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SOME PROPERTIES OF MEROMORPHIC

FUNCTIONS CONCERNING SHARED–SETS

AI-DI WU AND WEI-CHUAN LIN

Abstract. Using Nevanlinna’s value distribution theory, we study shared-set problems of mero-
morphic functions and prove that there exist three finite sets S1 (�(S1) = 1) , S2 (�(S2) = 1)
and S3 (�(S3) = 5) such that any two meromorphic functions f and g sharing Sj ( j = 1,2,3)
must be identical. Our results are improvements of those of former authors and the complement
of Ref. [W. Lin and H. X. Yi, Uniqueness theorems for meromorphic functions that share three
sets. Complex Variables, 44 (2003), 315–327.]. In addition, we show the accuracy of the results
by giving some examples.

1. Introduction

In what follows, the term “meromorphic” will always mean meromorphic in the
complex plane C . It is also assumed that reader is familiar with the basic concepts
and notations of Nevanlinna theory, for instance, T (r, f ) , N(r, f ) , m(r, f ) , N(r, f ) and
so on (see [7], [14], [16]). We denote by S(r, f ) any functions satisfying S(r, f ) =
o{T (r, f )} , as r → +∞ , possibly outside a set with finite measure.

Let S be a subset of distinct element in Ĉ . Define

E(S, f ) =
⋃
a∈S

{z ∈ C | fa(z) = 0, counting multiplicities},

where fa(z) = f (z)−a if a ∈ C and f∞(z) =
1

f (z)
.

Let f and g be two non-constant meromorphic functions in C . If E(S, f ) =
E(S,g), we say that f and g share the set S CM. In particular, when S = {a}, where
a ∈ Ĉ, we say that f and g share the value a CM.

The following classical result due to Nevanlinna [13] has prompted research ac-
tivity on shared value problems up until today.

THE FIVE-POINT THEOREM. If two meromorphic functions f and g share five
distinct values a1,a2,a3,a4,a5 , then f ≡ g.

The functions f (z) = ez and g(z) = e−z share the values 0,±1,∞ CM, and yet
f �≡ g. This shows that the number 5 in the five-point theorem is the best possible.

In 1976, F. Gross [6] extended the study by considering pre-images of a set and
introduced the notion of unique range set. Further, Gross proved that there exist three
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finite sets S j ( j = 1,2,3) such that any two non-constant entire functions f and g
satisfying E(S j, f ) = E(S j,g) for j = 1,2,3 must be identical, and posed the following
question (see [5, Question 6]).

QUESTION A. Can one find two finite sets S j ( j = 1,2) such that any two entire
functions f and g satisfying E(S j, f ) = E(S j,g) ( j = 1,2) must be identical?

If the answer to Question A is affirmative, it would be interesting to know how
large both sets would have to be.

Many authors have been considering about it, and got a lot of related results. Some
of them are due to Yi [13–16], Mues and Reinders [12], Frank and Reinders [4], Li and
Yang [9], Fujimoto [5], Yi and Li [15] and so on. We recall the following results given
by Yi [19]:

THEOREM A. [19] Let S1 = {0} and S2 = {w |wn(w+a)−b= 0}, where n(� 2)
is an integer, a and b are two non-zero constants such that the algebraic equation
wn(w + a)− b = 0 has no multiple roots. If f and g are two non-constant entire
functions satisfying E(S j, f ) = E(S j,g) for j = 1,2 , then f ≡ g.

THEOREM B. [19] If S1 and S2 are two finite sets such that any two non-constant
entire functions f and g satisfying E(S j, f ) = E(S j,g) for j = 1,2 must be identical,
then max{�(S1), �(S2)} � 3, where �(S) denotes the cardinality of the set S.

However, Theorem A and Theorem B seem to be invalid for meromorphic func-
tions. In 1994, Yi [17] proved the following result.

