,k+2r} ;

(d) l = 0 and n > max{9k+4m∗+14,k+2r} .

Then
(i) if λ μ �= 0 and (a) m = 1 , Θ(∞, f )+Θ(∞,g) > 4/n; or (b) m � 2 and for some

constant t , satisfying td ≡ 1 ,
we have f ≡ tg , where d = (n+m,n) .

(ii) if λ μ = 0 , then either f = tg , where t is a constant satisfying tn+m∗
= 1 or

if p(z) is not a constant, then f = c1ecQ(z) , g = c2e−cQ(z) , where Q(z)=
∫ z
0 p(z)dz,

c1 , c2 and c are constants such that a2
m∗(c1c2)n+m∗

[(n+m∗)c]2 = −1 ;
if p(z) is a nonzero constant b, then f = c3ecz , g = c4e−cz , where c3 , c4 and c

are constants such that (−1)ka2
m∗(c3c4)n+m∗

[(n+m∗)c]2k = b2 , where am∗ = μ , when
m∗ = m and am∗ = λ , when m∗ = 0 .

THEOREM 2. Let f and g be two transcendental entire functions sharing (∞,0);
( f n(μ f m +λ ))(k) , (gn(μgm +λ ))(k) share (p(z), l) , where p(z) be a nonzero polyno-
mial with deg(p) = r , λ , μ are constants such that |λ |+ |μ | �= 0 and n, m, k be three
positive integers. Suppose one of the following conditions holds:

(a) l � 2 and n > max{2k+m∗+4,k+2r} ;

(b) l = 1 and n > max{ 5k+3m∗+9
2 ,k+2r} ;

(c) l = 0 and n > max{4k+3m∗+6,k+2r} .

Then
(i) if λ μ �= 0 and (a) m = 1 ; or (b) m � 2 and for some constant t , satisfying

td ≡ 1 , we have f ≡ tg , where d = (n+m,n) .
(ii)if λ μ = 0 , then either f = tg , where t is a constant satisfying tn+m∗

= 1 or
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if p(z) is not a constant, then f = c1ecQ(z) , g = c2e−cQ(z) , where Q(z)=
∫ z
0 p(z)dz,

c1 , c2 and c are constants such that a2
m∗(c1c2)n+m∗

[(n+m∗)c]2 = −1 ;
if p(z) is a nonzero constant b, then f = c3ecz , g = c4e−cz , where c3 , c4 and c

are constants such that (−1)ka2
m∗(c3c4)n+m∗

[(n+m∗)c]2k = b2 , where am∗ = μ , when
m∗ = m and am∗ = λ , when m∗ = 0 .

REMARK 1. In both the theorems when p(z) is a constant f and g can be taken
as non-constant instead of transcendental.

We now explain following definitions and notations which are used in the paper.

DEFINITION 2. [7] Let p be a positive integer and a ∈ C∪{∞} .

(i) N(r,a; f |� p) (N(r,a; f |� p))denotes the counting function (reduced counting
function) of those a -points of f whose multiplicities are not less than p .

(ii) N(r,a; f |� p) (N(r,a; f |� p))denotes the counting function (reduced counting
function) of those a -points of f whose multiplicities are not greater than p .

DEFINITION 3. {11, cf.[18]} For a ∈ C∪{∞} and a positive integer p we de-
note by Np(r,a; f ) the sum N(r,a; f ) + N(r,a; f |� 2) + . . .N(r,a; f |� p) . Clearly
N1(r,a; f ) = N(r,a; f ) .

DEFINITION 4. Let a,b ∈ C ∪{∞} . Let p be a positive integer. We denote by
N(r,a; f | � p | g = b) (N(r,a; f | � p | g �= b)) the reduced counting function of those
a -points of f with multiplicities � p , which are the b -points (not the b -points) of g .

DEFINITION 5. {cf.[1], 2} Let f and g be two non-constant meromorphic func-
tions such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity
p , a 1-point of g with multiplicity q . We denote by NL(r,1; f ) the counting function

of those 1-points of f and g where p > q , by N1)
E (r,1; f ) the counting function of

those 1-points of f and g where p = q = 1 and by N
(2
E (r,1; f ) the counting function

of those 1-points of f and g where p = q � 2, each point in these counting functions is

counted only once. In the same way we can define NL(r,1;g), N1)
E (r,1;g), N

(2
E (r,1;g).

DEFINITION 6. {cf.[1], 2} Let k be a positive integer. Let f and g be two non-
constant meromorphic functions such that f and g share the value 1 IM. Let z0 be a
1-point of f with multiplicity p , a 1-point of g with multiplicity q . We denote by
N f>k (r,1;g) the reduced counting function of those 1-points of f and g such that
p > q = k . Ng>k (r,1; f ) is defined analogously.

DEFINITION 7. [8, 9] Let f , g share a value a IM. We denote by N∗(r,a; f ,g)
the reduced counting function of those a -points of f whose multiplicities differ from
the multiplicities of the corresponding a -points of g .

Clearly N∗(r,a; f ,g) ≡ N∗(r,a;g, f ) and N∗(r,a; f ,g) = NL(r,a; f )+NL(r,a;g) .

DEFINITION 8. Let a,b1,b2, . . . ,bq ∈ C ∪ {∞} . We denote by N(r,a; f | g �=
b1,b2, . . . ,bq) the counting function of those a -points of f , counted according to mul-
tiplicity, which are not the bi -points of g for i = 1,2, . . . ,q .
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2. Lemmas

Let F and G be two non-constant meromorphic functions defined in C . We
denote by H the function as follows:

H =
(

F ′′

F ′ −
2F ′

F −1

)
−

(
G′′

G′ −
2G′

G−1

)
, (2.1)

and

V =
(

F ′

F −1
− F ′

F

)
−

(
G′

G−1
− G′

G

)
. (2.2)

LEMMA 1. [13] Let f be a non-constant meromorphic function and let an(z)(�≡
0) , an−1(z) , . . . , a0(z) be meromorphic functions such that T(r,ai(z)) = S(r, f ) for
i = 0,1,2, . . . ,n. Then

T (r,an f n +an−1 f n−1 + . . .+a1 f +a0) = nT (r, f )+S(r, f ).

