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ON THE CONVOLUTION THEOREM FOR THE

FOURIER TRANSFORM OF BV0 FUNCTIONS

FRANCISCO J. MENDOZA TORRES AND M. GUADALUPE MORALES MACÍAS

Abstract. In this paper we prove the Convolution Theorem for the Fourier Integral transform
over a subset of bounded variation functions which vanish at infinity. This subset is dense in
L2(R) . Moreover, it does not have inclusion relations with the space of Lebesgue integrable
functions. We employ the Henstock-Kurzweil integral.

1. Introduction

Let f ,g : R −→ R be functions. The convolution of f with g is denoted as f ∗g,
and the Fourier Integral transform of f is denoted by f̂ . They are defined in s,t ∈ R ,
whenever the integrals exist, as

( f ∗ g)(t) =
∫ ∞

−∞
f (t − x)g(x)dx (1)

and

f̂ (s) =
∫ ∞

−∞
e−ist f (t)dt. (2)

Let us distinguish between “Fourier Integral transform” and “Fourier transform”. The
first will be that which has an expression as (2), and the second will be when it exists
in another sense. For example that defined for the elements of Lp spaces, 1 < p � 2.
In L(R) the Fourier Integral transform fulfills the Convolution Theorem, that is: if
f ,g ∈ L(R) , then for every real number s we have

f̂ ∗ g(s) = f̂ (s)ĝ(s). (3)

The convolution is defined in other spaces with respect to the Lebesgue inte-
gral. For example if f ∈ Lp(R) and g ∈ Lq(R), where p and q are conjugates.
The case p = q = 2 is important to argue the goal of our work because we know
that the Fourier transform is extended unitarily onto all of L2(R) and the equality
F ( f ∗ g) = F ( f )F (g) is true. Here F denotes the Fourier transform in this case,
see [4]. Since the Fourier transforms in L2(R) do not have necessarily a pointwise in-
tegral expression as (2), then it seems interesting to find classes of functions belonging
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to L2(R)\L(R) for which their Fourier Integral transforms are defined, their convolu-
tion is expressed as (1), at the same time satisfying the relation (3).

Let us consider I a closed interval in R . We will denote by HK(I) the space of
Henstock-Kurzweil integrable functions on I; as HKloc(I) the class of all Henstock-
Kurzweil integrable functions on every compact interval contained in I ; BV (I) will
be the space of bounded variation functions over I ; and BV0(I) the space of bounded
variation functions which vanish at infinity, this last case when I is not bounded. Over
intervals, any Lebesgue integrable function and any Lebesgue integrable function in
the improper sense are Henstock-Kurzweil integrable and their values coincide with
the values from this last integral, see [2] and [9]. Further, HK(I) is a semi-normed

space with the Alexiewicz semi-norm definied as || f ||A = sup[c,d]⊂I

∣∣∣∫ d
c f (t)dt

∣∣∣ .
An interesting sub-class of HK(R) is HK(R)∩ BV (R) . This intersection is a

dense subspace in L2(R) . It is contained in BV0(R) but does not have inclusion re-
lations with L(R), see [7]. For example, the function f : R → R defined by f (t) =
sin(t1/2)/t if t ∈ [π2,∞) and 0 otherwise, belongs to (HK(R)∩BV (R))\L(R).

Taking into account the above facts and using the Henstock-Kurzweil integral, our
main result consists of showing that: if f ,g ∈ HK(R)∩BV (R) then their convolution
has an expression as (1), the Fourier Integral transform of this convolution is defined
for s �= 0, and satisfies the equality (3).

2. Some fundamental theorems of the H-K integral

We state some of the fundamental theorems about the Henstock-Kurzweil integral
that we will use frequently, see [2] and [9].