THEOREM C. [17] Let S1 = {a} or {∞} , S2 = {c1,c2} and S3 = {a+ b,a +
bω , . . . ,a+ bωn−1}, where n(� 7) is an integer, b �= 0 , c1 �= a, c2 �= a, (c1 − a)n �=
(c2 − a)n and (ck − a)n(c j − a)n �= b2n (k, j = 1,2) . Suppose that f and g are two
non-constant meromorphic functions satisfying E(S j, f ) = E(S j,g) for j = 1,2,3 , then
f ≡ g.

From Theorem C we immediately obtain that there exist three sets S1 (�(S1) = 1) ,
S2 (�(S2) = 2) and S3 (�(S3) = 7) such that any two meromorphic functions f and g
sharing S j ( j = 1,2,3) must be identical.

Recently, Yi [20] introduced the polynomial

P(z) = azn−n(n−1)z2 +2n(n−2)z− (n−1)(n−2), (a �= 0,2) (1)

and proved that P(z) has only simple zeros. In fact, we consider the rational function

R(z) =
azn

n(n−1)(z−α1)(z−α2)
, (2)

where α1 and α2 are two distinct roots of the equation n(n−1)z2−2n(n−2)z+(n−
1)(n−2) = 0.

From (2) , we have

R′(z) =
(n−2)azn−1(z−1)2

n(n−1)(z−α1)2(z−α2)2 , (3)
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so z = 0 is one root with multiplicity n of R(z) = 0 and z = 1 is one roof with multi-

plicity 3 of the equation R(z)− c = 0, where c =
a
2
(�= 1) . Thus,

R(z)− c =
a(z−1)3Qn−3(z)

n(n−1)(z−α1)(z−α2)
,

where Qn−3(z) is a polynomial of degree n−3. Moreover, we have

R(z)−1 =
P(z)

n(n−1)(z−α1)(z−α2)
. (4)

Therefore, from (2) and (3) , we obtain that P(z) has only simple zeros.
In 2003, using the polynomial P(z) defined as (1) , Lin and Yi [10] obtained that

there exist three finite sets S1 = {0} (�(S1) = 1) , S2 = {∞} (�(S1) = 1) and S3 =
{z|P(z) = 0} (�(S3) = 5) such that any two meromorphic functions f and g sharing
S j ( j = 1,2) with the same multiplicities must be identical.

Here, we are interesting what would have to happen when the set S2 = {∞} is
replaced by S2 = {a} , where a is a nonzero finite number. Indeed, we shall give our
main result in Section 3, but the proof method is different from [10].

For the convenience, we explain some notations which will be used in the paper.

DEFINITION 1. Let f be a nonconstant meromorphic function and let a be a finite

complex number. We denote by N1)

(
r,

1
f −a

)
the counting function of simple zeros

of f −a .

DEFINITION 2. Let p be a positive integer and let a be a finite complex num-

ber. We denote by N(p

(
r,

1
f −a

)
the counting function of the zeros of f − a with

multiplicities at least p, and by N(p

(
r,

1
f −a

)
the corresponding reduced counting

function. Moreover, we set Np

(
r,

1
f −a

)
= N(1

(
r,

1
f −a

)
+ N(2

(
r,

1
f −a

)
+ · · ·+

N(p

(
r,

1
f −a

)
.

2. Some auxiliary results

In order to prove our main results, we shall need the following lemmas.

LEMMA 1. [16] Let f (z) be a meromorphic function in C. Then for all irre-
ducible rational function R(z, f ) in f with coefficients meromorphic and small with
respect to f , we have

T (r,R(z, f )) = dT (r, f )+S(r, f ),

where S(r, f ) = o(T (r, f )) for r �∈ E, E is a set with finite measure and d is the degree
of R(z, f ) in f .
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LEMMA 2. [21] Let f (z) and g(z) be two meromorphic functions in C. Let

H =
f ′′

f ′
− 2 f ′

f −1
−
(g′′

g′
− 2g′

g−1

)
.

If f and g share the value 1 CM and H �≡ 0 , then

N1)

(
r,

1
f −1

)
� N(r, f )+S(r, f )+S(r,g).

LEMMA 3. [21] Let h =
f ′′

f ′
− 2 f ′

f −1
, where f is a nonconstant meromorphic

function. If z0 is a simple pole of f , then h is regular at z0 .