LEMMA 2. [20] Let f be a non-constant meromorphic function, and p, k be
positive integers. Then

Np

(
r,0; f (k)

)
� T

(
r, f (k)

)
−T(r, f )+Np+k(r,0; f )+S(r, f ), (2.3)

Np

(
r,0; f (k)

)
� kN(r,∞; f )+Np+k(r,0; f )+S(r, f ). (2.4)

LEMMA 3. [10] If N(r,0; f (k) | f �= 0) denotes the counting function of those
zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted according to
its multiplicity then

N(r,0; f (k) | f �= 0) � kN(r,∞; f )+N(r,0; f |< k)+ kN(r,0; f |� k)+S(r, f ).

LEMMA 4. Suppose that f and g be two non-constant meromorphic functions.
Let F = [ f n(μ f m +λ )](k) , G = [gn(μgm +λ )](k) , where n, k , m are positive integers.
If f , g share ∞ IM and V ≡ 0 , then F ≡ G.

Proof. Suppose V ≡ 0. Then by integration we obtain

1− 1
F

≡ A(1− 1
G

).

If z0 is a pole of f then it is a pole of g . Hence from the definition of F and G we
have 1

F(z0)
= 0 and 1

G(z0)
= 0. So A = 1 and hence F ≡ G . �

LEMMA 5. [11] Let f1 and f2 be two non-constant meromorphic functions sat-
isfying N(r,0; fi)+N(r,∞; fi) = S(r; f1, f2) for i = 1,2 . If f s

1 f t
2 − 1 is not identically

zero for arbitrary integers s and t(|s|+ |t|> 0) , then for any positive ε , we have

N0(r,1; f1, f2) � εT (r)+S(r; f1, f2),
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where N0(r,1; f1, f2) denotes the reduced counting function related to the common 1 -
points of f1 and f2 and T (r) = T (r, f1)+T(r, f2) , S(r; f1, f2) = o(T (r)) as r −→ ∞
possibly outside a set of finite linear measure.

LEMMA 6. [6] Suppose that f is a non-constant meromorphic function, k � 2
is an integer. If

N(r,∞, f )+N(r,0; f )+N(r,0; f (k)) = S(r,
f
′

f
),

then f = eaz+b , where a �= 0 , b are constants.

LEMMA 7. Let f and g be two non-constant meromorphic functions and k , m,
n > 3k +m∗ be three positive integers. If [ f n(μ f m + λ )](k) ≡ [gn(μgm + λ )](k) , then
f n(μ f m + λ )≡ gn(μgm + λ ) .

Proof. We have [ f n(μ f m + λ )](k) ≡ [gn(μgm + λ )](k) .
When k � 2, integrating we get

[ f n(μ f m + λ )](k−1) ≡ [gn(μgm + λ )](k−1) + ck−1.

If possible suppose ck−1 �= 0.
Now in view of Lemma 2 for p = 1 and using the second fundamental theorem we

get

(n+m∗)T (r, f )

� T (r, [ f n(μ f m + λ )](k−1))−N(r,0; [ f n(μ f m + λ )](k−1))+Nk(r,0; f n(μ f m + λ ))
+S(r, f )

� N(r,0; [ f n(μ f m + λ )](k−1))+N(r,∞; f )+N(r,ck−1; [ f n(μ f m + λ )](k−1))

−N(r,0; [ f n(μ f m + λ )](k−1))+Nk(r,0; f n(μ f m + λ ))+S(r, f )

� N(r,∞; f )+N(r,0; [gn(μgm + λ )](k−1))+ kN(r,0; f )+N(r,0;μ f m + λ )+S(r, f )
� {k+1+m∗} T (r, f )+ (k−1)N(r,∞;g)+Nk(r,0;gn(μgm + λ ))+S(r, f )
� {k+1+m∗} T (r, f )+ (k−1) N(r,∞;g)+ k N(r,0;g)+N(r,0;μgm + λ )

+S(r, f )
� {k+1+m∗} T (r, f )+{2k−1+m∗} T (r,g)+S(r, f )+S(r,g)
� {3k+2m∗} T (r)+S(r).

Similarly we get

(n+m∗) T (r,g) � {3k+2m∗} T (r)+S(r).

Combining these we get

(n−m∗−3k) T (r) � S(r),

which is a contradiction since n > 3k+m∗ .
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Therefore ck−1 = 0 and so [ f n(μ f m + λ )](k−1) ≡ [gn(μgm + λ )](k−1) . Repeating
k−1 times, we obtain

f n(μ f m + λ ) ≡ gn(μgm + λ )+ c0.

If k = 1, clearly integrating once we obtain the above. If possible suppose c0 �= 0.
Now using the second fundamental theorem we get

(n+m∗)T (r, f )
� N(r,0; f n(μ f m + λ ))+N(r,∞; f n(μ f m + λ ))+N(r,c0; f n(μ f m + λ ))
� N(r,0; f )+m∗T (r, f )+N(r,∞; f )+N(r,0;gn(μgm + λ ))
� (m∗ +2) T (r, f )+N(r,0;g)+m∗ T (r,g)+S(r, f )
� (m∗ +2) T (r, f )+ (m∗ +1) T (r,g)+S(r, f )+S(r,g)
� (3+2m∗) T (r)+S(r).

Similarly we get

(n+m∗) T (r,g) � (3+2m∗) T (r)+S(r).

Combining these we get

(n−m∗−3) T (r) � S(r),

which is a contradiction since n > 3+m∗ .
Therefore c0 = 0 and so

f n(μ f m + λ )≡ gn(μ f m + λ ).

This completes the Lemma. �

LEMMA 8. Suppose that f and g be two non-constant meromorphic functions.
F , G be defined as in Lemma 4 and H �≡ 0 . If f , g share (∞,0) and F , G share
(1,k1) , then

(
n+m∗− k−1

)
N(r,∞; f ) � (k+m∗+1){T(r, f )+T (r,g)}+N∗(r,1;F,G)

+S(r, f )+S(r,g).

Similar result holds for g also.