MULTIPLIER THEOREM. Let [a,b] be a bounded interval. If f ∈ HK([a,b]) ,
ϕ ∈ BV ([a,b]) and F(x) =

∫ x
a f (t)dt, for x ∈ [a,b], then fϕ ∈ HK([a,b]) and

∫ b

a
fϕ = F(b)ϕ(b)−

∫ b

a
Fdϕ . (4)

If a ∈ R and b = ∞ , then fϕ ∈ HK([a,∞]) and

∫ ∞

a
fϕ = lim

b→∞

[
F(b)ϕ(b)−

∫ b

a
Fdϕ

]
. (5)

The integrals on the right are Riemann-Stieltjes integrals. In (5), limb→∞
∫ b
a Fdϕ ,

which is denoted as
∫ ∞
a Fdϕ , will be the improper Riemann-Stieltjes integral. If the

integration is on the intervals [−∞,b] or [−∞,∞], we take the respective limits in (5).

HAKE’S THEOREM. For I = [a,b] . f ∈ (I) iff f ∈ HK(J) for every compact
interval J = [c,d] ⊂ (a,b) and

lim
c→a,d→b

∫ d

c
f (t)dt =

∫ b

a
f (t)dt.

This result is valid for infinite intervals.
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According to Hake’s Theorem, if a function f : R → R is locally Lebesgue (or
Riemann) integrable and

lim
b→∞,a→−∞

∫ b

a
f (t)dt

exists, then this limit and the Cauchy principal value is its integral in the Henstock-
Kurzweil sense.

CHARTIER-DIRICHLET TEST. Let f , ϕ : [a,∞] → R and suppose that:
(a) f ∈ HK ([a,c]) for each c � a, and F (x) =

∫ x
a f (t)dt is bounded on [a,∞) ;

and
(b) ϕ is monotonous with limx→∞ ϕ (x) = 0. Then fϕ ∈ HK ([a,∞]) .

As consequence from the Multiplier theorem, Hake’s theorem and the Chartier-
Dirichlet test we have that if: ϕ ∈ BV0([a,∞]), f ∈ HK([a,b]) for every b > a, and
F(t) =

∫ t
a f dx is bounded on [a,∞). Then fϕ ∈ HK([a,∞]),

∫ ∞

a
fϕdt = −

∫ ∞

a
F(t)dϕ(t),

and ∣∣∣∣
∫ ∞

a
fϕdt

∣∣∣∣ � sup
a<t

|F(t)|Vϕ([a,∞].

Here ‖F‖∞ = supa<t |F(t)| . Similar results are valid for the cases [−∞,∞] and [−∞,a].

The following lemma is a slightly modified version of [3, Dirichlet’s test]

LEMMA 1. Let I be an interval, bounded or unbounded. Let f ,ϕ : [0,∞)× I →
R be functions such that for every t ∈ I; ϕt(x) = ϕ(x, t) is monotone, and f (·,t) ∈
HKloc(R). Suppose that: (a) there exists A > 0 such that for every t ∈ I and for every
interval [α,β ] ⊂ [0,∞): ∣∣∣∣

∫ β

α
f (x,t)dx

∣∣∣∣ � A.

(b) ϕt converges uniformly to 0 , when |x|→ ∞, with respect to t ∈ I. Then the integral∫ β
0 f (x, t)ϕ(x, t)dx uniformly converges to

∫ ∞
0 f (x,t)ϕ(x,t)dx , with respect to t ∈ I, as

β → ∞.

Proof. Given [α,β ]⊂ [0,∞) , by Second Mean Value Theorem, there exists η(t)∈
[α,β ] such that

∫ b

a
f (x, t)ϕ(x,t)dx = ϕt(a)

∫ η(t)

a
f (x,t)dx+ ϕt(b)

∫ b

η(t)
f (x,t)dx. (6)

According the uniform convergence of ϕt to zero, we have that given ε > 0 there exists
N > 0 such that if x � N :

|ϕt(x)| < ε/2A, (7)
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for every t ∈ I. Then, assuming that β > α � N, and by the expressions (6) and (7),
we get ∣∣∣∣

∫ β

α
f (x,t)ϕ(x,t)dx

∣∣∣∣ < ε.

By Cauchy Criterion [2, Theorem 16.6] the convergence is uniform respect to t . �

From the above lemma, we get the following corollary.