LEMMA 4. [4] Let A(z) = (n−1)2(zn−1)(zn−2−1)−n(n−2)(zn−1−1)2, where
n � 5 is an integer, then A(z) = (z− 1)4(z−β1) · · · (z−β2n−6), where β j ∈ C\{0,1}
( j = 1,2, · · · ,2n−6) , which are distinct respectively.

LEMMA 5. Suppose that R(z) is defined as (2), f and g are nonconstant mero-
morphic functions satisfying E({0,1}, f ) = E({0,1},g) . If R( f ) ≡ R(g) , then f ≡ g.

Proof. We consider the case for n = 5, the same argument will be hold for n � 6.
The equation R( f ) ≡ R(g) yields that T (r, f ) = T (r,g) + S(r, f ) and S(r, f ) =

S(r,g) . Moreover, we rewrite it as

f 5

( f −α1)( f −α2)
≡ g5

(g−α1)(g−α2)
. (5)

where α1 and α2 are two distinct roots of the equation 10z2−15z+6 = 0.
In addition, we have R′( f ) ≡ R′(g) , that is

f 4( f −1)2 f ′

( f −α1)2( f −α2)2 ≡ g4(g−1)2g′

(g−α1)2(g−α2)2 . (6)

Combining (5) and (6) , we obtain

( f −1)2 f ′

f 6 ≡ (g−1)2g′

g6 . (7)

We can rewrite (7) as follows.

( 1
f

)2(
1− 1

f

)2(1
f

)′ ≡ (1
g

)2(
1− 1

g

)2(1
g

)′
(8)

Set f ∗ = 1− 1
f

and g∗ = 1− 1
g

, then (8) can be rewritten as

(1− f ∗)2( f ∗)2( f ∗)′ ≡ (1−g∗)2(g∗)2(g∗)′
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Integrating both sides of the equality, we get

6( f ∗)5−15( f ∗)4 +10( f ∗)3 ≡ 6(g∗)5 −15(g∗)4 +10(g∗)3 + c, (9)

where c is a constant.
Since f and g share {0,1} , we can obtain f and g share 0 CM and 1 CM from

(5) . Therefore, we can deduce that f ∗ and g∗ share ∞ CM and 0 CM. Now we
consider the following two cases.

Case I. If 0 is not a Picard exceptional value of f ∗ , then from (9) , we can obtain

that c = 0. Set h =
f ∗

g∗
, then h �= ∞,z ∈ C. Combining (9) , we get

6(g∗)2(h5−1)−15g∗(h4−1)+10(h3−1) ≡ 0. (10)

Therefore,

(
12(h5−1)g∗−15(h4−1)

)2 ≡−15
[
16(h3−1)(h5−1)−15(h4−1)2

]
.

Suppose that h is not a constant, by Lemma 4, we obtain

(
12(h5−1)g∗−15(h4−1)

)2 ≡−15(h−1)4(h−β1) · · · (h−β4),

where β j ∈ C\{0,1} , ( j = 1, · · · ,4) , which are distinct respectively.
This implies that every zero of h−β j ( j = 1, · · · ,4) has a multiplicity at least 2.

By the second fundamental theorem, we get a contradiction. Therefore, h is a constant,
from (10) we get h ≡ 1, hence f ∗ ≡ g∗. Furthermore, we have f ≡ g .

Case II. If 0 is a Picard exceptional value of f ∗ , then it is the Picard exceptional
value of g∗ too. Similar to Case I, we can get f ≡ g when the case c = 0. Therefore,
we only consider the following equation.

6( f ∗)5−15( f ∗)4 +10( f ∗)3 ≡ 6(g∗)5 −15(g∗)4 +10(g∗)3 + c, (11)

where c �= 0.
Set Q(z) = 6z5−15z4 +10z3 + c , then Q′(z) = 30z2(z−1)2 . We can deduce that

z = 0 is not a multiple zero of Q(z) for c �= 0. In addition, if z = 1 is a multiple zero of
Q(z) , then we can obtain that c = −1. It follows that the equation 6z5−15z4 +10z3 +
c = 0 has five distinct roots when c �= 0,−1.