Proof. Suppose ∞ is an e.v.P. of f and g then the lemma follows immediately.
Next suppose ∞ is not an e.v.P of f and g . Since H �≡ 0 from Lemma 4 we have

V �≡ 0. We suppose that z0 is a pole of f with multiplicity q and a pole of g with
multiplicity r . Clearly z0 is a pole of F with multiplicity (n+m)q+ k and a pole of
G with multiplicity (n+m)r + k . Noting that f , g share (∞,0) from the definition of
V it is clear that z0 is a zero of V with multiplicity at least n+m+ k−1. Now using
the Milloux theorem [6], p. 55, and Lemma 1, we obtain from the definition of V that

m(r,V ) = S(r, f )+S(r,g).
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Thus using Lemma 1 and (2.4) we get
(
n+m∗+ k−1

)
N(r,∞; f )

� N(r,0;V )
� T (r,V )+O(1)
� N(r,∞;V )+m(r,V )+O(1)
� N(r,0;F)+N(r,0;G)+N∗(r,1;F,G)

+S(r, f )+S(r,g)
� Nk+1(r,0; f n(μ f m + λ ))+Nk+1(r,0;gn(μgm + λ ))+ kN(r,∞; f )

+kN(r,∞;g)+N∗(r,1;F,G)+S(r, f )+S(r,g)
� Nk+1(r,0; f n)+Nk+1(r,0;(μ f m + λ ))+Nk+1(r,0;gn)

+Nk+1(r,0;(μgm + λ ))+2kN(r,∞; f )+N∗(r,1;F,G)
+S(r, f )+S(r,g)

� (k+1)N(r,0; f )+N(r,0;(μ f m + λ ))+ (k+1)N(r,0;g)
+N(r,0;(μgm + λ ))+2kN(r,∞; f )+N∗(r,1;F,G)
+S(r, f )+S(r,g).

This gives
(
n+m∗− k−1

)
N(r,∞; f ) � (k+m∗ +1){T(r, f )+T (r,g)}+N∗(r,1;F,G)

+S(r, f )+S(r,g).

This completes the proof of the lemma. �

LEMMA 9. Let f , g be two transcendental meromorphic functions and F =
[ f n(μ f m+λ )](k)

p(z) , G = [gn(μgm+λ )](k)

p(z) , where p(z) is a non zero polynomial with deg(p) =
r , n(� 1) , k(� 1) , m(� 2) are positive integers such that n > 3k + m∗ + 3 . If f ,
g share (∞,0) and H ≡ 0 then either [ f n(μ f m + λ )](k)[gn(μgm + λ )](k) ≡ p2 or
f n(μ f m + λ )≡ gn(μgm + λ ) .

Proof. Since H ≡ 0, on integration we get

1
F −1

≡ bG+a−b
G−1

, (2.5)

where a , b are constants and a �= 0. From (2.5) it is clear that F and G share (1,∞) .
We now consider the following cases.

Case 1. Let b �= 0 and a �= b .
If b = −1, then from (2.5) we have

F ≡ −a
G−a−1

.

Therefore
N(r,a+1;G) = N(r,∞;F) = N(r,∞; f )+S(r, f ).
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So in view of Lemma 2 and the second fundamental theorem we get

(n+m∗) T (r,g)
� T (r,G)+Nk+1(r,0;gn(μgm + λ ))−N(r,0;G)+S(r,g)
� N(r,∞;G)+N(r,0;G)+N(r,a+1;G)+Nk+1(r,0;gn(μgm + λ ))−N(r,0;G)+S(r,g)
� N(r,∞;g)+Nk+1(r,0;gn(μgm + λ ))+N(r,∞; f )+S(r, f )+S(r,g)
� N(r,∞;g)+Nk+1(r,0;gn)+Nk+1(r,0;(μgm + λ ))+N(r,∞; f )+S(r, f )+S(r,g)
� 2N(r,∞;g)+ (k+1)N(r,0;g)+T (r,(μgm + λ ))+S(r, f )+S(r,g)
� (k+m∗ +3) T (r,g)+S(r, f )+S(r,g).

Without loss of generality, we suppose that there exists a set I with infinite mea-
sure such that T (r, f ) � T (r,g) for r ∈ I . So for r ∈ I , S(r, f ) can be replaced by
S(r,g) . So for r ∈ I , we get a contradiction from above since n > 3k+m∗+3.

If b �= −1, from (2.5) we obtain that

F − (1+
1
b
) ≡ −a

b2[G+ a−b
b ]

.

So

N(r,
(b−a)

b
;G) = N(r,∞;F) = N(r,∞; f )+S(r, f ).

Using Lemma 2 and the same argument as used in the case when b = −1 we can get a
contradiction.

Case 2. Let b �= 0 and a = b .
If b = −1, then from (2.5) we have

FG ≡ p2,

that is
[ f n(μ f m + λ )](k)[gn(μgm + λ )](k) ≡ p2.

If b �= −1, from (2.5) we have

1
F

≡ bG
(1+b)G−1

.

Therefore

N(r,
1

1+b
;G) = N(r,0;F).

So in view of Lemma 2 and the second fundamental theorem we get

(n+m∗) T (r,g)
� T (r,G)+Nk+1(r,0;gn(μgm + λ ))−N(r,0;G)+S(r,g)

� N(r,∞;G)+N(r,0;G)+N(r,
1

1+b
;G)+Nk+1(r.0;gn(μgm + λ ))

−N(r,0;G)+S(r,g)
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� N(r,∞;g)+ (k+1)N(r,0;g)+T(r,(μgm + λ ))+N(r,0;F)+S(r,g)
� N(r,∞;g)+ (k+1)N(r,0;g)+T(r,(μgm + λ ))+ (k+1)N(r,0; f )

+T (r,(μ f m + λ ))+ kN(r,∞; f )+S(r, f )+S(r,g)
� (k+m∗+2) T (r,g)+ (2k+m∗+1) T (r, f )+S(r, f )+S(r,g).

So for r ∈ I we have

(n+m∗) T (r,g) � (3k+2m∗+3) T (r,g)+S(r,g),

which is a contradiction since n > 3k+m∗+3.
Case 3. Let b = 0. From (2.5) we obtain

F ≡ G+a−1
a

. (2.6)

If a �= 1 then from (2.6) we obtain

N(r,1−a;G) = N(r,0;F).

We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and from (2.6)
we obtain

F ≡ G.

Then by the Lemma 7 we have

f nP( f ) ≡ gnP(g).

�

LEMMA 10. Let f , g be two transcendental meromorphic functions and p(z)
be a non-constant polynomial, where n and k � 2 be two positive integers. If f = eα

and g = eβ , where α , β are non-constant entire functions such that [ f n](k)− p(z) and
[gn](k) − p(z) share 0 CM, then [ f n](k)[gn](k) �≡ p2 .

Proof. Suppose
[ f n](k)[gn](k) ≡ p2. (2.7)

From (2.7) we have

N(r,0; [ f n](k)) = S(r, f ) and N(r,0; [gn](k)) = S(r,g).