COROLLARY 1. Let I be an interval, bounded or unbounded. Let f : R× I → R

and ϕ : R → R be functions such that f (·,t) ∈HKloc (R) and ϕ ∈ BV0(R) . Suppose
that there exists A > 0 such that for every t ∈ I and for every interval [α,β ] ⊂ R:∣∣∣∣

∫ β

α
f (x,t)dx

∣∣∣∣ � A.

Then
∫ β

α f (x, t)ϕ(x)dx uniformly converges to
∫ ∞
−∞ f (x,t)ϕ(x)dx , with respect to t ∈ I,

as α →−∞ y β → ∞.

Proof. We provide the proof for the interval [0,∞). By the Charter-Dirichlet test,
for every t ∈ I, the integral

∫ ∞
0 f (x,t)ϕ(x)dx exists. On the other hand, through the

Jordan’s decomposition, there exist ϕ1 and ϕ2 increasing and bounded functions such
that ϕ = ϕ1−ϕ2.
Because of both functions converge when x → ∞, and since ϕ ∈ BV0([0,∞)) then we
can consider that

lim
x→∞

ϕ1(x) = lim
x→∞

ϕ2(x) = 0.

Thereby, by Lemma 1,
∫ b
0 f (x,t)ϕ(x)dx uniformly converges to

∫ ∞
0 f (x, t)ϕ(x)dx . The

proof in the case (−∞,0] is analogous. Therefore, we get the result. �

The nexts results are obtained in [6].

LEMMA 2. (Riemann-Lebesgue lemma) If f ∈ BV0(R), then the Fourier Integral
transform f̂ (s) exists on R\{0} and f̂ ∈C0(R\{0}) .

COROLLARY 2. If f ∈HK(R)∩BV (R), then the Fourier Integral transform f̂ is
defined for all s ∈ R and f̂ ∈C0(R\{0}).

3. The convolution on HK(R)∩BV(R)

It is possible that the convolution of two functions in BV0(R) does not exist in
a set whose Lebesgue measure is positive, in contrast to what happens for functions
in L(R) . For example, given γ ∈ (0,1/2) fixed, let us define the following functions
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g(x) = 1/xγ if x ∈ [1,∞) , 0 otherwise, and f (x) = g(−x). Let b > 1 and suppose that
t > 0. Due to

∫ b

1
f (t − x)g(x)dx =

∫ −t+b

−t+1

1
(tx+ x2)γ dx

�
∫ −t+b

−t+1

1
(t + x)2γ dx

=
1

1−2γ
[
(b)1−2γ −1

]
,

we get that f ∗ g is not defined in (0,∞). Considering this observation, it makes sense
to focus on HK(R)∩BV(R).

LEMMA 3. Let f ,g in HK(R)∩ BV (R). Then the convolution of f with g is
defined for all t in R and f ∗ g ∈C0(R) .

Proof. For every t ∈ R , ft(·) = f (t − ·) is in HK(R). Since g ∈ BV(R), then
ft · g ∈ HK(R), therefore f ∗ g is defined for all t ∈ R. The family { ft : t ∈ R} is of
uniform bounded variation, it means that for every t ∈R : Var( ft ,R) �Var( f ,R) . Due
to f ∈ HK(R)∩BV (R) , by [8, Lemma 4.1], we have, for each x ∈ R,

lim
|t|→∞

ft(x) = 0 (8)

and, for each t ∈ R,

lim
|x|→∞

ft (x) = 0. (9)

By Multiplier Theorem and expression (9):

( f ∗ g)(t) =
∫ ∞

−∞
ft (x)g(x)dx = −

∫ ∞

−∞
G(x)d ft (x), (10)

where G(x) =
∫ x
−∞ g(u)du, is continuous in R. Considering the expressions (8) and

(10) let us apply the Helly’s convergence Theorem, see in [5], thus we get:

lim
|t|→∞

( f ∗ g)(t) = 0. (11)

Because of HK(R)∩BV (R) ⊂ L2(R), by Hölder’s inequality,

| f ∗ g(t + r)− f ∗ g(t)|�
(∫ ∞

−∞
| f (t + r− x)− f (t− x)|2 dx

)1/2

||g||2
= || f (t + r)− f (t)||2||g||2.