Next, we consider the case c �= −1 in (11) , we have

6(g∗)5−15(g∗)4 +10(g∗)3 + c≡ 6( f ∗)3( f ∗ − γ1)( f ∗ − γ2),

where γ1,γ2 are the roots of z2 − 5
2
z+

5
3

= 0.
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Noting that Q(z) = 6z5−15z4+10z3+c (c �= 0,−1) has five distinct zeros, which
we denote as z j ( j = 1 · · ·5) , by second fundamental theorem, we have

3T (r,g∗) �
5

∑
j=1

N
(
r,

1
g∗ − z j

)
+S(r,g∗)

� N
(
r,

1
f ∗
)

+N
(
r,

1
f ∗ − γ1

)
+N

(
r,

1
f ∗ − γ2

)
+S(r,g∗)

� 2T (r, f ∗)+S(r,g∗),

which gives a contradiction.
If c = −1, we rewrite (11) as

6( f ∗)5−15( f ∗)4+10( f ∗)3+1≡ 6(g∗)5−15(g∗)4+10(g∗)3 ≡ 6(g∗)3(g∗−γ1)(g∗−γ2).

Therefore, we also can get a contradiction similarly.
This completes the proof of Lemma 5. �

LEMMA 6. Let f (z) and g(z) be two meromorphic functions in C , and let F =
R( f ) and G = R(g) , where R(z) is defined as (2) and n � 5 . If AF ≡ G+B, where
A(�= 0) and B are two constants, then one of the following cases holds.

(I) AF ≡ G;

(II) N
(
r,

1
g

)
�= S(r,g) and N

(
r,

1
f

)
�= S(r, f ) .

Proof. By the assumption, we obtain that T (r, f ) = T (r,g) + S(r, f ) . Now we
shall distinguish the following three cases to discuss when n = 5.

Case I. If B = 0, then AF ≡ G , that is Case (I) holds.

Case II. If B =
−a
2

, then AF ≡ G− a
2

, that is

A f 5

20 f 2−30 f +12
≡ (g−1)3(g2 +3g+6)

20g2−30g+12
. (12)

We claim that Case (II) holds, namely N
(
r,

1
f

)
�= S(r, f ) and N

(
r,

1
g

)
�= S(r,g) . Oth-

erwise, N
(
r,

1
f

)
= S(r, f ) or N

(
r,

1
g

)
= S(r,g) .

Firstly, we consider the case when N
(
r,

1
g

)
= S(r,g) . By the second fundamental

theorem and (12) , we get

2T (r,g) � N
(
r,

1
g−1

)
+N

(
r,

1
g−β1

)
+N

(
r,

1
g−β2

)
+N

(
r,

1
g

)
+S(r,g)

� N
( 1

f

)
+S(r,g) � T (r, f )+S(r,g),
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where β1,β2 are the roots of z2 +3z+6 = 0, it is a contradiction.

Next, we discuss the case when N
(
r,

1
f

)
= S(r, f ) , we also can get

T (r,g) � N
(
r,

1
g−1

)
+N

(
r,

1
g−β1

)
+N

(
r,

1
g−β2

)
+S(r,g)

� N
( 1

f

)
+S(r,g) = S(r),

a contradiction.
Therefore, Case (II) holds.

Case III. B �= 0,
−a
2

, noting that R(z)− c = 0
(
c �= 0,

a
2

)
has five distinct roots,

by the second fundamental theorem, we have

3T (r,g) �
5

∑
j=1

N
(
r,

1
g− γ j

)
+S(r,g) � N

(
r,

1
f

)
+S(r,g) � T (r, f )+S(r,g),

where γ j ( j = 1, . . . ,5) are the roots of G+B = 0, it is a contradiction.
The same argument for n � 6. This completes the proof of Lemma 6. �

REMARK 3. Under the condition of Lemma 6 and “n � 6′′ , we can deduce the
further result that AF ≡ G .