Let

F1 =
[ f n](k)

p
and G1 =

[gn](k)

p
. (2.8)

We note that T (r,F1) � n(k + 1)T (r, f ) + S(r, f ) and so T (r,F1) = O(T (r, f )) . By
Lemma 2, one can obtain T (r, f ) = O(T (r,F1)) . Hence S(r,F1) = S(r, f ). Similarly we
get S(r,G1) = S(r,g) . From (2.7) we get

F1G1 ≡ 1. (2.9)
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It is clearl that T (r,F1) = T (r,G1)+O(1) . So S(r,F1) = S(r,G1) . If F1 ≡ cG1 , where c
is a nonzero constant, then F1 is a constant and so f is a polynomial, which contradicts
our assumption. Hence F1 �≡ cG1 and so in the view of (2.9) we see that F1 and G1

share −1 IM.
Now by Lemma 2 we have

N(r,0;F1) � nN(r,0; f )+ kN(r,∞; f )+S(r, f ) � S(r,F1).

Similarly we have

N(r,0;G1) � nN(r,0;g)+ kN(r,∞;g)+S(r,g) � S(r,G1).

Also we see that

N(r,∞;F1) = S(r,F1), N(r,∞;G1) = S(r,G1).

Let

f1 =
F1

G1
.

and

f2 =
F1−1
G1 −1

.

Clearly f1 is non-constant. If f2 is a nonzero constant then F1 and G1 share ∞ CM
and so from (2.9) we conclude that F1 and G1 have no poles.

Next we suppose that f2 is non-constant. We see that

F1 =
f1(1− f2)
f1 − f2

, G1 =
1− f2
f1 − f2

.

Clearly

T (r,F1) � 2[T (r, f1)+T(r, f2)]+O(1)

and

T (r, f1)+T (r, f2) � 4T (r,F1)+O(1).

These give S(r,F1) = S(r; f1, f2) . Also we note that

N(r,0; fi)+N(r,∞; fi) = S(r; f1, f2)

for i = 1,2.
We note that N(r,−1;F1) �= S(r,F1) , since otherwise by the second fundamental

theorem F1 will be a constant.
Also we see that

N(r,−1;F1) � N0(r,1; f1, f2).
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Thus we have

T (r, f1)+T (r, f2) � 4 N0(r,1; f1, f2)+S(r,F1).

Then by Lemma 5 there exist two mutually prime integers s and t(|s|+ |t| > 0) such
that

f s
1 f t

2 ≡ 1,

i.e., [ F1

G1

]s[ F1−1
G1−1

]t ≡ 1. (2.10)

If either s or t is zero then we arrive at a contradiction and so st �= 0.
We now consider following cases:
Case (i): Suppose s > 0 and t = −t1 , where t1 > 0. Then we have

[ F1

G1

]s ≡
[ F1−1
G1 −1

]t1
. (2.11)

Let z1 be a pole of F1 of multiplicity p . Then from (2.11) we see that z1 must be a
zero of G1 of multiplicity p . Now from (2.11) we get 2s = t1 , which is impossible.
Hence F1 has no pole. Similarly we can prove that G1 also has no poles.

Case (ii): Suppose either s > 0 and t > 0 or s < 0 and t < 0. Then from (2.11)
one can easily prove that F1 and G1 have no poles.

Consequently from (2.9) we see that F1 and G1 have no zeros.
Since F1 and G1 have no zeros and poles, we have

F1 ≡ eγ1G1,

i.e.,
[ f n](k) ≡ eγ1 [gn](k), (2.12)

where γ1 is a non-constant entire function.
First suppose that α and β both are both transcendental entire functions. More-

over from (2.7) we see that we see that

N(r,0; [ f n](k)) � N(r,0; p2) = O(logr)

and we see that

N(r,0; [gn](k)) � N(r,0; p2) = O(logr).

From this we get

N(r,∞; f s)+N(r,0; f s)+N(r,0; [ f s](k)) = S(r,nα
′
) = S(r,

[ f n]
′

f n ) (2.13)

and

N(r,∞;gs)+N(r,0;gs)+N(r,0; [gs](k)) = S(r,nβ
′
) = S(r,

[gn]
′

gn ). (2.14)
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Then from (2.13), (2.14) and Lemma 6 we must have

f = eaz+b,g = ecz+d, (2.15)

where a �= 0, b , c �= 0 and d are constants. But these types of f and g do not agree
with the relation (2.7).

Next suppose α , β both are polynomials. Since f = eα and g = eβ , it follows
that

[ f n](k) = A[(α
′
)k +Pk−1(α

′
)]enα , [gn](k) = B[(β

′
)k +Pk−1(β

′
)]enβ ,

where A , B are non-zero constants, Pk−1(α
′
) , Pk−1(β

′
) are differential polynomials

in α ′
and β ′

of degree at most k−1 respectively. From (2.7) we see that α + β = C ,
i.e.,α ′

= β ′
. So deg(α) = deg(β ) .

If deg(α) = deg(β ) = 1, then from (2.7) we again get a contradiction. So we
suppose deg(α) = deg(β ) =� 2. From (2.12) we see that [ f n](k) and [gn](k) share 0
CM. So we have for some non zero constant D

[(α
′
)k +Pk−1(α

′
)] ≡ D[(β

′
)k +Qk−1(β

′
)],

which is impossible as k � 2.
Actually [(α ′

)k + Pk−1(α
′
)] and [(β ′

)k + Qk−1(β
′
)] contain the terms (α ′

)k +
K(α ′

)k−2α ′′
and (β ′

)k +K(β ′
)k−2β ′′

respectively, where K is a suitably chosen posi-
tive integer. But these two terms are not identical. �

LEMMA 11. ([19], Lemma 6) If H ≡ 0 , then F , G share 1 CM. If further F , G
share ∞ IM then F , G share ∞ CM.

LEMMA 12. Let f and g be two transcendental meromorphic functions, let p(z)
be a nonzero polynomial with deg(p) = r ; n , k and m be three positive integers with
n > k + 2r . Suppose that H ≡ 0 . If [ f n(μ f m + λ )](k)[gn(μgm + λ )](k) ≡ p2 , where
λ , μ are constants such that |λ |+ |μ | �= 0 , f and g share (∞,0); if p(z) is not
a constant, then f = c1ecQ(z) , g = c2e−cQ(z) , where Q(z) =

∫ z
0 p(z)dz, c1 , c2 and c

are constants such that a2
m∗(c1c2)n+m∗

[(n + m∗)c]2 = −1 , if p(z) is a nonzero con-
stant b, then f = c3ecz , g = c4e−cz , where c3 , c4 and c are constants such that
(−1)ka2

m∗(c3c4)n+m∗
[(n+m∗)c]2k = b2 , where am∗ = μ , when m∗ = m and am∗ = λ ,

when m∗ = 0 . Also when p(z) is a nonzero constant b, then f and g can be taken as
non-constant.