Thus, the continuity of f ∗ g follows from the previous inequality and [1, Theorem
2.8.9]. �
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COROLLARY 3. Let f ,g ∈ HK(R) ∩ BV (R) . Then for each [α,β ] ⊂ R ; f ∗
gχ[α ,β ] is continuous at every real number and belongs to BV0(R).

Proof. Let {t1 < t2 < · · · < tn} be a finite partition in R. Then

n

∑
i=1

∣∣ f ∗ gχ[α ,β ](ti)− f ∗ gχ[α ,β ](ti−1)
∣∣ �

n

∑
i=1

∫ β

α
| f (ti − x)− f (ti−1− x)| |g(x)|dx

=
∫ β

α

n

∑
i=1

| f (ti − x)− f (ti−1− x)| |g(x)|dx

� Vf (R)‖g‖1,[α ,β ] .

Therefore, f ∗ gχ[α ,β ] ∈ BV (R). Moreover, by Lemma 3, we conclude that f ∗
gχ[α ,β ] ∈C(R)∩ BV0(R) . �

Given f and g, α > 0, and s ∈ R , the following notation will be used in the
remainder of the article.

h(α;t) = f ∗g(t)χ[0,α ]; h(−α;t) = f ∗g(t)χ[−α ,0]; h(−α,α; t) = f ∗g(t)χ[−α ,α ].

LEMMA 4. Assume that f ,g∈HK(R)∩BV (R) . Then the convergence of h(±α; t)
to f ∗ g(t)χ[0,∞) and to f ∗ g(t)χ(−∞,0], respectively, and of h(−α,α; t) to f ∗ g(t),
when α → ∞, is uniform with respect to t ∈ R.

Proof. Since f ∈ HK(R) , its Alexiewicz norm is an uniform upper bound, with
respect to t , of all integrals of f (t − x) with respect to x on bounded intervals. By
Corollary 1 we get the result. �

THEOREM 1. If f ,g ∈ HK(R)∩BV (R) and s �= 0 is a fixed number. Then the
double limit

lim
b,α→∞

∫ b

0
e−isth(α;t)dt

exists.

Proof. By Cauchy Criterion, [3, Lemma 33.2], given ε > 0 there exists N > 0
such that if α2 > α1 > N then, for all t ∈ R;

|h(α2;t)−h(α1;t)| =
∣∣∣∣
∫ α2

α1

f (t − x)g(x)dx

∣∣∣∣ <
ε |s|
16

. (12)

By Corollary 3: h(α2;t)− h(α1;t) ∈ BV0(R). Therefore, there exist increasing
and bounded functions h∗1(t) and h∗2(t) such that

h(α2;t)−h(α1;t) = h∗1(t)−h∗2(t),

and if t > N, then

|h∗1(t)| , |h∗2(t)| <
ε |s|
16

. (13)
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Furthermore, for every b1,b2 ∈ R :∣∣∣∣
∫ b2

b1

e−istdt

∣∣∣∣ � 4
|s| . (14)

By Second Mean Value Theorem, (see [2] and [3]) there exist ξ1,ξ2 ∈ [a,b] such that

∫ b

a
e−ist [h(α2;t)−h(α1;t)]dt = h∗1(a)

∫ ξ1

a
e−istdt +h∗1(b)

∫ b

ξ1

e−istdt

−h∗2(a)
∫ ξ2

a
e−istdt−h∗2(b)

∫ b

ξ2

e−istdt.

Assuming that ξ1 < ξ2;∫ b

a
e−ist [h(α2; t)−h(α1;t)]dt = [h∗1(a)−h∗2(a)]

∫ ξ1

a
e−istdt−h∗2(a)

∫ ξ2

ξ1

e−istdt

+[h∗1(b)−h∗2(b)]
∫ b

ξ2

e−istdt +h∗1(b)
∫ ξ2

ξ1

e−istdt.