LEMMA 7. Let f (z) and g(z) be two nonconstant meromorphic functions in C

such that N
(
r,

1
f −1

)
+ N

(
r,

1
g−1

)
= S(r, f ) + S(r,g) , R(z) is defined as (2) and

1
R( f )−1

≡ A
R(g)−1

+B, where A(�= 0) and B are two constants. If f and g share

{0,1} CM and n � 5 , then B = 0 .

Proof. For the convenience, we put F = R( f ) , G = R(g) . Suppose that B �= 0,
by the assumption, we have

1
F −1

≡
B
(
G+

A−B
B

)
G−1

. (13)

Moreover, we have T (r, f ) = T (r,g)+S(r, f ) .
We distinguish the following three cases to discuss.

Case I. A = B , the equation (13) is rewritten as

1
F −1

≡ BG
G−1

. (14)

Thus, we have N(r,F) = N
(
r,

1
G

)
, that is

N(r, f )+N
(
r,

1
f −α1

)
+N

(
r,

1
f −α2

)
= N

(
r,

1
g

)
.
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From the second fundamental theorem, we obtain

2T (r, f ) � N
(
r,

1
f −1

)
+N(r, f )+N

(
r,

1
f −α1

)
+N

(
r,

1
f −α2

)
+S(r, f )

� N
(
r,

1
g

)
+S(r, f ) � T (r,g)+S(r, f ),

a contradiction.

Case II.
A−B

B
= −a

2
, the equation (13) is rewritten as

1
F −1

≡
B
(
G− a

2

)
G−1

, (15)

We claim that N
(
r,

1
f

)
�= S(r, f ) . Indeed, if N

(
r,

1
f

)
= S(r, f ) , by (15) , we have

N(r,F) = N
(
r,

1

G− a
2

)
, that is

N(r, f )+N
(
r,

1
f −α1

)
+N

(
r,

1
f −α2

)
= N

(
r,

1
g−1

)
+N

(
r,

1
g−β1

)
+N

(
r,

1
g−β2

)
,

where β1,β2 are the roots of z2 +3z+6 = 0.
Thus, using the second fundamental theorem, we have

3T (r, f ) � N
(
r,

1
f −1

)
+N(r, f )+N

(
r,

1
f −α1

)
+N

(
r,

1
f −α2

)
+N

(
r,

1
f

)
+S(r,g)

� N
(
r,

1
f −1

)
+N

(
r,

1
g−1

)
+N

(
r,

1
g−β1

)
+N

(
r,

1
g−β2

)
+N

(
r,

1
f

)
+S(r,g)

� 2T (r,g)+S(r,g),

a contradiction.
Therefore, there exists z0 such that f (z0) = 0, then g(z0) = 0 or g(z0) = 1. By

(15) , it is easy to obtain a contradiction when g(z0) = 1. Therefore, we have g(z0) = 0.

Combing (15) , we deduce B = −2
a

. Rewriting (15) as

G ≡ aF
2F −2+a

It follows that N(r,G) = N

(
r,

1

F −1+
a
2

)
. Since a �= 1,2, we have 1− a

2
�= 0,

a
2

, by
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the second fundamental theorem, we get

4T (r, f ) �
5

∑
j=1

N
(
r,

1
f − γ j

)
+N

(
r,

1
f −1

)
+S(r, f )

� N(r,g)+N
(
r,

1
g−α1

)
+N

(
r,

1
g−α2

)
+S(r, f )

� 3T (r,g)+S(r, f ),

where γ j ( j = 1, . . . ,5) are five distinct roots of 2F − 2 + a = 0 respectively, it is a
contradiction.

Case III. A �= B and
A−B

B
�=−a

2
, by (13) , we have N(r,F)= N

(
r,

1

G+
A−B

B

)
.

Noting that BG+A−B = 0 has at least five distinct roots respectively, similar to the
case II, we can also deduce a contradiction.

Therefore B = 0. This completes the proof of Lemma 7. �

3. Main results

In this section, we shall give the main result as follows.

THEOREM 1. Let f (z) and g(z) be two non-constant meromorphic functions in

C , and let S1 = {0} , S2 = {1}or {∞} , S3 =
{

z|P(z) = 0
}
, where P(z) is defined as

(1) and a �= 0,1,2 . If E(S j, f ) = E(S j,g) ( j = 1,2,3) and n � 5 , then f ≡ g.