Proof. Since H ≡ 0. It follows from Lemma 11 that F , G share 1 CM. So [ f n](k)−
p(z) and [gn](k)− p(z) share 0 CM except the zeros of p(z) . Let

[ f n(μ f m + λ )](k)[gn(μgm + λ )](k) ≡ p2. (2.16)

First suppose that λ μ �= 0
Note that f and g share (∞,0) , we have f �= ∞ , g �= ∞ Suppose that z0 is a

zero of f of order p , then z0 will be a zero of [( f n(μ f m + λ )](k) of order np− k .
Since n > k + 2r , we can deduce that z0 must be a zero of p2(z) with order at least
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2r+1. This is impossible. Thus f has no zero. Similarly g has no zero. So f = eα(z) ,
g = eβ (z) , where α(z) and β (z) are two non constant entire functions. Then we get

(μ f n+m)(k) = t2(α ′,α ′′, ...,α(k))e(n+m)α , (2.17)

(λ f n)(k) = t1(α ′,α ′′, ...,α(k))enα , (2.18)

where ti(α ′,α ′′, ...,α(k)) (i = 1,2) are differential polynomials in α ′ , α ′′ , . . . , α(k) .
Obviously

ti(α ′,α ′′, ...,α(k)) �≡ 0

for i = 1,2. From (2.16) and (2.17) we obtain

N(r,0;t2(α ′,α ′′, . . . ,α(k))emα(z) + t1(α ′,α ′′, . . . ,α(k))) (2.19)

� N(r,0; p2(z)) = S(r, f ).

Since α is an entire function, we obtain T (r,α( j))= S(r, f ) for j = 1,2. Hence T (r, ti)=
S(r, f ) for i = 1,2.

So from (2.19) we obtain

mT (r, f ) = T (r,t2emα)+S(r, f )
� N(r,0;t2e

mα)+N(r,0;t2e
mα + t1)+S(r, f )

= S(r, f ),

which is a contradiction.
Hence we have λ μ = 0. Here also f = eα and g = eβ , where α and β are two

non constant entire function. Then from (2.16) we have

a2
m∗ [ f n+m∗

](k)[gn+m∗
](k) ≡ p2. (2.20)

Let s = n+m∗ .
Case1: Let deg(p(z)) = r(� 1) . First suppose k � 2. Then from Lemma 10 we

get a contradiction.
Next suppose k = 1. Suppose that α and β are transcendental. Then from (2.20)

we get
ABα

′
β

′
es(α+β ) ≡ p2(z), (2.21)

where AB = (n+m∗)2a2
m∗ .

Let α + β = γ . From (2.21) we know that γ is not a constant since in that case
we get a contradiction. Now from (2.21) we get

ABα
′
(γ

′ −α
′
)enγ ≡ p2(z). (2.22)

We have T (r,γ ′
) = m(r,γ ′

) = m(r, (enγ )
′

enγ ) = S(r,enγ) . Thus from (2.22) we get

T (r,enγ ) � T (r,
p2

α ′(γ ′ −α ′)
)+O(1)
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� T (r,α
′
)+T(r,γ

′ −α
′
)+O(logr)+O(1)

� 2 T (r,α
′
)+S(r,α

′
)+S(r,enγ),

which implies that T (r,enγ ) = O(T (r,α ′
)) and so S(r,enγ) can be replaced by S(r,α ′

) .
Thus we get T (r,γ ′

) = S(r,α ′
) and so γ ′

is a small with respect to α ′
. In view of (2.22)

and by the second fundamental theorem for small functions we get

T (r,α
′
) � N(r,∞;α

′
)+N(r,0;α

′
)+N(r,0;α

′ − γ
′
)+S(r,α

′
)

� O(logr)+S(r,α
′
),

which shows that α ′
is a polynomial and so α is a polynomial. Similarly we can prove

that β is also a polynomial. This contradicts the fact that α and β are transcendental.
Next suppose without loss of generality that α is a polynomial and β is a tran-

scendental entire function. Then γ is transcendental. So in view of (2.22) we can
obtain

nT (r,eγ ) � T (r,
p2

α ′(γ ′ −α ′)
)+O(1)

� T (r,α
′
)+T (r,γ

′ −α
′
)+S(r,γ)

� T (r,γ
′
)+S(r,eγ) = S(r,eγ),

which leads to a contradiction. Thus α and β both are polynomials. Also from (2.21)
we can conclude that γ(z) = α(z)+β (z)≡C for a constant C and so α ′

(z)+β ′
(z)≡ 0.

Again from (2.21) we get a2
m∗(n+m∗)2esγα ′β ′ ≡ p2(z) . By computation we get

α
′
= cp(z),β

′
= −cp(z). (2.23)

Hence
α = cQ(z)+ l1,β = −cQ(z)+ l2, (2.24)

where Q(z) =
∫ z
0 p(z)dz and l1 , l2 are constants. Finally we take f and g as

f (z) = c1e
cQ(z),g(z) = c2e

−cQ(z),

where c1 , c2 and c are constants such that a2
m∗ [(n+m∗)c]2(c1c2)n+i = −1.

Case 2: Let p(z) be a nonzero constant b . Obviously we get f = eα and g = eβ ,
where α and β are two non-constant entire functions. Proceeding in the same as above
we get in view of (2.20), α = cz+ l3 , β = −cz+ l4 . We can rewrite f and g as

f = c3e
cz,g = c4e

−cz,

where c3 , c4 and c are nonzero constants such that (−1)ka2
m∗(c3c4)n+m∗

[(n+m∗)c]2k =
b2 .

This completes the proof of the lemma. �
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LEMMA 13. Let f and g be two non-constant meromorphic (entire) functions
and n(� 2) , m be two distinct integers satisfying n+m � d +7 (n+m � d +3 ). Then
for two constants λ , μ , with |λ |+ |μ | �= 0 ,

f n (μ f m + λ ) ≡ gn (μgm + λ ) (2.25)

implies the following.
(i) if λ μ �= 0 and

(a) m = 1 , Θ(∞, f )+ Θ(∞,g) > 4/n; or
(b) m � 2 and for some constant t , satisfying td ≡ 1 ,

we have f ≡ tg , where d = (n+m,n) .
(ii) if λ μ = 0 , then f = tg , where t is a constant satisfying tn+m∗

= 1 .