Therefore, from expressions (12), (13) and (14), we have that if: b > a > N and α2 >
α1 > N, then ∣∣∣∣

∫ b

a
e−ist [h(α2;t)−h(α1;t)]dt

∣∣∣∣ < ε.

By Cauchy criterion, [3, Theorem 19.5], we get the result. �

COROLLARY 4. Let f ,g ∈ HK(R)∩BV (R) and s �= 0 be a fixed number. Then

lim
α→∞,b→∞,a→−∞

∫ b

a
e−isth(−α,α;t)dt = lim

b→∞,a→−∞

∫ b

a
e−ist f ∗ g(t)dt (15)

and

lim
α→∞,b→∞,a→−∞

∫ b

a
e−isth(−α,α;t)dt = lim

α→∞

∫ ∞

−∞
e−ist h(−α,α; t)dt. (16)

Proof. By Theorem 1 the limit on the left exists. Because the convergence of
h(−α,α; t) to f ∗ g(t), is uniform, see Lemma 4, then for any a < b in R :

lim
α→∞

∫ b

a
e−isth(−α,α;t)dt =

∫ b

a
e−ist

∫ ∞

−∞
f (t − x)g(x)dxdt.

On the other hand, since, h(−α,α;t) ∈ BV0(R), then
∫ ∞
−∞ e−ist h(−α,α; t)dt is

well defined for each α , see Lemma 2. Moreover, by Hake’s Theorem;

lim
b→∞,a→−∞

∫ b

a
e−ist h(−α,α;t)dt =

∫ ∞

−∞
e−ist h(−α,α; t)dt.

Therefore, the equalities (15) and (16) hold from [3, Theorem 19.6]. �



70 F. J. MENDOZA TORRES AND M. G. MORALES MACÍAS

PROPOSITION 1. Let f ,g ∈ HK(R)∩BV (R) , a < b, and 0 < α; then for every
s ∈ R :

lim
α→∞

lim
b→∞,a→−∞

∫ b

a
e−ist h(−α,α;t)dt = f̂ (s)ĝ(s). (17)

Proof. Since f , g ∈ HK(R)∩BV(R), then f̂ and ĝ exist in R . For any bounded
intervals I,J; f ∈ L(I), g ∈ L(J) and f (t − x)g(x) ∈ L(I × J) . By classical Fubini’s
Theorem, for α > 0 and any two real numbers a < b :

∫ b

a
e−isth(−α,α,t)dt =

∫ α

−α
g(x)

∫ b

a
e−ist f (t − x)dtdx.

Besides, e−is(·) f (·− x)χ[a,b](·) ∈ HK(R). Let us define f̂s(x;a,b) =
∫ b
a e−ist f (t −

x)dt. Since f̂ (s) exists and f̂s(x;a,b) = e−isx ∫ b−x
a−x f (u)e−isudu, we have that

lim
b→∞,a→−∞

g(x) f̂s(x;a,b) = f̂ (s)e−isxg(x)

for all x ∈ R, in particular for every x ∈ [−α,α] . Separating f̂s(x;a,b) as a sum of its
real and imaginary parts, we get that

∣∣∣g(x) f̂s(x;a,b)
∣∣∣ � 2‖ f (·)‖A ‖g‖∞ .

By the Convergence Dominated Theorem,

lim
b→∞,a→−∞

∫ α

−α
g(x)

∫ b

a
e−ist f (t − x)dtdx = f̂ (s)

∫ α

−α
g(x)e−isxdx.

Since ĝ(s) exists. We have that

lim
α→∞

lim
b→∞,a→−∞

∫ α

−α
g(x)

∫ b

−a
e−ist f (t − x)dtdx = f̂ (s)ĝ(s). �

THEOREM 2. Let f ,g ∈HK(R)∩BV (R). Then the Fourier Integral transform of
f ∗ g exists for each s ∈ R\{0} and

(̂ f ∗ g)(s) = f̂ (s) ĝ(s).

Proof. By Corollary 4, (̂ f ∗ g)(s) exists for each s ∈ R\{0}. From the equality
(16) and Proposition 1 the result is obtained. �
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