REMARK 1. Suppose that S1 = {0},S2 = {1},S3 =
{

z|z5−20z2+30z−12= 0
}

.

Let f (z) = ez +1 and g(z) = e−z +1. It is easy to see that f and g satisfy E(S j, f ) =
E(S j,g) ( j = 1,2,3), but f �≡ g . This shows that the assumption a �= 1 in Theorem 1
can not be omitted.

REMARK 2. Suppose that a = 2. It is easy to see that z = 1 is one root with
multiplicity 3 of the equation 2zn−n(n−1)z2 +2n(n−2)z−(n−1)(n−2)= 0, where
n � 5 is an integer. Thus, S3 in Theorem 1 is not a subset of distinct element in C with
�(S3) = n . This shows that the assumption a �= 2 in Theorem 1 is needed.

Proof of Theorem 1. When S2 = {∞} , by the Ref. [10] we obtain that Theorem 1
is valid. Therefore, we only need to prove Theorem 1 in the case S2 = {1} .

Firstly, we consider the case for n = 5.
For the sake of simplicity, we set

P( f ) = a f 5−20 f 2 +30 f −12, P(g) = ag5−20g2 +30g−12,

F =
a f 5

20 f 2−30 f +12
=

a f 5

20( f −α1)( f −α2)
,
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G =
ag5

20g2−30g+12
=

a f 5

20(g−α1)(g−α2)
.

Then we have F and G share 0, 1 CM and

F ′ =
3a f 4( f −1)2 f ′

20( f −α1)2( f −α2)2 , G′ =
3ag4(g−1)2g′

20(g−α1)2(g−α2)2 ,

F −1 =
P( f )

20( f −α1)( f −α2)
, G−1 =

P(g)
20(g−α1)(g−α2)

,

F − a
2

=
a( f −1)3( f −β1)( f −β2)

20( f −α1)( f −α2)
, G− a

2
=

a(g−1)3(g−β1)(g−β2)
20(g−α1)(g−α2)

,

where β1,β2 are the roots of z2 +3z+6 = 0. We consider the following two cases.

Case I. N
(
r,

1
f −1

)
+N

(
r,

1
g−1

)
�= S(r) , where S(r) = max

{
S(r, f ),S(r,g)

}
.

Set

ϕ =
F ′

(F −1)F
− G′

(G−1)G
,

that is,

ϕ =
( f −1)2 f ′

P( f ) f
− (g−1)2g′

P(g)g
.

Suppose that ϕ �≡ 0, since F and G share 0, 1 CM, we obtain

m(r,ϕ) = S(r), N(r,ϕ) = S(r). (16)

By the first fundamental theorem, we have

2N
(
r,

1
f −1

)
� N

(
r,

1
ϕ

)
� T (r,ϕ) = S(r). (17)

Similarly, we have

2N
(
r,

1
g−1

)
� T (r,ϕ) = S(r). (18)

Combining (17) and (18), we obtain

N
(
r,

1
f −1

)
+N

(
r,

1
g−1

)
= S(r),

a contradiction.

Therefore, we have ϕ ≡ 0, that is
F ′

(F −1)F
≡ G′

(G−1)G
. Integrating both sides

of the equation, we get
F

F −1
≡ AG

G−1
, (19)

where A �= 0 is a constant.
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In the condition of N
(
r,

1
f −1

)
+ N

(
r,

1
g−1

)
�= S(r) , we get that there exists

z0 ∈ C , such that f (z0) = 1 and g(z0) = 1. Therefore, we have A = 1. Furthermore,
we get F ≡ G , by Lemma 5, we have f ≡ g .

Case II. N
(
r,

1
f −1

)
+N

(
r,

1
g−1

)
= S(r) , where S(r) = max

{
S(r, f ),S(r,g)

}
.

Set

H =
F ′′

F ′ −
2F ′

F −1
−
(G′′

G′ −
2G′

G−1

)
.