Proof. First suppose λ μ �= 0.
Let m = 1. In this case noting that d = 1 = (n + 1,n) , proceeding in the same

way as done in Lemma 6 of [10] we can show when Θ(∞, f )+Θ(∞,g) > 4/n , we have
f ≡ g .

Next suppose m � 2. Let f �≡ tg for a constant t satisfying td = 1. We put
h = f

g . Then hd �≡ 1, i.e., (h− v0)(h− v1) . . . (h− vd−1) �≡ 0, where vk = exp
(

2kπ i
d

)
,

k = 0,1,2, . . . ,d−1. First suppose that h is constant. Now (2.25) implies

μgm( hn+m−1) ≡−λ (hn−1).

Since gcd(n+m,n)= d , eliminating d common factors namely h−vk , k = 0,1, . . . ,d−
1 from both sides we are left with

agm(h−α1)(h−α2) . . . (h−αn+m−d) ≡ (h−β1)(h−β2) . . . (h−βn−d),

where αi and β j are those zeros of hn+m − 1 and hn − 1 which are not the zeros of
hd−1, i = 1,2, . . . ,n+m−d and j = 1,2, . . . ,n−d . Also we note that none of the αi ’s
coincides with β j ’s. So if h = αi or β j , then we have either (h−β1)(h−β2) . . . (h−
βn−d) ≡ 0 or g ≡ 0 and in both case we get contradictions. Consequentely we assume
neither hn+m ≡ 1 nor hn ≡ 1. Hence we may write

gm = − λ
μ

hn−1
hn+m−1

. (2.26)

It follows from (2.26) that g is a constant, which is impossible. So h is non-constant.
We observe that since a non-constant meromorphic function can not have more than
two Picard exceptional values h can take at least n + m− d − 2 values among u j =

exp
(

2 jπ i
n+m

)
, where j = 0,1,2, . . . ,n+m−1. Since f m has no simple pole h−u j has no

simple zero for at least n+m−d−2 values of u j , for j = 0,1,2, . . . ,n+m−1 and for
these n+m−d−2 values of j within j = 0,1,2, . . . ,n+m−1, we have Θ(u j;h) � 1

2 .
So by the maximum deficiency sum we have n+m−d−2

2 � 2 i.e., n+m � d +6, which
leads to a contradiction as n+m > d +7.

When f and g are entire functions, proceeding in the same way we can obtain
(2.26) where h is non-constant. Since g has no pole and h can omit at most 2 values,
we must have n+m � d +2, which is a contradiction.
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Next suppose λ μ �= 0. Then from the give condition either λ or μ will be
zero. So we get f = tg , where t is a constant satisfying tn+m∗

= 1. This proves
the lemma. �

LEMMA 14. [3] Let f and g be two non-constant meromorphic functions shar-
ing (1,k1) , where 2 � k1 � ∞ . Then

N(r,1; f | = 2)+2 N(r,1; f | = 3)+ . . .+(k1−1) N(r,1; f | = k1)+ k1 NL(r,1; f )

+(k1 +1) NL(r,1;g)+ k1 N
(k1+1
E (r,1;g) � N(r,1;g)−N(r,1;g).

LEMMA 15. [2] Let f , g share (1,1) . Then

N f>2(r,1;g) � 1
2
N(r,0; f )+

1
2
N(r,∞; f )− 1

2
N0(r,0; f

′
)+S(r, f ),

where N0(r,0; f
′
) is the counting function of those zeros of f

′
which are not the zeros

of f ( f −1) .

LEMMA 16. [2] Let f and g be two non-constant meromorphic functions shar-
ing (1,0) . Then

NL(r,1; f )+2NL(r,1;g)+N
(2
E (r,1; f )−N f>1(r,1;g)−Ng>1(r,1; f )

� N(r,1;g)−N(r,1;g).

LEMMA 17. [2] Let f , g share (1,0) . Then

NL(r,1; f ) � N(r,0; f )+N(r,∞; f )+S(r, f )

LEMMA 18. [2] Let f , g share (1,0) . Then

(i) N f>1(r,1;g) � N(r,0; f )+N(r,∞; f )−N0(r,0; f
′
)+S(r, f )

(ii) Ng>1(r,1; f ) � N(r,0;g)+N(r,∞;g)−N0(r,0;g
′
)+S(r,g).

3. Proofs of the theorems

Proof of Theorem 1. Let F = [ f nP( f )](k)/p(z) and G = [gnP(g)](k)/p(z) , where
P(w) = μwm +λ . It follows that F and G share (1, l) except the zeros of p(z) and f ,
g share (∞,0) .

Case 1. Let H �≡ 0.
Subcase 1.1. l � 1
From (2.1) it can be easily calculated that the possible poles of H occur at (i)

multiple zeros of F and G , (ii) those 1 points of F and G whose multiplicities are
different, (iii) poles of F and G with different multiplicities, (iv) zeros of F

′
(G

′
) which

are not the zeros of F(F −1)(G(G−1)) .
Since H has only simple poles we get

N(r,∞;H) (3.1)
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� N∗(r,∞; f ,g)+N∗(r,1;F,G)+N(r,0;F | � 2)+N(r,0;G| � 2)

+N0(r,0;F
′
)+N0(r,0;G

′
),

where N0(r,0;F
′
) is the reduced counting function of those zeros of F

′
which are not

the zeros of F(F −1) and N0(r,0;G
′
) is similarly defined.

Let z0 be a simple zero of F − 1 but a(z0) �= 0,∞ . Then z0 is a simple zero of
G−1 and a zero of H . So

N(r,1;F | = 1) � N(r,0;H) � N(r,∞;H)+S(r, f )+S(r,g). (3.2)

While l � 3, using (3.1) and (3.2) we get

N(r,1;F) (3.3)

� N(r,1;F | = 1)+N(r,1;F | � 2)
� N(r,∞; f )+N(r,0;F | � 2)+N(r,0;G| � 2)+N∗(r,1;F,G)

+N(r,1;F | � 2)+N0(r,0;F
′
)+N0(r,0;G

′
)+S(r, f )+S(r,g).

Now in view of Lemmas 14 and 3 we get

N0(r,0;G
′
)+N(r,1;F |� 2)+N∗(r,1;F,G) (3.4)

� N0(r,0;G
′
)+N(r,1;F | = 2)+N(r,1;F | = 3)+ . . .+N(r,1;F | = l)

+N
(l+1
E (r,1;F)+NL(r,1;F)+NL(r,1;G)+N∗(r,1;F,G)

� N0(r,0;G
′
)−N(r,1;F | = 3)− . . .− (l−2)N(r,1;F | = l)− (l−1)NL(r,1;F)

−lNL(r,1;G)− (l−1)N(l+1
E (r,1;F)+N(r,1;G)−N(r,1;G)+N∗(r,1;F,G)

� N0(r,0;G
′
)+N(r,1;G)−N(r,1;G)− (l−2)NL(r,1;F)− (l−1)NL(r,1;G)

� N(r,0;G
′ | G �= 0)− (l−2)NL(r,1;F)− (l−1)NL(r,1;G)

� N(r,0;G)+N(r,∞;g)− (l−2)N∗(r,1;F,G)−NL(r,1;G)
� N(r,0;G)+N(r,∞;g)−N∗(r,1;F,G)−NL(r,1;G).

Hence using (3.3), (3.4), Lemmas 2 and 8 we get from the second fundamental theorem
that

(n+m∗)T (r, f ) (3.5)

� T (r,F)+Nk+2(r,0; f nP( f ))−N2(r,0;F)+S(r, f )
� N(r,0;F)+N(r,∞;F)+N(r,1;F)+Nk+2(r,0; f nP( f ))−N2(r,0;F)

−N0(r,0;F
′
)

� N(r,∞, f )+N(r,∞;g)+N(r,0;F)+Nk+2(r,0; f nP( f ))+N(r,0;F | � 2)

+N(r,0;G| � 2)+N(r,1;F | � 2)+N∗(r,1;F,G)+N0(r,0;G
′
)−N2(r,0;F)

+S(r, f )+S(r,g)
� 3 N(r,∞; f )+Nk+2(r,0; f nP( f ))+N2(r,0;G)− N∗(r,1;F,G)−NL(r,1;G)
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+S(r, f )+S(r,g)
� 3 N(r,∞; f )+Nk+2(r,0; f nP( f ))+ k N(r,∞;g)+Nk+2(r,0;gnP(g))

− N∗(r,1;F,G)+S(r, f )+S(r,g)
� (3+ k) N(r,∞; f )+ (k+2) N(r,0; f )+T (r,P( f ))+ (k+2) N(r,0;g)

+T (r,P(g))− N∗(r,1;F,G)+S(r, f )+S(r,g)
� (k+m∗ +2) {T (r, f )+T (r,g)}+(3+ k)N(r,∞; f )− N∗(r,1;F,G)

+S(r, f )+S(r,g)

� (k+m∗ +2) {T (r, f )+T (r,g)}+
(3+ k)(k+m∗+1)

n+m∗− k−1
{T (r, f )+T (r,g)}

�
[
k+m∗+2+

(3+ k)(k+m∗+1)
n+m∗− k−1

]
{T (r, f )+T (r,g)}+S(r, f )+S(r,g),

In a similar way we can obtain

(n+m∗)T (r,g) (3.6)

�
[
k+m∗+2+

(3+ k)(k+m∗+1)
n+m∗− k−1

]
{T (r, f )+T (r,g)}+S(r, f )+S(r,g).

Adding (3.5) and (3.6) we get
[
n−m∗−2k−4− (6+2k)(k+m∗+1)

n+m∗− k−1

]
{T (r, f )+T (r,g)} � S(r, f )+S(r,g).

Since the quantity in the third bracket can be written as
[
(n+m∗− k−1)2− (2m∗+ k+3)(n+m∗− k−1)−2(k+3)(k+m∗+1)

n+m∗− k−1

]
, (3.7)

by a simple computation one can easily verify that when

n+m∗− k−1 > 2m∗ +2k+5 >

2m∗+ k+3+
√

(2m∗ + k+3)2 +8(k+3)(k+m∗+1)
2

,

i.e., when n > 3k+m∗+6 we get a contradiction from (3.7).
While l � 2, like (3.3), (3.4) and not using Lemma 8 in (3.5) we can deduce a

contradiction when n > 3k+m∗+7. So we omit the detail.
While l = 1, using Lemmas 3, 14, 15, (3.1) and (3.2) we get

N(r,1;F) (3.8)

� N(r,1;F | = 1)+NL(r,1;F)+NL(r,1;G)+N
(2
E (r,1;F)

� N(r,∞; f )+N(r,∞;g)+N(r,0;F | � 2)+N(r,0;G| � 2)+N∗(r,1;F,G)

+NL(r,1;F)+NL(r,1;G)+N
(2
E (r,1;F)+N0(r,0;F

′
)+N0(r,0;G

′
)

+S(r, f )+S(r,g)
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� N(r,∞; f )+N(r,∞;g)+N(r,0;F | � 2)+N(r,0;G| � 2)+2NL(r,1;F)

+2NL(r,1;G)+N
(2
E (r,1;F)+N0(r,0;F

′
)+N0(r,0;G

′
)

+S(r, f )+S(r,g)
� N(r,∞; f )+N(r,∞;g)+N(r,0;F | � 2)+N(r,0;G| � 2)+NF>2(r,1;G)

+N(r,1;G)−N(r,1;G)+N0(r,0;F
′
)+N0(r,0;G

′
)

+S(r, f )+S(r,g)

� 3
2

N(r,∞; f )+N(r,∞;g)+N(r,0;F | � 2)+
1
2

N(r,0;F)+N(r,0;G| � 2)

+N(r,1;G)−N(r,1;G)+N0(r,0;G
′
)+N0(r,0;F

′
)

+S(r, f )+S(r,g)

� 3
2

N(r,∞; f )+N(r,∞;g)+N(r,0;F | � 2)+
1
2

N(r,0;F)+N(r,0;G| � 2)

+N(r,0;G
′ |G �= 0)+N0(r,0;F

′
)+S(r, f )+S(r,g)

� 3
2

N(r,∞; f )+2N(r,∞;g)+N(r,0;F | � 2)+
1
2

N(r,0;F)+N2(r,0;G)

+N0(r,0;F
′
)+S(r, f )+S(r,g).