Suppose that H �≡ 0, from Lemma 3, we have

N(r,H) � N(r, f )+N(r,g)+N(2

(
r,

1
f −α1

)
+N(2

(
r,

1
f −α2

)
+N(2

(
r,

1
g−α1

)
+N(2

(
r,

1
g−α2

)
+N

∗(
r,

1
f ′
)

+N
∗(

r,
1
g′
)
,

where α1,α2 are the roots of 20z2 − 30z + 12 = 0 and α1,α2 �= 0,1, 2, N
∗(

r,
1
f ′
)

denotes the reduced counting function of the zeros of f ′ which are not the zeros of
f ( f −1)( f −α1)( f −α2)(F −1).

By Lemma 2, we have N1)

(
r,

1
F −1

)
� N

(
r,

1
H

)
. Therefore, we have

N
(
r,

1
F −1

)
= N1)

(
r,

1
F −1

)
+N(2

(
r,

1
F −1

)
� N

(
r,

1
H

)
+N(2

(
r,

1
F −1

)
� N(r, f )+N(r,g)+N(2

(
r,

1
f −α1

)
+N(2

(
r,

1
f −α2

)
+N(2

(
r,

1
g−α1

)
+N(2

(
r,

1
g−α2

)
+N0

(
r,

1
f ′
)

+N0

(
r,

1
g′
)
,

(20)

where N0

(
r,

1
f ′
)

denotes the counting function of the zeros of f ′ which are not the

zeros of f ( f −1)( f −α1)( f −α2).
The same argument shows that

N
(
r,

1
G−1

)
� N(r, f )+N(r,g)+N(2

(
r,

1
f −α1

)
+N(2

(
r,

1
f −α2

)
+N(2

(
r,

1
g−α1

)

+N(2

(
r,

1
g−α2

)
+N0

(
r,

1
f ′
)

+N0

(
r,

1
g′
)
.

(21)

Set ψ =
( f −2) f ′

( f −1)( f −α1)( f −α2)
, then it is easy to see that

m(r,ψ) = S(r, f ), N(r,ψ) � N
(
r,

1
f −1

)
+N

(
r,

1
f −α1

)
+N

(
r,

1
f −α2

)
.
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On the other hand, we have

N
(
r,

1
f −2

)
+N∗

0

(
r,

1
f ′
)

� N
(
r,

1
ψ

)
� N(r,ψ)+S(r, f ),

where N∗
0

(
r,

1
f ′
)

denotes the counting function of the zeros of f ′ which are not the

zeros of ( f −1)( f −α1)( f −α2) . Thus,

N
(
r,

1
f −2

)
+N∗

0

(
r,

1
f ′
)

� N
(
r,

1
f −1

)
+N

(
r,

1
f −α1

)
+N

(
r,

1
f −α2

)
+S(r, f ).

(22)
The same argument shows that

N
(
r,

1
g−2

)
+N∗

0

(
r,

1
g′
)

� N
(
r,

1
g−1

)
+N

(
r,

1
g−α1

)
+N

(
r,

1
g−α2

)
+S(r,g).

(23)

Noting that a �= 1, thus z = 2 is not the roof of az5−20z2+30z−12= 0 and N0

(
r,

1
f ′
)

� N∗
0

(
r,

1
f ′
)

. Therefore, using the second fundamental theorem and combining with

(20)–(23), we deduce

8
(
T (r, f )+T (r,g)

)
� N

(
r,

1
f

)
+N

(
r,

1
f −α1

)
+N

(
r,

1
f −α2

)
+N

(
r,

1
F −1

)

+N
(
r,

1
f −2

)
+N

(
r,

1
f −1

)
+N

(
r,

1
g

)
+N

(
r,

1
g−α1

)
+N

(
r,

1
g−α2

)
+N

(
r,

1
G−1

)
+N

(
r,

1
g−2

)
+N

(
r,

1
g−1

)
−N0

(
r,

1
f ′
)
−N0

(
r,

1
g′
)

+S(r, f )+S(r,g)

� 2
(
N(r, f )+N(r,g)

)
+2
(
N2

(
r,

1
f −α1

)
+N2

(
r,

1
g−α1

))
+2
(
N2

(
r,

1
f −α2

)
+N2

(
r,

1
g−α2

))
+N

(
r,

1
f

)
+N

(
r,

1
g

)

+2
(
N
(
r,

1
f −1

)
+N

(
r,

1
g−1

))
+S(r, f )+S(r,g)

� 7
(
T (r, f )+T (r,g)

)
+S(r, f )+S(r,g),

a contradiction.
Therefore, we have H ≡ 0, namely

F ′′

F ′ −
2F ′

F −1
≡ G′′

G′ −
2G′

G−1
.