Hence using (3.8), Lemmas 1 and 2 we get from second fundamental theorem that

(n+m∗)T (r, f ) (3.9)

� T (r,F)+Nk+2(r,0; f nP( f ))−N2(r,0;F)+S(r, f )
� N(r,0;F)+N(r,∞;F)+N(r,1;F)+Nk+2(r,0; f nP( f ))−N2(r,0;F)

−N0(r,0;F
′
)

� 5
2

N(r,∞, f )+2N(r,∞;g)+N2(r,0;F)+
1
2
N(r,0;F)+Nk+2(r,0; f nP( f ))

+N2(r,0;G)−N2(r,0;F)+S(r, f )+S(r,g)

� 5
2
N(r,∞; f )+2N(r,∞;g)+Nk+2(r,0; f nP( f ))+

1
2
N(r,0;F)+N2(r,0;G)

+S(r, f )+S(r,g)

� 5
2
N(r,∞; f )+2N(r,∞;g)+Nk+2(r,0; f nP( f ))+ k N(r,∞;g)+Nk+2(r,0;gnP(g))

+
1
2
{kN(r,∞; f )+Nk+1(r,0; f nP( f ))}+S(r, f )+S(r,g)

� 5+ k
2

N(r,∞; f )+ (k+2)N(r,∞;g)+
3k+5

2
N(r,0; f )+

3
2

T (r,P( f ))

+(k+2) N(r,0;g)+T(r,P(g))+S(r, f )+S(r,g)

� (2k+5+
3m∗

2
) T (r, f )+ (2k+4+m∗) T (r,g)+S(r, f )+S(r,g)

� (4k+9+
5m∗

2
) T (r)+S(r).
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In a similar way we can obtain

(n+m∗) T (r,g) �
(

4k+9+
5m∗

2

)
T (r)+S(r). (3.10)

Combining (3.9) and (3.10) we see that

(n+m∗) T (r) �
(

4k+9+
5m∗

2

)
T (r)+S(r),

i.e

(
n−4k+9− 3m∗

2

)
T (r) � S(r). (3.11)

Since n > 4k+9+ 3m∗
2 , (3.11) leads to a contradiction.

Subcase 1.2. l = 0. Here (3.2) changes to

N1)
E

(
r,1;F (k) |= 1

)
� N(r,0;H) � N(r,∞;H)+S(r,F)+S(r,G) (3.12)

using Lemmas 3, 16, 17, 18, (3.1) and (3.12) we get

N(r,1;F) (3.13)

� N1)
E (r,1;F)+NL(r,1;F)+NL(r,1;G)+N

(2
E (r,1;F)

� N(r,∞; f )+N(r,∞;g)+N(r,0;F | � 2)+N(r,0;G| � 2)+N∗(r,1;F,G)

+NL(r,1;F)+NL(r,1;G)+N
(2
E (r,1;F)+N0(r,0;F

′
)+N0(r,0;G

′
)

+S(r, f )+S(r,g)
� N(r,∞; f )+N(r,∞;g)+N(r,0;F | � 2)+N(r,0;G| � 2)+2NL(r,1;F)

+2NL(r,1;G)+N
(2
E (r,1;F)+N0(r,0;F

′
)+N0(r,0;G

′
)+S(r, f )+S(r,g)

� N(r,∞; f )+N(r,∞;g)+N(r,0;F | � 2)+N(r,0;G| � 2)+NF>1(r,1;G)

+NG>1(r,1;F)+NL(r,1;F)+N(r,1;G)−N(r,1;G)+N0(r,0;F
′
)

+N0(r,0;G
′
)+S(r, f )+S(r,g)

� 3 N(r,∞; f )+2N(r,∞;g)+N2(r,0;F)+N(r,0;F)+N2(r,0;G)

+N(r,1;G)−N(r,1;G)+N0(r,0;G
′
)+N0(r,0;F

′
)+S(r, f )+S(r,g)

� 3 N(r,∞; f )+2N(r,∞;g)+N2(r,0;F)+N(r,0;F)+N2(r,0;G)

+N(r,0;G
′ |G �= 0)+N0(r,0;F

′
)+S(r, f )+S(r,g)

� 3N(r,∞; f )+3N(r,∞;g)+N2(r,0;F)+N(r,0;F)+N2(r,0;G)

+N(r,0;G)+N0(r,0;F
′
)+S(r, f )+S(r,g).
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Hence using (3.13), Lemmas 1 and 2 we get from second fundamental theorem that

(n+m∗)T (r, f ) (3.14)

� T (r,F)+Nk+2(r,0; f nP( f ))−N2(r,0;F)+S(r, f )
� N(r,0;F)+N(r,∞;F)+N(r,1;F)+Nk+2(r,0; f nP( f ))−N2(r,0;F)

−N0(r,0;F
′
)+S(r, f )

� 4N(r,∞, f )+3N(r,∞;g)+N2(r,0;F)+N(r,0;F)+Nk+2(r,0; f nP( f ))
+N2(r,0;G)+N(r,0;G)−N2(r,0;F)+S(r, f )+S(r,g)

� 4N(r,∞; f )+3N(r,∞;g)+Nk+2(r,0; f nP( f ))+2N(r,0;F)+N2(r,0;G)
+N(r,0;G)+S(r, f )+S(r,g)

� 4N(r,∞; f )+3N(r,∞;g)+Nk+2(r,0; f nP( f ))+2kN(r,∞; f )
+2Nk+1(r,0; f nP( f ))+ k N(r,∞;g)+Nk+2(r,0;gnP(g))+ kN(r,∞;g)
+Nk+1(r,0;gnP(g))+S(r, f )+S(r,g)

� (2k+4) N(r,∞; f )+ (2k+3)N(r,∞;g)+ (3k+4)N(r,0; f )+3T (r,P( f ))
+(2k+3) N(r,0;g)+2T(r,P(g))+S(r, f )+S(r,g)

� (5k+8+3m∗) T (r, f )+ (4k+6+2m∗) T (r,g)+S(r, f )+S(r,g)
� (9k+14+5m∗) T (r)+S(r),

where T (r) = max{T (r, f ),T (r,g)} . In a similar way we can obtain

(n+m∗) T (r,g) � (9k+14+5m∗) T (r)+S(r). (3.15)

Combining (3.14) and (3.15) we see that

(n+m∗) T (r) � (9k+14+5m∗) T (r)+S(r),

i.e

(n−9k−14−4m∗) T (r) � S(r). (3.16)

Since n > 9k+14+4m∗ , (3.16) leads to a contradiction.
Case 2. Let H ≡ 0. Then by Lemma 9 we obtain either

[ f n(μ f m + λ )](k)[gn(μgm + λ )](k) ≡ p2

or

f n(μ f m + λ )≡ gn(μgm + λ ).

So the theorem follows from Lemma 12 and 13. �

Proof of Theorem 1. Proceeding in the same way the proof of Theorem 2 can be
carried out in the line of proof of Theorem 1. �
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