Integrating both sides of the equality, we get

1
F −1

≡ A
G−1

+B,
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where A �= 0,B are constants.

By Lemma 7, we have B = 0, so that
1

F −1
≡ A

G−1
, we may write this as

AF = G+(A−1) .

Applying Lemma 6, we obtain that either A= 1 or N
(
r,

1
g

)
�= S(r) and N

(
r,

1
f

)
�=

S(r) . When N
(
r,

1
g

)
�= S(r) and N

(
r,

1
f

)
�= S(r) , there exists z0 such that f (z0) =

g(z0) = 0, and hence, we also get A = 1. Thus, by Lemma 5, we get f ≡ g.
Similar to the proceeding of proof for n = 5, we can obtain f ≡ g for n � 6.

Therefore, we complete the proof of Theorem 1. �

4. Further Remarks

In the direction to the question of Gross, Yi [17] also proved that there exists S1

(�(S1) = 2) and S2 (�(S2) = 9) such that any two meromorphic functions f and g
satisfying E(S j, f ) = E(S j,g) for j = 1,2 must be identical.

THEOREM D. [17] Let S1 = {a+b,a+bw, · · ·,a+bwn−1} and let S2 = {c1,c2},
where n > 8, (c1−a)n �= (c2−a)n,(ck−a)n(c j−a)n �= b2n(k, j = 1,2). If f and g are
non-constant meromorphic functions such that E(S j, f ) = E(S j,g) for j = 1,2, then
f ≡ g.

Whereafter, Li and Yang [9], Yi [18] proved that there exists a set S (�(S) = 11)
such that the conditions E(S, f ) = E(S,g) and E(∞, f ) = E(∞,g) imply f (z) ≡ g(z)
for any pair of non-constant meromorphic functions f and g.

In 1997, Fang and Guo [2] extended the result of Li and Yang [9], Yi [18], and
proved that �(S) = 9. Afterwards, I. Lahiri [8], Fang and Lahiri [3], H. Yi and the
present author [22] also obtained �(S) = 8 or �(S) = 7 under adding certain condition
respectively.

By the polynomial P(z) defined as (1) , Yi proved the following result.

THEOREM E. [20] Let f (z) and g(z) be two non-constant meromorphic func-

tions in C , and let S =
{

z|P(z) = 0
}
, where a (�= 0,2) is a constant. If E(S, f ) =

E(S,g) , E(∞, f ) = E(∞,g) and n � 8 , then f ≡ g.

From Theorem E we immediately obtain that there exist two sets S1 (�(S1) = 1)
and S2 (�(S2) = 8) such that any two meromorphic functions f and g sharing S j

( j = 1,2) with the same multiplicities must be identical.
Noting that Lemma 5 and Lemma 7 are valid under the condition “E({0,1}, f ) =

E({0,1},g)′′ , i.e. (�(S1) = 2) and n � 5, so we are natural to pose an open question.

OPEN QUESTION. Whether can Theorem 1 hold under the condition E({0,1}, f )
= E({0,1},g)?

In recent years, along with the value distribution theory of meromorphic functions,
many authors introduced and investigated the approximations of functions in various



14 A.-D. WU AND W.-C. LIN

fields [1]. Furthermore, V. N. Mishra constructed and investigated various properties
on the approximations of functions in Banach spaces [11]. Naturally, we are interesting
to know what happen on the subject of difference and q -difference under the sharing-
set conditions of Theorem 1. Unfortunately, we do not find the effective method to
resolve it.
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